The Shapes of Protocols

Finding out what can happen

Joshua D. Guttman
Worcester Polytechnic Institute The MITRE Corporation

March 2013
Bertinoro International Spring School
Thanks to the US National Science Foundation, under grant 1116557

Let's start simple

Blanchet's Simple Example Protocol

What can happen, from initiator's point of view Can K be disclosed?

What can happen, from initiator's point of view Can K be disclosed?

$$
\operatorname{pubk}(B)^{-1} \in \text { non } \quad k \in \text { unique }
$$

Adversary can't do it since $\operatorname{pubk}(B)^{-1} \in$ non and $k \in$ unique

What can happen, from initiator's point of view

 Can K be disclosed?

$$
\operatorname{pubk}(B)^{-1} \in \text { non } \quad k \in \text { unique }
$$

Are there any unintended services?

Unintended Services for k ?

Blanchet's Simple Example Protocol

Unintended Services for k ?

Blanchet's Simple Example Protocol

Not a service for k because $k \nsubseteq\{s \mid\} k$

What can happen, from initiator's point of view

 Can K be disclosed?

$$
\operatorname{pubk}(B)^{-1} \in \text { non } \quad k \in \text { unique }
$$

So this is impossible
a secrecy goal
Diagram above is dead

The Nonce Test

Generalizing previous reasoning

Suppose $c \in$ unique originates at regular n_{0} and in $\operatorname{msg}\left(n_{1}\right), c \sqsubseteq \operatorname{msg}\left(n_{1}\right)$ is found outside all the encryptions $S=$

$$
\left\{t_{1} \mid\right\}_{K_{1}}, \ldots,\left\{\left|t_{j}\right|\right\} K_{j}
$$

Then either:
(1) One of the decryption keys $K_{1}^{-1}, \ldots, K_{j}^{-1}$ is disclosed before n_{1}, or
(2) Some regular m_{1} sends c outside S and

- $m_{1} \preceq n_{1}$
- if $m_{0} \Rightarrow^{+} m_{1}, c$ was found in $\operatorname{msg}\left(m_{0}\right)$ only within S if at all

The Nonce Test

Generalizing previous reasoning

Suppose $c \in$ unique originates at regular n_{0} and in $\operatorname{msg}\left(n_{1}\right), c \sqsubseteq \operatorname{msg}\left(n_{1}\right)$ is found outside all the encryptions $S=$

$$
\left\{t_{1} \mid\right\} K_{1}, \ldots,\left\{\left|t_{j}\right|\right\} K_{j}
$$

Then either:
(1) One of the decryption keys $K_{1}^{-1}, \ldots, K_{j}^{-1}$ is disclosed before n_{1}, or
(2) Some regular m_{1} sends c outside S and

- $m_{1} \preceq n_{1}$
- if $m_{0} \Rightarrow^{+} m_{1}, c$ was found in $\operatorname{msg}\left(m_{0}\right)$ only within S if at all

We say that c escapes from S at m_{1}

Found outside

c is found outside S in t means:
Regarding t as an abstract syntax tree
there is a path p through the tree where

- last $(p)=c$
- p never traverses key subterm of encryption $\left\{\left|t_{1}\right|\right\} K$
- p never traverses any $e \in S$

Found outside

c is found outside S in t means:
Regarding t as an abstract syntax tree
there is a path p through the tree where

- last $(p)=c$
- p never traverses key subterm of encryption $\left.\left\{\mid t_{1}\right\}\right\}_{K}$
- p never traverses any $e \in S$

You can get to an ingredient occurrence of c without crossing anything in S

An Example

\square
k is found outside $\{|k|\}_{s k(A)}$ in k but only within it in $\left\{\left|\{|k|\}_{\text {sk }}(A)\right|\right\}_{\text {pubk }}(B)$

Found only within

c is found only within S in t means:
Regarding t as an abstract syntax tree
for every path p through the tree where

- last $(p)=c$
- p never traverses key subterm of encryption $\left\{\left|t_{1}\right|\right\} \kappa$ p traverses some $e \in S$

Found only within

c is found only within S in t means:
Regarding t as an abstract syntax tree
for every path p through the tree where

- last $(p)=c$
- p never traverses key subterm of encryption $\left\{\left|t_{1}\right|\right\} \kappa$ p traverses some $e \in S$

You can't get to any ingredient occurrence of c without crossing something in S

What can happen, from initiator's point of view
Another query \mathbb{B}_{1}
t_{0} is $\left\{\{|k|\}_{\text {sk(A) }}\right\}_{\text {pubk }(B)}$

