
CS2223, HW3:

Divide and Conquer; Greedy Algorithms∗

Course website: http://web.cs.wpi.edu/~cs2223/b12/. Hand in your
answer by midnight, 19 Nov., so that we can discuss some problems in class
Tuesday. Use Turnin at https://turnin.cs.wpi.edu/.

Some CLRS problems and exercises are included in this week’s list. They
are an important part of the homework.

Working in groups and talking about the problems is strongly encour-
aged. More enjoyable and more educational. You can also discuss them
with Fei, Linglong, Xianjing, and with me. Our office hours are listed at
http://web.cs.wpi.edu/~cs2223/b12/#personnel.

A. Divide and Conquer. You are consulting with the Centers for Dis-
eased Computing (CDC). They have a large number of data-sets—1,025 to
be precise—related to drug tests for a particular disease. We will call these
data-sets d0, . . . , d1024.

The CDC would like to perform a processing-intensive operation to com-
bine them. We will call this operation ⊕ (pronounced “oh-plus”). A partic-
ular ⊕ operation on a pair of data-sets of this size takes about a day; the
resulting data-set d⊕ d′ is of the same size as the inputs.

Luckily, the CDC has a lot of available processors. Although an in-
dividual ⊕ operation is hard to parallelize, different ⊕ operations can be
performed at the same time on different processors. Your job is to paral-
lelize the sequence of ⊕ computations.

A.1. About how many years will it take to compute step-by-step

(((d0 ⊕ d1)⊕ d2)⊕ . . . d1024)?

∗Due: Monday night, 19 Nov.

1

http://web.cs.wpi.edu/~cs2223/b12/
https://turnin.cs.wpi.edu/
http://web.cs.wpi.edu/~cs2223/b12/#personnel


Answer. Since there are 1,024 ⊕ signs in that expression, and no one
of them can be computed until all the ⊕s to its left are finished, it will take
1024/365 = 2.8 years.

A.2. What algebraic property of ⊕ justifies computing

((d0 ⊕ d1)⊕ (d2 ⊕ d3))

instead of
(((d0 ⊕ d1)⊕ d2)⊕ d3)?

That is, what algebraic property would imply that both computations give
us the same result?

Answer. If ⊕ is associative, the two expressions give the same result.

A.3.

(a) What is the total elapsed time required to execute (((d0⊕d1)⊕d2)⊕d3)
start to finish?

(b) How many processors could be used simultaneously in computing ((d0⊕
d1)⊕ (d2 ⊕ d3))?

(c) How much elapsed time (start-to-finish) would the computation take,
using those processors?

Answer. The former requires 3 days. The latter can use two proces-
sors, one to compute (d0 ⊕ d1), and one to compute (d2 ⊕ d3); one of those
processors can then combine its result with the result of the other processor’s
work. Thus, the total elapsed time will be 2 days.

This suggests using a divide-and-conquer strategy to parallelize the compu-
tation. Assume that the procedure

do_oplus(i,j)

will retrieve the data-sets di and dj , select a currently unused data-set num-
ber k, compute di ⊕ dj , and store the resulting data set as dk. We always
use a new, not-yet-used index k. You will also use the procedure

2



run_parallel(u, proc_call_1,

v, proc_call_2)

It executes proc_call_1 on the current processor, assigning its result to
the variable u. Meanwhile, it will find a currently unused processor. It
will execute proc_call_2 on that new processor, assigning its result to the
variable v. It then frees the new processor. Execution of this procedure is
complete as soon as both proc_call_2 and proc_call_1 have finished. For
instance,

run_parallel(u, do_oplus(i,j),

v, do_oplus(k,l))

runs di ⊕ dj on the current processor and dk ⊕ d` on a new processor. The
variables u, v store the data-set numbers for the two results. The total
elapsed time to run this is the maximum of the time to run the two procedure
calls.

A.4. Write pseudocode for a recursive procedure

int oplus_range(bot,top)

that will return the data-set number for a data-set that is the result of
combining all the data-sets with numbers from bot to top (inclusive).

If bot == top, it can just return the data-set number bot with no com-
putation. If bot == top+1, it should call do_oplus.

Otherwise, it should divide the range from bot to top, using run_parallel
to call itself on each piece. Finally, a call to do_oplus combines the results,
returning the data-set number for the result.

