
+ +

Trust Engineering

via

Cryptographic Protocols

Joshua D. Guttman

Jonathan C. Herzog Jonathan K. Millen John D. Ramsdell

Brian T. Sniffen F. Javier Thayer

Supported by: MITRE-Sponsored Research

+ +

Trust Engineering

• Security in distributed systems must handle:

– Many people, organizations, machines
– Essentially different goals and policies

• Pervasive issues:

– What principal is making a request?
– If I respond, what action must I take?
– What policy do I use to decide?

• Trust engineering goal:

control global sequences of events via local decisions

– My decisions suffice to prevent harm to me,
even from actions taken elsewhere

– I can appraise source, reliability of information from others
– I can predict who might receive information I transmit

+ +

Trust in Purchasing

Electronic Purchase using a Money Order

B C M

γc,1

goods available,
for price?

◮•

•
�

w

w

◭ γm,2

I will ship C goods,
if paid price

�

w

w

w

•◭ •
�

w

w

w

γb,2

I will pay price

from acc# to the bearer P ,
if P authorized by C

�

w

w

w

◮•
�

w

w

w

γc,5

I authorize payment
from acc# to M

�

w

w

w

◮•
�

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

•
�

w

w

w

w

w

w

w

w

w

◭ γm,4

I request payment and
I will ship C goods

�

w

w

w

B = bank C = customer M = merchant

+ +

EPMO Goals

• At the end of a run, C,M,B agree on identities and price

– B to transfer price from C’s acct to M ’s

• C,M agree on goods

– At the end of a run, M to ship goods to C

• Protocol preserves confidentiality:

– M never learns C’s account number
– B never learns goods
– Other parties never learn C,M,B, price, goods

– B learns M ’s identity only if C decides to complete transaction

Types of goal:

– Authentication of identities
– Agreement on other parameters
– Confidentiality
– Agreement on commitments

+ +

Commitments in Purchasing

Electronic Purchase using a Money Order

B C M

γc,1

goods available,
for price?

◮•

ρc,2

M says γm,2

�

w

w

◭ γm,2

I will ship C goods,
if paid price

�

w

w

w

•◭ •
�

w

w

γb,2

I will pay price

from acc# to the bearer P ,
if P authorized by C

�

w

w

w

◮•
�

w

w

w

γc,5

I authorize payment
from acc# to M

�

w

w

w

◮ρm,3

B says B will pay if authorized
and C says C authorizes payment

�

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

ρb,3

C says C authorizes
payment from acc# to M

and M says M requests

�

w

w

w

w

w

w

w

w

w

w

◭ γm,4

I request payment and
will ship C goods

�

w

w

+ +

Trust Engineering

• Trust engineering goal:

control global sequences of events via local decisions

– My decisions suffice to prevent harm to me,
even from actions taken elsewhere

– I can appraise source, reliability of information from others
– I can predict who might receive information I transmit

• How to design new, application-specific protocols

– Craft transactions in

◦ Electronic commerce, web services, remote attestation

– “Trust engineering:” Protocol to match trust goals of participants

• Goals of this talk: Explain

– When is a protocol strong enough for its trust goals?
– CPPL, a domain specific programming language for trust eng.

+ +

EPMO Protocol Structure, 1

B C M

γc,1

goods available,
for price?

{C, Nc, goods, price}M
◮•

ρc,2

M says γm,2

�

w

w

◭

{Nc, Nm, M}C
γm,2

I will ship C goods,
if paid price

�

w

w

w

•◭ •
�

w

w

γb,2

I will pay price

from acc# to the bearer P ,
if P authorized by C

�

w

w

w

◮•
�

w

w

w

γc,5

I authorize payment
from acc# to M

�

w

w

w

. . . Nm . . .
◮ρm,3

B says B will pay if authorized
and C says C authorizes payment

�

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

ρb,3

C says C authorizes
payment from acc# to M

and M says M requests

�

w

w

w

w

w

w

w

w

w

w

◭ γm,4

I request payment and
will ship C goods

�

w

w

+ +

EPMO Protocol Structure, 2

B C M

γc,1

goods available,
for price?

