Strand spaces: A framework to prove protocols and find counterexamples

> Joshua D. Guttman Worcester Polytechnic Institute The MITRE Corporation

March 2013 Bertinoro International Spring School Thanks to the US National Science Foundation, under grant 1116557

guttman@wpi.edu

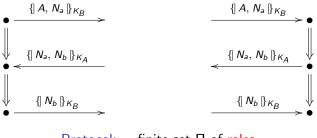
Strands

• Strand: A finite linear sequence • \Rightarrow • \Rightarrow • \cdots of events

transmission reception neutral

- Strand may represent
 - single local session of a protocol, or
 - an adversary action
- Each event called a node
- Transmission, reception sometimes written +, resp
- Node *n* is labeled with a message msg(*n*)

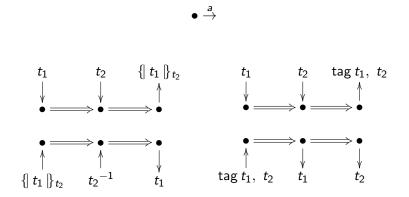
Example: Needham-Schroeder



Protocol: finite set Π of roles Strands of Π : all substitution instances

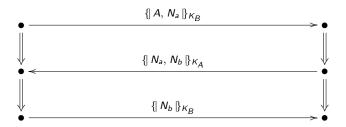
Adversary Strands

a: basic value t_i : any msg

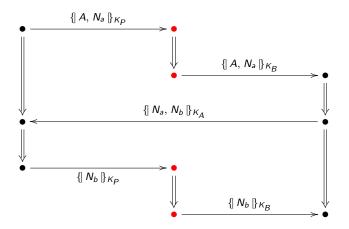


Executions are bundles, 1

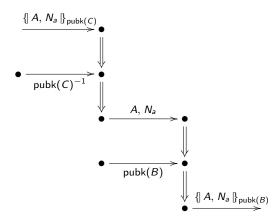
Executions are bundles, 1



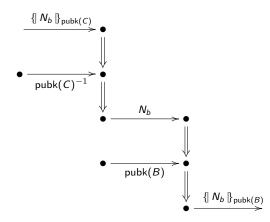
Executions are bundles, 2



Some adversary strands for bundle 2



More adversary strands for bundle 2



Bundle: Definition

Let \mathcal{B} be a finite directed acyclic graph V, E where

V consists of nodes

E is
$$(\Rightarrow_E \cup \rightarrow_E)$$
 where:
 $n_1 \Rightarrow_E n_2$ implies $n_1 \Rightarrow n_2$
 $n_1 \rightarrow_E n_2$ implies n_1 transmission,
 n_2 reception, and
 $msg(n_1) = msg(n_2)$

 \mathcal{B} is a bundle if

•
$$n_2 \in V$$
 and $n_1 \Rightarrow n_2$ implies
 $n_1 \in V$ and $n_1 \Rightarrow_E n_2$

② $n_2 \in V$ is a reception node implies what's heard was said there is a unique $n_1 \in V$ such that $n_1 \rightarrow_E n_2$

start at beginning

Bundle ordering $\preceq_{\mathcal{B}}$

Let $\ensuremath{\mathcal{B}}$ be a bundle

- Define $\preceq_{\mathcal{B}}$ to be $(\Rightarrow_E \cup \rightarrow_E)^*$
- So $n_1 \preceq_{\mathcal{B}} n_2$ means there is a path in \mathcal{B} from n_1 to n_2

Bundle ordering $\preceq_{\mathcal{B}}$

Let ${\mathcal B}$ be a bundle

- Define $\preceq_{\mathcal{B}}$ to be $(\Rightarrow_{\mathcal{E}} \cup \rightarrow_{\mathcal{E}})^*$
- So $n_1 \preceq_{\mathcal{B}} n_2$ means there is a path in \mathcal{B} from n_1 to n_2
- $\preceq_{\mathcal{B}}$ is a partial order

by acyclicity

Bundle ordering $\prec_{\mathcal{B}}$

Let \mathcal{B} be a bundle

- Define $\preceq_{\mathcal{B}}$ to be $(\Rightarrow_E \cup \rightarrow_E)^*$
- So $n_1 \prec_{\mathcal{B}} n_2$ means there is a path in \mathcal{B} from n_1 to n_2
- $\leq_{\mathcal{B}}$ is a partial order by acyclicity • $\leq_{\mathcal{B}}$ is well-founded
 - by finiteness