Answer.

int oplus_range(bot,top) {
if bot == top {
return bot

}
else if bot == top+1 {
return do_oplus (bot,top)

}
else {
int u, v, mid;

mid = floor((bot+top)/2);

3



run_parallel(v, oplus_range(bot,mid),

u, oplus_range(mid+1,top));

return do_oplus(v,u)

}
}

A.5. A Recurrence for Elapsed Time. Write and solve a recur-
rence that describes the amount of elapsed time T (n) that oplus_range(bot,top)
requires, when n = top - bot.

Each call to do_oplus requires a constant time c, where c is about one
day. Addition, subtraction, division, assignment, and allocating a new pro-
cessor take (relative to this) 0 time. Multiple processors working simultane-
ously do not contribute to elapsed time.

Answer. T (0) = 0; T (1) = c; otherwise,

T (n) = T (dn/2e) + c.

By the recursion tree method, we have a tree of height log2 n with an elapsed
time of c at each level, adding up to a total elapsed time of c log2 n

A.6. A Recurrence for processor-days. Write and solve a re-
currence that describes the number of processor-days P (n) required for
oplus_range(bot,top), when n = top - bot. Multiple processors work-
ing simultaneously all contribute to the processor-days.

Answer. P (0) = 0; P (1) = 1 processor-day; otherwise,

P (n) = 2 · P (dn/2e) + 1.

By the recursion tree method, we have a tree of height dlog2 ne, in which one
processor-day used on the top level and twice as many processor-days used
at each successive level. Thus, this uses

∑
i≤log2 n 2i ∈ Θ(n) processor-days.

4



B. A Greedy Algorithm. In your job for the investment bank Golden
Smacks, you devise algorithms to help the finance people make decisions.

A small bureau within your bank has an amount of money that they
want to loan to a sequence of short-term business projects. The projects are
all about the same size, which is about equal to the amount the bureau has
available, so they can fund one project at a time. Also, the fee earned by
the bank seems to be about equal for each project.

Thus, your job is to maximize the number of projects funded.
Each project has a start-date and an end-date, with the end-date always

after the start-date. If two projects a, b have start dates sa, sb and end-dates
ea, eb, they are compatible if ea ≤ sb or eb ≤ sa. That is, one should have
ended no later than the other starts.

The procedures start(p) and end(p) return the start and end dates of
project p. Procedure lessEq(date1,date2) returns true if date1 is less
than or equal to date2; that is, date1 is not after date2.

B.1. Sort the entries. What order will you consider the projects in?
(You do not need any pseudocode here.)

Answer. Either by earliest end date, or else by latest start date.

B.2. Build the maximal compatible sets. Suppose that the result
of your sorting yields an array of projects projects[] of length k. So the
entries in the array are projects[0], . . . , projects[k-1].

Write pseudocode to initialize a set a to contain projects[0], and to
maintain some information so that you will lbe able to determine which
new projects are compatible. Then iterate through the rest of projects[],
greedily adding each p to a if it is compatible with the projects already in
a.

Answer.

a = { projects[0] };
last_end = end(projects[0]);

for i from 1 to k-1 {
if lessEq(last_end, start(projects[i])) {

a = a ∪ { projects[i] };
last_end = end(projects[i])

}
}

5



return a

B.3. Estimate runtime. Estimate the runtime for your code from
B.3 by choosing a f such that it will complete in time Θ(f(k)).

Answer. The runtime is linear in k, i.e. ∈ Θ(k).

Some Problems from CLRS.

Sec. 4.1 Do exercises 4.1-1, 4.1-4, p. 74.

Sec. 4.4 Do exercises 4.4-1, 4.4-2, 4.4-3, 4.4-4, p. 92.

Sec. 6.1 Do exercises 6.1-1 up to 6.1-6, p. 153.

Sec. 6.5 Do exercises 6.5-1 up to 6.5-2, 6.5-7, p. 166.

Sec. 7.1–2 Do exercises 7.1-1, 7.1-2, and 7.1-3, p. 173, and 7.2-1 and 7.2-2,
p. 178.

Sec. 16.1 Do exercises 16.1-2, 16.1-3, and 16.1-4.

6