{C, Nc, goods, price}M
◮•

ρc,2

M says γm,2

�

w

w

◭

{Nc, Nm, M}C
γm,2

I will ship C goods,
if paid price

�

w

w

w

•◭ •
�

w

w

γb,2

I will pay price

from acc# to the bearer P ,
if P authorized by C

�

w

w

w

mo, {Nc, Nb}C
◮•
�

w

w

w

γc,5

I authorize payment
from acc# to M

�

w

w

w

mo, Nb
◮ρm,3

B says B will pay if authorized
and C says C authorizes payment

�

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

ρb,3

C says C authorizes
payment from acc# to M

and M says M requests
payment

�

w

w

w

w

w

w

w

w

w

w

◭
hash(M, B, Nb, Nm)

γm,4

I request payment and
will ship C goods

�

w

w

mo = [[hash(C, Nc, Nb, Nm, price)]]B

+ +

EPMO Weakened

B C M

•
{C, Nc, goods, price}M

◮•

ρc,2

M says γm,2

�

w

w

w

◭

{Nc, Nm, M}C
γm,2

I will ship C goods,
if paid

�

w

w

w

•◭
{C, Nc, Nm, acc#, price}B •

�

w

w

γb,2

I will pay price

to the bearer P ,
if P authorized by C

�

w

w

w

mo, {Nc, Nb}C
◮•
�

w

w

w

γc,5

I authorize
payment to M

�

w

w

w

mo, Nb
◮ρm,3

B says γb,2 and
C authorizes payment to M

�

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

ρb,3

C says C

authorizes payment to M

and
M says M requests

payment
�

w

w

w

w

w

w

w

w

w

w

◭
hash(M, B, Nb, Nm)

γm,4

I request payment and
will ship C goods

�

w

w

mo = [[hash(C, Nc, Nb, Nm, price)]]B

+ +

Lowe-style attack

B C M ′ M

•
{C, Nc, goods, price}M ′

◮ •

•
�

w

w

w

◭

{Nc, Nm}C •

I will ship C goods,
if paid

�

w

w

w

•◭
{C, Nc, Nm, price}B •

�

w

w

w

•

I will pay price

to the bearer P ,
if P authorized by C

�

w

w

w

mo, {Nc, Nb}C
◮•
�

w

w

w

•

I authorize
payment to M ′

�

w

w

w

mo, Nb
◮ ρm,3

B says γb,2 and
C authorizes payment to M

�

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

ρb,3

C says C authorizes
payment to M

and M says M requests
payment�

w

w

w

w

w

w

w

w

w

w

w

◭
hash(M, B, Nb, Nm)

•

I, M , request payment and
will ship C goods

�

w

w

+ +

Authentication Protocols:
A Coordination Mechanism

• Causes principals to agree on certain parameters

• After a run, participant knows:

– There is a protocol run by another principal
– Some parameters match across runs
– Some shared values are secrets
– Other principal’s run overlaps mine temporally

• Protocol design now tractable, based on a few theorems

– “Authentication tests” determine extent of agreement
– Formalize reasoning of previous slides via strands and bundles

• Formulas γ, ρ clarify real-world consequences of protocol run

– When is customer committed to paying?
– When is merchant committed to shipping?
– Whose word did you depend on when deciding?

• Trust decisions constrain protocol runs (“business logic”)

+ +

Trust management and protocols

• Each principal P

– Reasons locally in initial theory ThP , e.g. a theory in Datalog
– Derives guarantee before transmitting message
– Relies on assertions of others as premises

• Premises: formulas associated with message receptions

– Specifies what recipient may rely on, e.g.
“B says B will transfer funds if authorized”

– Provides local representation of remote guarantee
– ThP determines whether φ follows from P ′ says φ — —

Relevant
notion of “trust”

• Role of protocol

– When I rely on you having asserted a formula,
then you did guarantee that assertion

– Coordination mechanism for rely/guarantees
– Sound protocol: “relies” always backed by “guarantees”

even with malicious adversary M ′

+ +

Soundness

• Protocol Π is sound if:
for all executions B of Π,
and message receptions n ∈ B

