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Let’s start simple
Blanchet’s Simple Example Protocol

{| {| k |}sk(A) |}pubk(B) {| s |}k

��
•

OO

+3 •

• +3 •

��
{| {| k |}sk(A) |}pubk(B)

OO

{| s |}k

Not a service for k because k 6v {| s |}k
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What can happen, from initiator’s point of view
Can K be disclosed?

{| {| k |}sk(A) |}pubk(B) •oo

��

• koo

pubk(B)−1 ∈ non k ∈ unique
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since pubk(B)−1 ∈ non and k ∈ unique
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What can happen, from initiator’s point of view
Can K be disclosed?

{| {| k |}sk(A) |}pubk(B) •oo

��

• koo

pubk(B)−1 ∈ non k ∈ unique

Are there any unintended services?
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Unintended Services for k?
Blanchet’s Simple Example Protocol
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What can happen, from initiator’s point of view
Can K be disclosed?

{| {| k |}sk(A) |}pubk(B) •oo

��

• koo

pubk(B)−1 ∈ non k ∈ unique

So this is impossible
a secrecy goal

Diagram above is dead
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The Nonce Test
Generalizing previous reasoning

Suppose c ∈ unique originates at regular n0
and in msg(n1), c v msg(n1) is found outside all the encryptions S =

{| t1 |}K1 , . . . , {| tj |}Kj

Then either:

1 One of the decryption keys K−11 , . . . ,K−1j is disclosed before n1, or

2 Some regular m1 sends c outside S and
I m1 � n1
I if m0 ⇒+ m1, c was found in msg(m0) only within S

if at all

We say that c escapes from S at m1
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Found outside

c is found outside S in t means:

Regarding t as an abstract syntax tree

there is a path p through the tree where

last(p) = c
p never traverses key subterm of encryption {| t1 |}K
p never traverses any e ∈ S

You can get to an ingredient occurrence of c
without crossing anything in S
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An Example

{| {| k |}sk(A) |}pubk(B) •oo

��

• koo

k is found outside {| k |}sk(A) in k
but only within it in {| {| k |}sk(A) |}pubk(B)
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Found only within

c is found only within S in t means:

Regarding t as an abstract syntax tree

for every path p through the tree where

last(p) = c
p never traverses key subterm of encryption {| t1 |}K

p traverses some e ∈ S

You can’t get to any ingredient occurrence of c
without crossing something in S
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What can happen, from initiator’s point of view
Another query B1 t0 is {| {| k |}sk(A) |}pubk(B)

• //

��

t0

• {| s |}koo

pubk(B)−1 ∈ non k ∈ unique

Either k is disclosed,
or {| s |}k comes from a regular source
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One of the two possible explanations B1
t0 is {| {| k |}sk(A) |}pubk(B)

• t0 //

��

≺ • k←
�

•
{| s |}koo B1

pubk(B)−1 ∈ non k ∈ unique

By our previous result on • k←, B1 is impossible

Principle: Dead if any substructure is dead
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The other possible explanation B2
t0 is {| {| k |}sk(A) |}pubk(B)

• t0 //

��

≺
{| {| k |}sk(C) |}pubk(D)// •

��
B2 • �

{| s |}koo •
{| s |}koo

pubk(B)−1 ∈ non k ∈ unique

Do we know C = A and D = B in B2?
Yes, since C 6= A or D 6= B

would imply it’s dead
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Nonce test applies to k in B2
t0 is {| {| k |}sk(A) |}pubk(B)

• t0 //

��

≺
{| {| k |}sk(C) |}pubk(D)// •

��
B2 • �

{| s |}koo •
{| s |}koo

Any service to build a new message t1
with k v t1?
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Unintended Services transforming k?
Blanchet’s Simple Example Protocol

{| {| k |}sk(A) |}pubk(B) {| s |}k

��
•

OO

+3 •

• +3 •

��
{| {| k |}sk(A) |}pubk(B)

OO

{| s |}k

Not a service for k because k 6v {| s |}k
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What did we prove?
t0 is {| {| k |}sk(A) |}pubk(B)

• //

��

t0

• {| s |}koo

·→ • t0 //

��

≺ t0 // •

��
• �

{| s |}koo •
{| s |}koo

pubk(B)−1 ∈ non k ∈ unique

Any bundle containing at least B
contains at least B3
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A Tool to do this Reasoning: CPSA
Crypto Protocol Shape Analyzer

Works with bundle fragments called skeletons
starting from some A0

While some skeleton Ai has unexplained parts, CPSA picks one

Considers all enrichments Aj to explain it

If none available, skeleton Ai is dead

Branching stops when all parts explained

Conclusion:

all bundles containing A0

contain one of its fully explained enrichments Aj
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The Encryption Test

Suppose that {| t |}K v msg(n1) where n1 ∈ nodesB. Then either:

1 Key K is disclosed before n1 occurs,
so that the adversary could construct {| t |}K from t; or

2 A regular + node m1 � n1 with

{| t |}K v msg(m1)

May choose m1 least such
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