$\operatorname{pubk}(B)^{-1} \in$ non $\quad k \in$ unique

What can happen, from initiator's point of view

$$
\operatorname{pubk}(B)^{-1} \in \text { non } \quad k \in \text { unique }
$$

Either k is disclosed, or $\{|s|\}_{k}$ comes from a regular source

One of the two possible explanations \mathbb{B}_{1}
t_{0} is $\left\{\left\{\{\mid k\}_{\text {sk(A) }}\right\}_{\text {pubk }(B)}\right.$

$$
\operatorname{pubk}(B)^{-1} \in \text { non } \quad k \in \text { unique }
$$

One of the two possible explanations \mathbb{B}_{1}

t_{0} is $\left\{\{\mid k\}_{\text {sk(} A)}\right\}_{\operatorname{pubk}(B)}$

$$
\operatorname{pubk}(B)^{-1} \in \text { non } \quad k \in \text { unique }
$$

By our previous result on $\bullet \stackrel{k}{\leftarrow}, \mathbb{B}_{1}$ is impossible

One of the two possible explanations \mathbb{B}_{1}

t_{0} is $\left\{\{|k|\}_{\text {sk(A) }}\right\}_{\text {pubk }(B)}$

$$
\operatorname{pubk}(B)^{-1} \in \text { non } \quad k \in \text { unique }
$$

By our previous result on $\bullet \stackrel{k}{\leftarrow}, \mathbb{B}_{1}$ is impossible Principle: Dead if any substructure is dead

The other possible explanation \mathbb{B}_{2}

t_{0} is $\left\{\{|k|\}_{\text {sk(} A)}\right\}_{\operatorname{pubk}(B)}$

$\operatorname{pubk}(B)^{-1} \in$ non $\quad k \in$ unique

The other possible explanation \mathbb{B}_{2}

t_{0} is $\left\{\{|k|\}_{\text {sk(} A)}\right\}_{\operatorname{pubk}(B)}$

$$
\operatorname{pubk}(B)^{-1} \in \text { non } \quad k \in \text { unique }
$$

Do we know $C=A$ and $D=B$ in \mathbb{B}_{2} ?

Nonce test applies to k in \mathbb{B}_{2}
t_{0} is $\left\{\{\mid k\}_{\text {sk(A) }}\right\}_{\operatorname{pubk}(B)}$

Any service to build a new message t_{1} with $k \sqsubseteq t_{1}$?

Unintended Services transforming k ?

Blanchet's Simple Example Protocol

The other possible explanation \mathbb{B}_{2}

t_{0} is $\left\{\{\| k\}_{s k(A)}\right\}_{\text {pubk }(B)}$

$\operatorname{pubk}(B)^{-1} \in$ non $\quad k \in$ unique
Do we know $C=A$ and $D=B$ in \mathbb{B}_{2} ?
Yes, since $C \neq A$ or $D \neq B$
would imply it's dead

The other possible explanation \mathbb{B}_{2}

t_{0} is $\left\{\{\| k\}_{s k(A)}\right\}_{\text {pubk }(B)}$

$\operatorname{pubk}(B)^{-1} \in$ non $\quad k \in$ unique
Do we know $C=A$ and $D=B$ in \mathbb{B}_{2} ?
Yes, since $C \neq A$ or $D \neq B$
would imply it's dead

What did we prove?

t_{0} is $\left\{\{|k|\}_{\text {sk(A) }}\right\}_{\text {pubk }(B)}$

$$
\begin{aligned}
& \operatorname{pubk}(B)^{-1} \in \text { non } \quad k \in \text { unique } \\
& \text { Any bundle containing at least } \mathbb{B} \\
& \text { contains at least } \mathbb{B}_{3}
\end{aligned}
$$

A Tool to do this Reasoning: CPSA

Crypto Protocol Shape Analyzer

- Works with bundle fragments called skeletons starting from some \mathbb{A}_{0}
- While some skeleton \mathbb{A}_{i} has unexplained parts, CPSA picks one
- Considers all enrichments \mathbb{A}_{j} to explain it
- If none available, skeleton \mathbb{A}_{i} is dead
- Branching stops when all parts explained
- Conclusion:
all bundles containing \mathbb{A}_{0}
contain one of its fully explained enrichments \mathbb{A}_{j}

The Encryption Test

Suppose that $\{t\}_{K} \sqsubseteq \operatorname{msg}\left(n_{1}\right)$ where $n_{1} \in$ nodes \mathbb{B}. Then either:
(1) Key K is disclosed before n_{1} occurs, so that the adversary could construct $\{|t|\}_{K}$ from t; or
(2) A regular + node $m_{1} \preceq n_{1}$ with

$$
\{\mid t\}_{K} \sqsubseteq \operatorname{msg}\left(m_{1}\right)
$$

May choose m_{1} least such

