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Today’s Lecture

③ Authentication Tests:

– How to find out
what a protocol achieves

– How to prove it achieves that
– Methods to establish
◦ Secrecy (especially of keys)
◦ Authentication

③ Justifying authentication tests

– Equivalence of bundles
– Graph operations to simplify bundles

◦ Well-behaved bundles

– Paths through bundles
– Transforming edges and pedigrees
– The secrecy theorem
– Authentication test theorems
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Goals for this Hour

③ Justify authentication test method

– Use three ideas
◦ Use equivalence relation on bundles

Security goals invariant
under equivalence

◦ Focus on “well-behaved” bundles
For every bundle, an equivalent
well-behaved bundle exists

◦ Consider paths through bundles
③ Tomorrow: Apply same proof methods

to protocol mixing
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Definition: Bundles

A subgraph C of GΣ is a bundle if C is finite
and causally well-grounded, which means:

1. If n2 ∈ C negative,
there is a unique n1 → n2 in C

(everything heard was said)

2. If s ↓ i+1 ∈ C, then
s ↓ i⇒ s ↓ i+1 in C

(everyone starts at the beginning)

3. C is acyclic
(time never flows backward)

Causal partial ordering n1 �C n2 means
n2 reachable from n1 via arrows in C

Induction: If S ⊂ C is a non-empty set
of nodes, it contains �C-minimal members
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Equivalent Bundles

③ Bundles C, C′ are equivalent iff
they have the same regular nodes

– Written C ≡ C′

– Penetrator nodes may differ arbitrarily
– Ordering � may differ arbitrarily

③ Authentication goals invariant under equivalence
③ Secrecy goals may be expressed in invariant form

Define v “uncompromised” in C
to mean:

if for all C′ ≡ C and n ∈ C′,

then v 6⊑∅ term(n)
③ “Regular nodes” means non-penetrator nodes

v ⊑∅ t concatenating v to other terms yields t

(v is visible in t, not protected by encryption)
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Paths

and

Normality
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Graph Operations

③ A graph operation may:

– Delete penetrator strands
– Add edges n→ n′

with term(n) = +a, term(n′) = −a
– Delete edges n→ n′

③ A graph operation yields graph C′

– C′ not necessarily a bundle
– But if it is a bundle, then
C′ ≡ C
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Loneliness

③ A lonely node in a graph has no edge

– No incoming edge if negative
– No outgoing edge if positive

③ In definition of bundle:

– Lonely negative nodes are ruled out:
You can’t hear something if nobody says it

– Lonely positive nodes are allowed:
Nobody hears what you say
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Gregariousness

③ A gregarious node in a graph has

– Several incoming edges if negative
– Several outgoing edges if positive

③ In definition of bundle:

– Gregarious negative nodes are ruled out:
Hear the soloists, not the choir

– Gregarious positive nodes are allowed:
Many people hear your words
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When are Graph Operations OK?

Suppose C′ is obtained from bundle C by a graph operation such that

③ For any edge new n 7→ n′ of C′, n �C n
′

③ C′ has no lonely or gregarious negative nodes

Then
③ C′ is a bundle
③ C′ ≡ C
③ The ordering �C′ on C

′ weakens

the ordering �C on C
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E-D Redundancies
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C-S Redundancies
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Redundancy Elimination

③ Any bundle C is equivalent to a bundle C′ with no redundancies. More-
over,

– Penetrator nodes of C′ is a subset of
penetrator nodes of C

– The ordering ≺C′ weakens
the ordering ≺C

③ Proof: Next two slides
③ Consequence: Can assume attacker always

First Takes things apart
Next Puts things together
Then Delivers results
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E-D Redundancy Elimination
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C-S Redundancy Elimination
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Paths

③ m⇒+ n means
n occurs after m on the same strand

③ m 7−→ n means either 1 or 2:

1. m→ n

2. m⇒+ n where
term(m) negative and
term(n) positive

③ Path p through C: sequence
p1 7−→ p2 7−→ · · · 7−→ pk

– Typically assume p1 positive node, pk negative node

– Notation: |p| = k, ℓ(p) = pk

③ Penetrator path: pj penetrator node,
except possibly j = 1 or j = k
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A Penetrator Path
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Construction and Destruction

③ A ⇒+-edge between penetrator nodes is

– Constructive if part of a E or C strand
– Destructive if part of a D or S strand
– Initial if part of a K or M strand

③ Constructive edge followed by a destructive edge
Possible forms:

– Node on Eh,K immediately followed by
node on Dh,K

(for some h,K)
– Node on Cg,h immediately followed by

node on Sg,h
(for some g, h)

③ This uses freeness of term algebra
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Normality

③ Bundle C normal iff

No penetrator path p has constructive ⇒ edge
before destructive ⇒ edge

③ Any bundle is equivalent to a normal one

– Eliminate redundancies
– No other constructive/destructive pairs

by freeness
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Rising and Falling Paths

③ Definitions: (p a penetrator path)

Rising term(pi) ⊑ term(pi+1)

Falling term(pi+1) ⊑ term(pi)
③ Destructive paths may not be falling:
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Another Penetrator Path
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Paths that Avoid Key Edges

③ If p is destructive and p never traverses D-key edge
then p is falling

term(ℓ(p)) ⊑ term(p1)
③ If p is constructive and p never traverses E-key edge

then p is rising

term(p1) ⊑ term(ℓ(p))
③ If bundle normal and p avoids key edges

p = q → q′

q falling
q′ rising

③ term(ℓ(q)) = term(q′1) = pbt(p)
called “path bridge term”

pbt(p) ⊑ p1
pbt(p) ⊑ ℓ(p)
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Classifying Penetrator Paths

③ Let p penetrator path; traverse backward.
It may either:

Reach an initial penetrator node (M, K)
or Reach a non-initial E- or D-key edge
or p1 is regular

③ If penetrator path p is useful, then either:

ℓ(p) is regular
or ℓ(p) is a key edge

③ All penetrator activity divides into paths p
where p never traverses key edge

p1, ℓ(p) both regular
p1 initial, ℓ(p) reg. ∗ term(p1) ⊑ term(ℓ(p))

p1 regular K = term(ℓ(p))
p1 a K-node ∗ p = p1 → p2



∗ If bundle C normal



+ +

Falling Penetrator Paths

③ Suppose pi negative with 1 < i < |p|
Then term(pi) not atomic and

either term(pi) = {|h|}K and pi on D
or term(pi) = g h and pi on S

③ If pi positive, term(pi) = term(pi+1)

③ Suppose p traverses D with key edge K−1

only if K ∈ K

Then term(ℓ(p)) ⊑K term(p1)

③ Definition: t0 ⊑K t iff
t can be built from t0 using only

– concatenation (with anything)
– encryption using K ∈ K

· · · {| · · · t0 · · · |}K · · ·
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Well-Behaved

Bundles
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Well-Behaved: Definition

③ A bundle is well-behaved if

– Normal
– Efficient
– Has simple bridges

③ Will define “efficient,” “simple bridges”
③ Every bundle is equivalent to a

well-behaved bundle
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An Inefficient Bundle
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An Efficient Bundle
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Efficient Bundles

③ In efficient bundle,
penetrator avoids unnecessary regular nodes

③ C is an efficient bundle iff:
If m, n are nodes

n negative penetrator node
every component of n is a component of m

Then there are no regular nodes m′ such that

m ≺ m′ ≺ n
③ For all C, there exists C′ where

C ≡ C′

C′ efficient, normal
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Simple Bridges

③ Simple term is either

An atomic value K, Na, etc.
An encryption {|h|}K

Anything but a concatenation
③ C has simple bridges iff

whenever p a penetrator path
pbt(p) is simple
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