Bundle ordering $\preceq_{\mathcal{B}}$

Let ${\mathcal B}$ be a bundle

- Define $\preceq_{\mathcal{B}}$ to be $(\Rightarrow_E \cup \rightarrow_E)^*$
- So $n_1 \preceq_{\mathcal{B}} n_2$ means there is a path in \mathcal{B} from n_1 to n_2
- $\preceq_{\mathcal{B}}$ is a partial order by acyclicity
- $\leq_{\mathcal{B}}$ is well-founded

Well-founded means:

Every non-empty $S \subseteq \operatorname{nodes}(\mathcal{B})$ has $\preceq_{\mathcal{B}}$ -minimal members

by acyclicity by finiteness

Bundle ordering $\preceq_{\mathcal{B}}$

Let $\ensuremath{\mathcal{B}}$ be a bundle

- Define $\preceq_{\mathcal{B}}$ to be $(\Rightarrow_E \cup \rightarrow_E)^*$
- So $n_1 \preceq_{\mathcal{B}} n_2$ means there is a path in \mathcal{B} from n_1 to n_2
- $\prec_{\mathcal{B}}$ is a partial order by acyclicity
- $\preceq_{\mathcal{B}}$ is well-founded by finiteness

Well-founded means:

Every non-empty $S \subseteq \operatorname{nodes}(\mathcal{B})$ has $\preceq_{\mathcal{B}}$ -minimal members

Serves as an induction principle

Bundle induction

If S has no $\preceq_{\mathcal{B}}$ -minimal members, $S = \emptyset$

Messages

Basic messages:

Names for principals

Keys basic keys are either symmetric or asymmetric

Data maybe used as nonces etc

Built up using

Encryption of t using K is $\{|t|\}_K$

Tagged pair of t_1 , t_2 , tagged with tag is tag t_1 , t_2

Messages

Basic messages:

Names for principals

Keys basic keys are either symmetric or asymmetric

Data maybe used as nonces etc

Built up using

Encryption of t using K is $\{|t|\}_K$

Tagged pair of t_1 , t_2 , tagged with tag is tag t_1 , t_2

Special tag *nil* : Write *nil* t_1 , t_2 as t_1 , t_2

Messages

Basic messages:

Names for principals

Keys basic keys are either symmetric or asymmetric

Data maybe used as nonces etc

Built up using

Encryption of t using K is $\{|t|\}_K$

Tagged pair of t_1 , t_2 , tagged with tag is tag t_1 , t_2

Special tag *nil* : Write *nil* t_1 , t_2 as t_1 , t_2

Messages are an inductively defined structure

Two notions of subterm: \sqsubseteq and \ll

Both are reflexive, transitive relations

 \sqsubseteq generated by:

"ingredient"

Two notions of subterm: \sqsubseteq and \ll

Both are reflexive, transitive relations

 \sqsubseteq generated by:

"ingredient"

"occurs in"

 $t_1 \sqsubseteq tag \ t_1, \ t_2 \qquad t_2 \sqsubseteq tag \ t_1, \ t_2$ $t_1 \sqsubseteq \{| \ t_1 \ |\}_{\mathcal{K}}$ $\ll \text{ generated by:}$ $t_1 \ll tag \ t_1, \ t_2 \qquad t_2 \ll tag \ t_1, \ t_2$

 $t_1 \ll \{ t_1 \}_{\mathcal{K}} \qquad \qquad \mathcal{K} \ll \{ t_1 \}_{\mathcal{K}}$

Origination

a originates at $n \in \operatorname{nodes}(\mathcal{B})$ iff

- $a \sqsubseteq msg(n)$
- *n* is a transmission node
- $a \not\sqsubseteq msg(m)$ whenever $m \Rightarrow^+ n$

