Authentication Tests

 and the
Structure of

Bundles

Joshua D. Guttman
F. Javier Thayer

September 2000

Today's Lecture

- Authentication Tests:
- How to find out what a protocol achieves
- How to prove it achieves that
- Methods to establish
- Secrecy (especially of keys)
- Authentication
- Justifying authentication tests
- Equivalence of bundles
- Graph operations to simplify bundles
- Well-behaved bundles
- Paths through bundles
- Transforming edges and pedigrees
- The secrecy theorem
- Authentication test theorems

Goals for this Hour

- Justify authentication test method
- Use three ideas
- Use equivalence relation on bundles Security goals invariant under equivalence
- Focus on "well-behaved" bundles For every bundle, an equivalent well-behaved bundle exists
- Consider paths through bundles
- Tomorrow: Apply same proof methods to protocol mixing

Definition: Bundles

A subgraph \mathcal{C} of G_{Σ} is a bundle if \mathcal{C} is finite and causally well-grounded, which means:

1. If $n_{2} \in \mathcal{C}$ negative, there is a unique $n_{1} \rightarrow n_{2}$ in \mathcal{C}
(everything heard was said)
2. If $s \downarrow i+1 \in \mathcal{C}$, then $s \downarrow i \Rightarrow s \downarrow i+1$ in \mathcal{C}
(everyone starts at the beginning)
3. \mathcal{C} is acyclic
(time never flows backward)

Causal partial ordering $n_{1} \preceq_{\mathcal{C}} n_{2}$ means n_{2} reachable from n_{1} via arrows in \mathcal{C}

Induction: If $S \subset \mathcal{C}$ is a non-empty set of nodes, it contains $\preceq_{\mathcal{C}}$-minimal members

Equivalent Bundles

- Bundles $\mathcal{C}, \mathcal{C}^{\prime}$ are equivalent iff they have the same regular nodes
- Written $\mathcal{C} \equiv \mathcal{C}^{\prime}$
- Penetrator nodes may differ arbitrarily
- Ordering \preceq may differ arbitrarily
- Authentication goals invariant under equivalence
- Secrecy goals may be expressed in invariant form

Define v "uncompromised" in \mathcal{C}
to mean:
if for all $\mathcal{C}^{\prime} \equiv \mathcal{C}$ and $n \in \mathcal{C}^{\prime}$,
then $\quad v \not Z_{\emptyset}$ term (n)

- "Regular nodes" means non-penetrator nodes
$v \sqsubseteq \emptyset t \quad$ concatenating v to other terms yields t
(v is visible in t, not protected by encryption)

Paths and

Normality

Graph Operations

- A graph operation may:
- Delete penetrator strands
- Add edges $n \rightarrow n^{\prime}$ with $\operatorname{term}(n)=+a$, term $\left(n^{\prime}\right)=-a$
- Delete edges $n \rightarrow n^{\prime}$
- A graph operation yields graph \mathcal{C}^{\prime}
- \mathcal{C}^{\prime} not necessarily a bundle
- But if it is a bundle, then $\mathcal{C}^{\prime} \equiv \mathcal{C}$

Loneliness

- A lonely node in a graph has no edge
- No incoming edge if negative
- No outgoing edge if positive
- In definition of bundle:
- Lonely negative nodes are ruled out:

You can't hear something if nobody says it

- Lonely positive nodes are allowed:

Nobody hears what you say

Gregariousness

- A gregarious node in a graph has
- Several incoming edges if negative
- Several outgoing edges if positive
- In definition of bundle:
- Gregarious negative nodes are ruled out: Hear the soloists, not the choir
- Gregarious positive nodes are allowed:

Many people hear your words

When are Graph Operations OK?

Suppose \mathcal{C}^{\prime} is obtained from bundle \mathcal{C} by a graph operation such that

- For any edge new $n \mapsto n^{\prime}$ of $\mathcal{C}^{\prime}, \quad n \preceq_{\mathcal{C}} n^{\prime}$
- \mathcal{C}^{\prime} has no lonely or gregarious negative nodes

Then

- \mathcal{C}^{\prime} is a bundle
- $\mathcal{C}^{\prime} \equiv \mathcal{C}$
- The ordering $\preceq_{\mathcal{C}^{\prime}}$ on \mathcal{C}^{\prime} weakens the ordering $\preceq_{\mathcal{C}}$ on \mathcal{C}

E-D Redundancies

c-s Redundancies

Redundancy Elimination

- Any bundle \mathcal{C} is equivalent to a bundle \mathcal{C}^{\prime} with no redundancies. Moreover,
- Penetrator nodes of \mathcal{C}^{\prime} is a subset of penetrator nodes of \mathcal{C}
- The ordering $\prec_{\mathcal{C}^{\prime}}$ weakens the ordering $\prec_{\mathcal{C}}$
- Proof: Next two slides
- Consequence: Can assume attacker always

First Takes things apart
Next Puts things together
Then Delivers results

E-D Redundancy Elimination

\dagger Discarded message

c-s Redundancy Elimination

\dagger Discarded message

Paths

- $m \Rightarrow^{+}{ }_{n}$ means
n occurs after m on the same strand
- $m \longmapsto n \quad$ means either 1 or 2 :

1. $m \rightarrow n$
2. $m \Rightarrow^{+}{ }_{n} \quad$ where
term (m) negative and term (n) positive

