
The Shapes of Protocols
Finding out what can happen

Joshua D. Guttman
Worcester Polytechnic Institute

The MITRE Corporation

March 2013
Bertinoro International Spring School

Thanks to the US National Science Foundation, under grant 1116557

guttman@wpi.edu

Let’s start simple
Blanchet’s Simple Example Protocol

{| {| k |}sk(A) |}pubk(B) {| s |}k

��
•

OO

+3 •

• +3 •

��
{| {| k |}sk(A) |}pubk(B)

OO

{| s |}k

Not a service for k because k 6v {| s |}k

JG Shapes Mar 2013 2 / 18

What can happen, from initiator’s point of view
Can K be disclosed?

{| {| k |}sk(A) |}pubk(B) •oo

��

• koo

pubk(B)−1 ∈ non k ∈ unique

JG Shapes Mar 2013 3 / 18

What can happen, from initiator’s point of view
Can K be disclosed?

{| {| k |}sk(A) |}pubk(B) •oo

��

• koo

pubk(B)−1 ∈ non k ∈ unique

Adversary can’t do it
since pubk(B)−1 ∈ non and k ∈ unique

JG Shapes Mar 2013 3 / 18

What can happen, from initiator’s point of view
Can K be disclosed?

{| {| k |}sk(A) |}pubk(B) •oo

��

• koo

pubk(B)−1 ∈ non k ∈ unique

Are there any unintended services?

JG Shapes Mar 2013 3 / 18

Unintended Services for k?
Blanchet’s Simple Example Protocol

{| {| k |}sk(A) |}pubk(B) {| s |}k

��
•

OO

+3 •

• +3 •

��
{| {| k |}sk(A) |}pubk(B)

OO

{| s |}k

Not a service for k because k 6v {| s |}k

JG Shapes Mar 2013 4 / 18

Unintended Services for k?
Blanchet’s Simple Example Protocol

{| {| k |}sk(A) |}pubk(B) {| s |}k

��
•

OO

+3 •

• +3 •

��
{| {| k |}sk(A) |}pubk(B)

OO

{| s |}k

Not a service for k because k 6v {| s |}k

JG Shapes Mar 2013 4 / 18

What can happen, from initiator’s point of view
Can K be disclosed?

{| {| k |}sk(A) |}pubk(B) •oo

��

• koo

pubk(B)−1 ∈ non k ∈ unique

So this is impossible
a secrecy goal

Diagram above is dead

JG Shapes Mar 2013 5 / 18

The Nonce Test
Generalizing previous reasoning

Suppose c ∈ unique originates at regular n0
and in msg(n1), c v msg(n1) is found outside all the encryptions S =

{| t1 |}K1 , . . . , {| tj |}Kj

Then either:

1 One of the decryption keys K−11 , . . . ,K−1j is disclosed before n1, or

2 Some regular m1 sends c outside S and
I m1 � n1
I if m0 ⇒+ m1, c was found in msg(m0) only within S

if at all

We say that c escapes from S at m1

JG Shapes Mar 2013 6 / 18

The Nonce Test
Generalizing previous reasoning

Suppose c ∈ unique originates at regular n0
and in msg(n1), c v msg(n1) is found outside all the encryptions S =

{| t1 |}K1 , . . . , {| tj |}Kj

Then either:

1 One of the decryption keys K−11 , . . . ,K−1j is disclosed before n1, or

2 Some regular m1 sends c outside S and
I m1 � n1
I if m0 ⇒+ m1, c was found in msg(m0) only within S

if at all

We say that c escapes from S at m1

JG Shapes Mar 2013 6 / 18

Found outside

c is found outside S in t means:

Regarding t as an abstract syntax tree

there is a path p through the tree where

last(p) = c
p never traverses key subterm of encryption {| t1 |}K
p never traverses any e ∈ S

You can get to an ingredient occurrence of c
without crossing anything in S

JG Shapes Mar 2013 7 / 18

Found outside

c is found outside S in t means:

Regarding t as an abstract syntax tree

there is a path p through the tree where

last(p) = c
p never traverses key subterm of encryption {| t1 |}K
p never traverses any e ∈ S

You can get to an ingredient occurrence of c
without crossing anything in S

JG Shapes Mar 2013 7 / 18

An Example

{| {| k |}sk(A) |}pubk(B) •oo

��

• koo

k is found outside {| k |}sk(A) in k
but only within it in {| {| k |}sk(A) |}pubk(B)

JG Shapes Mar 2013 8 / 18

Found only within

c is found only within S in t means:

Regarding t as an abstract syntax tree

for every path p through the tree where

last(p) = c
p never traverses key subterm of encryption {| t1 |}K

p traverses some e ∈ S

You can’t get to any ingredient occurrence of c
without crossing something in S

JG Shapes Mar 2013 9 / 18

Found only within

c is found only within S in t means:

Regarding t as an abstract syntax tree

for every path p through the tree where

last(p) = c
p never traverses key subterm of encryption {| t1 |}K

p traverses some e ∈ S

You can’t get to any ingredient occurrence of c
without crossing something in S

JG Shapes Mar 2013 9 / 18

What can happen, from initiator’s point of view
Another query B1 t0 is {| {| k |}sk(A) |}pubk(B)