I.e. a is transmitted as an ingredient of msg(n), and n is its first use as an ingredient

 $Ingredient \sqsubseteq just uses plaintext, not key$

Fresh choice

a is freshly chosen in \mathcal{B} means *a* originates uniquely in nodes(\mathcal{B}): *a* originates at a node *n* but at no other node *m*

Fresh choice

a is freshly chosen in \mathcal{B} means *a* originates uniquely in nodes(\mathcal{B}): *a* originates at a node *n* but at no other node *m* i.e. *a* originates at a unique node *n*

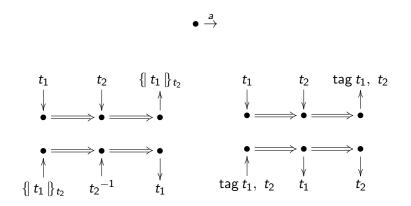
Uncompromised keys

A key K is uncompromised if it originates nowhere:

for every $n \in \operatorname{nodes}(\mathcal{B})$, $K \not\sqsubseteq \operatorname{msg}(n)$

Adversary never uses non-originating keys

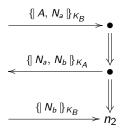
If adversary uses K, it must have originated



Prove all things. Hold fast to what is good.

St. Paul, 1 Thessalonians 5:21 with thanks to Imre Lakatos

```
Suppose that N_b is uniquely originating, and K_A^{-1} is non-originating
```



Suppose that N_b is uniquely originating, and K_A^{-1} is non-originating

Suppose that N_b is uniquely originating, and K_A^{-1} is non-originating

Suppose that N_b is uniquely originating, and K_A^{-1} is non-originating

What did we prove about NS?

If \mathcal{B} is a bundle where

- $K_{\mathcal{A}}^{-1} \in \operatorname{non}_{\mathcal{B}}$ and $N_b \in \operatorname{unique}_{\mathcal{B}}$
- B has a full responder strand with parameters A, B, N_a, N_b

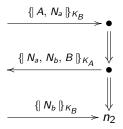
then \mathcal{B} has a full initiator strand with parameters A, C, N_a, N_b

What did we prove about NS?

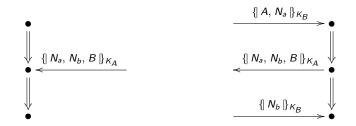
If \mathcal{B} is a bundle where

- $K_{\mathcal{A}}^{-1} \in \operatorname{non}_{\mathcal{B}}$ and $N_b \in \operatorname{unique}_{\mathcal{B}}$
- B has a full responder strand with parameters A, B, N_a, N_b
- then \mathcal{B} has a full initiator strand with parameters A, C, N_a, N_b for some C

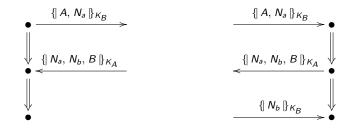
Suppose that N_b is uniquely originating, and K_A^{-1} is non-originating



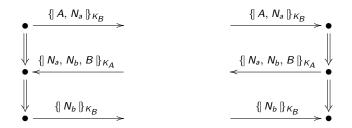
Suppose that N_b is uniquely originating, and K_A^{-1} is non-originating



Suppose that N_b is uniquely originating, and K_A^{-1} is non-originating



Suppose that N_b is uniquely originating, and K_A^{-1} is non-originating



What did we prove about NSL?

If \mathcal{B} is a bundle where

- $K_A^{-1} \in \operatorname{non}_{\mathcal{B}}$ and $N_b \in \operatorname{unique}_{\mathcal{B}}$
- B has a full responder strand with parameters A, B, N_a, N_b

then \mathcal{B} has a full initiator strand with parameters A, B, N_a, N_b

Quick Summary

- Breaking and proving protocols: A tight duality
- Strand theory focuses on causal relations
- Questions: What about
 - mechanized support?
 - big, real protocols?

For instance, TLS

Subjects for tomorrow