
CS2223, HW2:

Graphs and Graph Search∗

Course website: http://web.cs.wpi.edu/~cs2223/b12/. Hand in your
answer by midnight, 7 Nov., so that we can discuss some problems in class
Thursday. Use Turnin at https://turnin.cs.wpi.edu/.

Some CLRS problems and exercises are included in this week’s list.
Working in groups and talking about the problems is strongly encour-

aged. More enjoyable and more educational. You can also discuss them
with Fei, Linglong, Xianjing, and with me. Our office hours are listed at
http://web.cs.wpi.edu/~cs2223/b12/#personnel.

A. Run DFS on an Example. Execute DFS on this example graph G1,
showing the start and finish times for each node. Assume DFS always starts
from the alphabetically first node, and then—when it has processed every-
thing accessible from there—restarts at the alphabetically next unvisited
node, etc.

When it has several edges out from a single node, assume that it always
uses them in alphabetical order (by their destinations). Put the start and
finish time (separated by a comma) next to the node.

G1 b ◦ //

!!

c ◦

a ◦

==

!!

e ◦ // f ◦

d ◦

==

g ◦

Check that the parenthesis property holds (see CLRS, Corollary 22.8, p. 608).
a: 1, 12, b: 2, 9, c: 3, 4, d: 10, 11, e: 5, 8 f : 6, 7, g: 13, 14.

∗Due: Wednesday night, 7 Nov.
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B. Topological Sort. Suppose G is an directed acyclic graph, and we
would like to order its nodes in a sequence S such that every edge in G
points from an earlier node to a later node: If there is an edge from u to v
in G, then u comes before v in the sequence S.

Finding a linear sequence of this kind is called (oddly) topologically sort-
ing G. You could also call it “linearizing” G.

Depth first search is one way to sort G topologically. DFS finds the
discovery time and the finish time for each node in G. Each time you finish
a node, place it in an array S, but fill the array starting from the back, at
S[g.length], working forward, so that the last node to finish is in S[1].

B.1. Extract the Topological Sort. Write the topologically ordered
sequence of nodes S generated by the run of DFS on G1 from Part A.
g, a, d, b, e, f, c

B.2. Other Topological Sorts. There are generally a lot of se-
quences that are possible topological sorts of the same graph. Some of
them could be generated by a DFS that visits the nodes in a different order.
But some of them cannot be generated by DFS.

1. Write out a sequence that could be generated by DFS on G1, if it some-
times selects unvisited nodes out of alphabetical order, or sometimes
chooses edges out of a single node out of alphabetical order.

a, d, b, e, f, c, g

2. Write out a sequence that is a topological sort of G1, but could never
be generated by DFS, no matter what order it selects its starting points
and its edges.

Ahem. What I was thinking when I wrote these words was, no matter what
order it selects its starting points after a. Or something like that. Though,
this isn’t what the words actually say.

If I had asked that question, an answer would be: a, d, g, b, e, f, c. Others are

possible.

B.3. Prove the algorithm is right. How do we know that using
DFS this way always gives a topological sorting? Use the key properties of
DFS to show that on an acyclic graph, this will give a topological sort.

Suppose that f(i) < f(j), meaning that j comes before i in the
output S. We must show that there is no edge from i to j.
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Use the parenthesis property. Then either d(j) < d(i) < f(i) <
f(j) or else d(i) < f(i) < d(j) < f(j). In the first case, when j was
discovered, there was an undiscovered path from j to i. Then there is
certainly no edge (i, j) by acyclicity.

Otherwise, there is no edge (i, j) because j is still undiscovered
when i is discovered, but DFS does not explore it till after i finishes.
If there was an edge, i could not finish until this edge is explored.

C. Run BFS on an Example. Execute BFS on this example undirected
graph G2. Start at node a. Next to each node, write d = its distance from
node a, counting by edges, and π = the parent it was reached from. When
the first run completes, restart with the alphabetically earliest node you
have not yet seen.

b c h

a d e i

f g j

Check that if u, v are any two vertices with an edge between them, then
their distances are separated by at most 1.

a : 0 c : 1, a d, e : 2, c b, g : 3, d f : 4, b
h : 0 i : 1, h j : 2, i

D. Bipartite Graphs. Using your BFS traversal of G2 as an example,
say:

1. Is G2 bipartite? Yes.

2. List the nodes in each of the two classes that traversal identifies, if G2

is bipartite.

I. a, d, e, f, h, j. II. b, c, g, i. Could also have h, j in II and i in I.

3. Show an edge between two nodes in the same layer, otherwise.
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E. Some exercises from CLRS. Do these exercises from the textbook.
Discussion is warmly encouraged.

Representing graphs, 22.1. On pp. 592–3, do exercises 22.1-1, 22.1-2,
22.1-5, and, if it looks fun, 22.1-6.

BFS, 22.2. On pp. 601–2, do exercises 22.2-1, 22.2-2, 22.2-5, 22.2-7.

DFS, 22.3. On pp. 610–11, do exercises 22.3-2, 22.3-3, 22.3-5, 22.3-7.

Topological sort, 22.4. On pp. 614–15, do exercises 22.4-1, 22.4-3.
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