• //

��

t0

• {| s |}koo

pubk(B)−1 ∈ non k ∈ unique

Either k is disclosed,
or {| s |}k comes from a regular source

JG Shapes Mar 2013 10 / 18

What can happen, from initiator’s point of view
Another query B1 t0 is {| {| k |}sk(A) |}pubk(B)

• //

��

t0

• {| s |}koo

pubk(B)−1 ∈ non k ∈ unique

Either k is disclosed,
or {| s |}k comes from a regular source

JG Shapes Mar 2013 10 / 18

One of the two possible explanations B1
t0 is {| {| k |}sk(A) |}pubk(B)

• t0 //

��

≺ • k←
�

•
{| s |}koo B1

pubk(B)−1 ∈ non k ∈ unique

By our previous result on • k←, B1 is impossible

Principle: Dead if any substructure is dead

JG Shapes Mar 2013 11 / 18

One of the two possible explanations B1
t0 is {| {| k |}sk(A) |}pubk(B)

• t0 //

��

≺ • k←
�

•
{| s |}koo B1

pubk(B)−1 ∈ non k ∈ unique

By our previous result on • k←, B1 is impossible

Principle: Dead if any substructure is dead

JG Shapes Mar 2013 11 / 18

One of the two possible explanations B1
t0 is {| {| k |}sk(A) |}pubk(B)

• t0 //

��

≺ • k←
�

•
{| s |}koo B1

pubk(B)−1 ∈ non k ∈ unique

By our previous result on • k←, B1 is impossible
Principle: Dead if any substructure is dead

JG Shapes Mar 2013 11 / 18

The other possible explanation B2
t0 is {| {| k |}sk(A) |}pubk(B)

• t0 //

��

≺
{| {| k |}sk(C) |}pubk(D)// •

��
B2 • �

{| s |}koo •
{| s |}koo

pubk(B)−1 ∈ non k ∈ unique

Do we know C = A and D = B in B2?
Yes, since C 6= A or D 6= B

would imply it’s dead

JG Shapes Mar 2013 12 / 18

The other possible explanation B2
t0 is {| {| k |}sk(A) |}pubk(B)

• t0 //

��

≺
{| {| k |}sk(C) |}pubk(D)// •

��
B2 • �

{| s |}koo •
{| s |}koo

pubk(B)−1 ∈ non k ∈ unique

Do we know C = A and D = B in B2?

Yes, since C 6= A or D 6= B
would imply it’s dead

JG Shapes Mar 2013 12 / 18

Nonce test applies to k in B2
t0 is {| {| k |}sk(A) |}pubk(B)

• t0 //

��

≺
{| {| k |}sk(C) |}pubk(D)// •

��
B2 • �

{| s |}koo •
{| s |}koo

Any service to build a new message t1
with k v t1?

JG Shapes Mar 2013 13 / 18

Unintended Services transforming k?
Blanchet’s Simple Example Protocol

{| {| k |}sk(A) |}pubk(B) {| s |}k

��
•

OO

+3 •

• +3 •

��
{| {| k |}sk(A) |}pubk(B)

OO

{| s |}k

Not a service for k because k 6v {| s |}k

JG Shapes Mar 2013 14 / 18

The other possible explanation B2
t0 is {| {| k |}sk(A) |}pubk(B)

• t0 //

��

≺
{| {| k |}sk(C) |}pubk(D)// •

��
B2 • �

{| s |}koo •
{| s |}koo

pubk(B)−1 ∈ non k ∈ unique

Do we know C = A and D = B in B2?
Yes, since C 6= A or D 6= B

would imply it’s dead

JG Shapes Mar 2013 15 / 18

The other possible explanation B2
t0 is {| {| k |}sk(A) |}pubk(B)

• t0 //

��

≺
{| {| k |}sk(C) |}pubk(D)// •

��
B2 • �

{| s |}koo •
{| s |}koo

pubk(B)−1 ∈ non k ∈ unique

Do we know C = A and D = B in B2?
Yes, since C 6= A or D 6= B

would imply it’s dead

JG Shapes Mar 2013 15 / 18

What did we prove?
t0 is {| {| k |}sk(A) |}pubk(B)

• //

��

t0

• {| s |}koo

·→ • t0 //

��

≺ t0 // •

��
• �

{| s |}koo •
{| s |}koo

pubk(B)−1 ∈ non k ∈ unique

Any bundle containing at least B
contains at least B3

JG Shapes Mar 2013 16 / 18

A Tool to do this Reasoning: CPSA
Crypto Protocol Shape Analyzer

Works with bundle fragments called skeletons
starting from some A0

While some skeleton Ai has unexplained parts, CPSA picks one

Considers all enrichments Aj to explain it

If none available, skeleton Ai is dead

Branching stops when all parts explained

Conclusion:

all bundles containing A0

contain one of its fully explained enrichments Aj

JG Shapes Mar 2013 17 / 18

The Encryption Test

Suppose that {| t |}K v msg(n1) where n1 ∈ nodesB. Then either:

1 Key K is disclosed before n1 occurs,
so that the adversary could construct {| t |}K from t; or

2 A regular + node m1 � n1 with

{| t |}K v msg(m1)

May choose m1 least such

JG Shapes Mar 2013 18 / 18