{prin(m) says γm : m ≺B n} −→L ρn

where

−→L is the consequence relation of the underlying logic

≺B is the partial order generated by

m → n implies m ≺ n (msg trans)
m ⇒ n implies m ≺ n (next step on strand, i.e. local run)

• Soundness follows from authentication properties

– Strand space authentication methods work fine
– Recency easy to incorporate

• Soundness:
Criterion for Π to be strong enough for its trust interpretation

+ +

A Domain Specific Language

• CPPL, a Cryptographic Protocol Programming Language

– Expresses cryptographic protocols
– Programmer treats crypto primitives as black boxes
– Controls behavior via trust queries
– Equipped with a useful semantics — —

In the
strand space
framework

— —

spi or applied pi
would also work

◦ Useful for proving protocol security
◦ Useful in structuring compiler we wrote

+ +

Coding the Merchant

let chan = accept in

receive chan

{c, n c, goods, price} km

-->

let n m = new nonce in

send

--> chan {n c, n m, m} kc

receive chan

[[hash(c, n c, n b, n m, price)]] skb, n b

-->

send

--> chan [[hash(B, n b, n m)]] skm

return

M
{C, Nc, g, p}M

◮ •

◭

{Nc, Nm, M}C
•

γm,2 ∧ pubkey(c, kc)

�

w

mo, Nb
◮ •

ρm,3

�

w

◭

[[h(M, B, Nb, Nm)]]M
•

γm,4

�

w

+ +

Coding the Merchant: Trust
Formulas

let chan = accept in

receive chan

{c, n c, goods, price} km

--> true

let n m = new nonce in

send γm,2 and pubkey(c,kc)

--> chan {n c, n m, m} kc

receive chan

[[hash(c, n c, n b, n m, price)]] skb, n b, b

--> if sigkey(b,skb) then ρm,3

send sigkey(b,skb) and γm,4
--> chan [[hash(B, n b, n m)]] skm

return

M
{C, Nc, g, p}M

◮ •

◭

{Nc, Nm, M}C
•

γm,2 ∧ pubkey(c, kc)

�

w

mo, Nb
◮ •

ρm,3

�

w

◭

[[h(M, B, Nb, Nm)]]M
•

γm,4

�

w

+ +

Semantics of CPPL

• A structured operational semantics

• Judgment:

σ ; ∆ ⊢ c : s

• Means:

In environment σ, — —

partial map
from identifiers

to values

a principal holding theory ∆,
executing code c,
may unleash strand s — —

“strand:”
purely local sequence
of sends, receives

+ +

Semantics of receive

σ1 = σ ⊕ σ′ σ1 ; ∆, φ σ1 ⊢ c : s

σ ; ∆ ⊢ (x recv m φ c) : − (x, m)σ1, φ σ1 ⇒ s

— —
dom(σ′) ⊆ vars(m) vars(x,m, φ) ⊆ dom(σ1)

⊕ means disjoint union of fns

−(x, m), φ⇒ s:

receive m from channel x, relying on φ; then do rest of strand s

+ +

Semantics of send

σ1 = σ ⊕ σ′ ∆ ‖− φσ1 σ1 ; ∆ ⊢ c : s

σ ; ∆ ⊢ (send φ x m c) : + (x, m)σ1, φ σ1 ⇒ s

— —dom(σ′) ⊆ vars(φ) vars(x,m, φ) ⊆ dom(σ1)

+(x, m), φ⇒ s:

transmit m on channel x, guaranteeing φ; then do rest of strand s

+ +

CPPL Principles

• Principal maintains an environment during run

– Variables progressively become bound, never change value after
– Values are atomic (nonce, name, key, etc)

• Message transmission, reception:

– Reception:
◦ Branch on form of message
◦ New variables bound from msg components
◦ Rely on assertion of sender

– Transmission:
◦ Branch on successful guarantee
◦ New variables bound from successful guarantee

(as in logic programming)

• Derive guarantees using:

– ThP , your initial theory
– Values of variables bound up to this point
– Rely formulas for earlier msg receptions

+ +

Subprotocols

• Subprotocols encapsulated by rely/guarantee

– Callee relies on assertion of caller
◦ Property of input parameters

– Callee guarantees result for caller
◦ Relation on input, output parameters

– Caller and callee are same principal P (same theory ThP)

• Subprotocol call, return: local message transmissions

– Call: Message from caller to callee
– Return: Message from callee to caller
– RPC-like mechanism (“LPC”)

• Flow of information on subprotocol call, return matches convention

– Guarantee before transmitting
– Rely when receiving

+ +

Protocol Headers

epmo_merchant_role(m, km, skm): (c, b, goods, price)

rely pubkey(m, km) and sigkey(m, skm)

guarantee supplied(c, goods, price, b)

in ... end

+ +

Subprotocol Headers

retrieve_pubkey (b, a, c, cver, d, kd) : (a, ka)

rely certifying_authority(c, a)

and directory_service(d, c)

and pubkey(d, kd)

and sign_verification_key_of(c, cver)

guarantee pubkey(a, ka)

in

...

end

Precondition/postcondition

specifies effect of

successful run of subprotocol

+ +

Subprotocol call site

call with

pubkey(a, ka)

--> null_protocol () ()

true

use key ka . . .

|

certifying_authority(c, a)

and directory_service(d, c)

and pubkey(d, kd)

and sign_verification_key_of(c, cver)

--> retrieve_pubkey (b, a, c, cver, d, kd) (a, ka)

pubkey(a, ka)

use key ka . . .

+ +

Subprotocol Semantics

Invocation

σ1 = σorig ⊕ σ′

dom(σ′) ⊆ ide(pr , n, ai , x∗) σ1 ; Γ0, (Ψσ) ⊢ c : s, υ

σorig ; Γ0 ⊢ proc n Ψ x∗ c : − call pr , n, ai , x∗ σ1, Ψσ1 ⇒ s, υ

Return

σ1 = σ ⊕ σ′ dom(σ′) ⊆ ide(Φ) Γ ‖−Φσ1

σ ; Γ ⊢ return Φ x∗ : 〈+ret (ai , x∗)σ1, Φσ1〉, ∅

+ +

Trust and Protocols

• Crypto protocols coordinate principals

– Agree on parameter values
– Agree on assertions made

• Trust decisions at runtime can control protocol behavior

– Stop protocol run if trust constraints fail
– Choose branch conditional on successful trust constraint
– Message transmissions and subprotocol calls

• Strand-based semantics

– Provides good protocol verification methods, design heuristics
– Motivated language design and implementation

• Status: Second version of compiler now complete

– Datalog trust engine, Crypto library

• Trust engineering using cryptographic protocols

+ +

Contrast: Earlier Work

• The BAN tradition

– Messages are formulas or formulas idealize messages
– Who asserted the formulas?
– Who drew consequences from formulas?

• Embedding formulas explicitly inside messages

– Main view of logical trust mgt

starts
with LAWB

– Formulas parsed out of certificates
– Problem of partial information?

• Our view: Formulas part of transmission/reception, not msg

– Compatible with many insights of earlier views
– Independent method to determine what events happened
– Clarity about who makes assertions, who infers consequences
– Partial information easy to handle
– Rigorous notion of soundness

+ +

A Signed Alternate: SEPMO

B C M

nc,1

{C, Nc, goods, price}M
◮nm,1

nc,2

�

w

w

◭

{[[Nc, Nm, M, goods, price]]M}C
nm,2

�

w

w

nb,1◭
{C, Nc, Nm, price}B

nc,3

�

w

w

nb,2

�

w

w

mo, {Nc, Nb}C
◮nc,4

�

w

w

nc,5

�

w

w

mo, Nb
◮nm,3

�

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

nb,3

�

w

w

w

w

w

w

w

w

w

◭

hash(M, B, Nb, Nm)
nm,4

�

w

w

Signed Electronic Purchase using Money Order
mo = [[hash(C, Nc, Nb, Nm, price)]]B