- Path p through \mathcal{C} : sequence
$p_{1} \longmapsto p_{2} \longmapsto \cdots \longmapsto p_{k}$
- Typically assume p_{1} positive node, p_{k} negative node
- Notation: $|p|=k, \quad \ell(p)=p_{k}$
- Penetrator path: p_{j} penetrator node, except possibly $j=1$ or $j=k$

A Penetrator Path

Construction and Destruction

- $\mathrm{A} \Rightarrow^{+}$-edge between penetrator nodes is
- Constructive if part of a E or C strand
- Destructive if part of a D or S strand
- Initial if part of a K or M strand
- Constructive edge followed by a destructive edge Possible forms:
- Node on $E_{h, K}$ immediately followed by node on $\mathrm{D}_{h, K}$ (for some h, K)
- Node on $\mathrm{C}_{g, h}$ immediately followed by node on $\mathrm{S}_{g, h}$ (for some g, h)
- This uses freeness of term algebra

Normality

- Bundle \mathcal{C} normal iff

No penetrator path p has constructive \Rightarrow edge before destructive \Rightarrow edge

- Any bundle is equivalent to a normal one
- Eliminate redundancies
- No other constructive/destructive pairs by freeness

Rising and Falling Paths

- Definitions: (p a penetrator path)

Rising term $\left(p_{i}\right) \sqsubseteq \operatorname{term}\left(p_{i+1}\right)$
Falling $\quad \operatorname{term}\left(p_{i+1}\right) \sqsubseteq \operatorname{term}\left(p_{i}\right)$

- Destructive paths may not be falling:

Constructive paths may not be rising:

Another Penetrator Path

Paths that Avoid Key Edges

- If p is destructive and p never traverses D-key edge then p is falling

$$
\operatorname{term}(\ell(p)) \sqsubseteq \operatorname{term}\left(p_{1}\right)
$$

- If p is constructive and p never traverses E-key edge then p is rising

```
term ( }\mp@subsup{p}{1}{})\sqsubseteq\operatorname{term}(\ell(p)
```

- If bundle normal and p avoids key edges

$$
\begin{aligned}
& p=q \rightarrow q^{\prime} \\
& q \text { falling } \\
& q^{\prime} \text { rising }
\end{aligned}
$$

- $\operatorname{term}(\ell(q))=\operatorname{term}\left(q_{1}^{\prime}\right)=\operatorname{pbt}(p)$ called "path bridge term"

$$
\begin{aligned}
& \operatorname{pbt}(p) \sqsubseteq p_{1} \\
& \operatorname{pbt}(p) \sqsubseteq \ell(p)
\end{aligned}
$$

Classifying Penetrator Paths

- Let p penetrator path; traverse backward. It may either:

Reach an initial penetrator node (M, K)
or Reach a non-initial E- or D-key edge
or p_{1} is regular

- If penetrator path p is useful, then either:
$\ell(p)$ is regular
or $\ell(p)$ is a key edge
- All penetrator activity divides into paths p where p never traverses key edge
$p_{1}, \ell(p)$ both regular
p_{1} initial, $\ell(p)$ reg. $\quad{ }^{*}$ term $\left(p_{1}\right) \sqsubseteq \operatorname{term}(\ell(p))$
p_{1} regular
$K=\operatorname{term}(\ell(p))$
p_{1} a K-node
${ }^{*} p=p_{1} \rightarrow p_{2}$
* If bundle \mathcal{C} normal

Falling Penetrator Paths

- Suppose p_{i} negative with $1<i<|p|$

Then term $\left(p_{i}\right)$ not atomic and
either $\operatorname{term}\left(p_{i}\right)=\{|h|\}_{K}$ and p_{i} on D
or $\operatorname{term}\left(p_{i}\right)=g h$ and p_{i} on S

- If p_{i} positive, $\operatorname{term}\left(p_{i}\right)=\operatorname{term}\left(p_{i+1}\right)$
- Suppose p traverses D with key edge K^{-1} only if $K \in \mathfrak{K}$
Then term $(\ell(p)) \sqsubseteq_{\mathfrak{K}} \operatorname{term}\left(p_{1}\right)$
- Definition: $t_{0} \sqsubseteq_{\mathfrak{K}} t$ iff
t can be built from t_{0} using only
- concatenation (with anything)
- encryption using $K \in \mathfrak{K}$

$$
\cdots\left\{\| t_{0} \cdots\right\}_{K} \cdots
$$

Well-Behaved

Bundles

Well-Behaved: Definition

- A bundle is well-behaved if
- Normal
- Efficient
- Has simple bridges
- Will define "efficient," "simple bridges"
- Every bundle is equivalent to a well-behaved bundle

An Inefficient Bundle

- Note: This protocol is fictitious!

An Efficient Bundle

Efficient Bundles

- In efficient bundle, penetrator avoids unnecessary regular nodes
- \mathcal{C} is an efficient bundle iff:

If m, n are nodes
n negative penetrator node
every component of n is a component of m
Then there are no regular nodes m^{\prime} such that
$m \prec m^{\prime} \prec n$

- For all \mathcal{C}, there exists \mathcal{C}^{\prime} where
$\mathcal{C} \equiv \mathcal{C}^{\prime}$
\mathcal{C}^{\prime} efficient, normal

Simple Bridges

- Simple term is either

An atomic value K, N_{a}, etc.
An encryption $\{|h|\}_{K}$
Anything but a concatenation

- \mathcal{C} has simple bridges iff
whenever p a penetrator path $\operatorname{pbt}(p)$ is simple
- Every \mathcal{C} has an equivalent \mathcal{C}^{\prime} with simple bridges

