
+ +

Authentication Tests

and the

Structure of

Bundles

Joshua D. Guttman

F. Javier Thayer

September 2000

+ +

Today’s Lecture

③ Authentication Tests:

– How to find out
what a protocol achieves

– How to prove it achieves that
– Methods to establish
◦ Secrecy (especially of keys)
◦ Authentication

③ Justifying authentication tests

– Equivalence of bundles
– Graph operations to simplify bundles

◦ Well-behaved bundles

– Paths through bundles
– Transforming edges and pedigrees
– The secrecy theorem
– Authentication test theorems

+ +

Goals for this Hour

③ Justify authentication test method

– Use three ideas
◦ Use equivalence relation on bundles

Security goals invariant
under equivalence

◦ Focus on “well-behaved” bundles
For every bundle, an equivalent
well-behaved bundle exists

◦ Consider paths through bundles
③ Tomorrow: Apply same proof methods

to protocol mixing

+ +

Definition: Bundles

A subgraph C of GΣ is a bundle if C is finite
and causally well-grounded, which means:

1. If n2 ∈ C negative,
there is a unique n1 → n2 in C

(everything heard was said)

2. If s ↓ i+1 ∈ C, then
s ↓ i⇒ s ↓ i+1 in C

(everyone starts at the beginning)

3. C is acyclic
(time never flows backward)

Causal partial ordering n1 �C n2 means
n2 reachable from n1 via arrows in C

Induction: If S ⊂ C is a non-empty set
of nodes, it contains �C-minimal members

+ +

Equivalent Bundles

③ Bundles C, C′ are equivalent iff
they have the same regular nodes

– Written C ≡ C′

– Penetrator nodes may differ arbitrarily
– Ordering � may differ arbitrarily

③ Authentication goals invariant under equivalence
③ Secrecy goals may be expressed in invariant form

Define v “uncompromised” in C
to mean:

if for all C′ ≡ C and n ∈ C′,

then v 6⊑∅ term(n)
③ “Regular nodes” means non-penetrator nodes

v ⊑∅ t concatenating v to other terms yields t

(v is visible in t, not protected by encryption)

+ +

Paths

and

Normality

+ +

Graph Operations

③ A graph operation may:

– Delete penetrator strands
– Add edges n→ n′

with term(n) = +a, term(n′) = −a
– Delete edges n→ n′

③ A graph operation yields graph C′

– C′ not necessarily a bundle
– But if it is a bundle, then
C′ ≡ C

+ +

Loneliness

③ A lonely node in a graph has no edge

– No incoming edge if negative
– No outgoing edge if positive

③ In definition of bundle:

– Lonely negative nodes are ruled out:
You can’t hear something if nobody says it

– Lonely positive nodes are allowed:
Nobody hears what you say

+ +

Gregariousness

③ A gregarious node in a graph has

– Several incoming edges if negative
– Several outgoing edges if positive

③ In definition of bundle:

– Gregarious negative nodes are ruled out:
Hear the soloists, not the choir

– Gregarious positive nodes are allowed:
Many people hear your words

+ +

When are Graph Operations OK?

Suppose C′ is obtained from bundle C by a graph operation such that

③ For any edge new n 7→ n′ of C′, n �C n
′

③ C′ has no lonely or gregarious negative nodes

Then
③ C′ is a bundle
③ C′ ≡ C
③ The ordering �C′ on C

′ weakens

the ordering �C on C

+ +

E-D Redundancies

E

◦
K
→•

D

◦
h
→•

�

w

w

•←
K−1

◦

•
�

w

w

{|h|}K→•
�

w

w

sL

•
�

w

w

h
→◦

sR

+ +

C-S Redundancies

C

◦
g
→•

◦
h
→•

�

w

w

S

•
�

w

w

gh
→•

sL

•
�

w

w

g
→◦

•
�

w

w

h
→◦

sR

+ +

Redundancy Elimination

③ Any bundle C is equivalent to a bundle C′ with no redundancies. More-
over,

– Penetrator nodes of C′ is a subset of
penetrator nodes of C

– The ordering ≺C′ weakens
the ordering ≺C

③ Proof: Next two slides
③ Consequence: Can assume attacker always

First Takes things apart
Next Puts things together
Then Delivers results

+ +

E-D Redundancy Elimination

◦
K
→•

◦
h
→•

�

w

w

←
K−1 †

◦

•
�

w

w

{|h|}K †→

◦
h ◮

† Discarded message

+ +

C-S Redundancy Elimination

sL

◦
g
→•

◦
h
→•

�

w

w

sR

•
�

w

w

gh †
→

◦

g

◮

◦

h

◮

† Discarded message

+ +

Paths

③ m⇒+ n means
n occurs after m on the same strand

③ m 7−→ n means either 1 or 2:

1. m→ n

2. m⇒+ n where
term(m) negative and
term(n) positive

③ Path p through C: sequence
p1 7−→ p2 7−→ · · · 7−→ pk

– Typically assume p1 positive node, pk negative node

– Notation: |p| = k, ℓ(p) = pk

③ Penetrator path: pj penetrator node,
except possibly j = 1 or j = k

+ +

A Penetrator Path

D
K

•
K−1P →•

π1
{|Na A|}KP →π2

�

w

w

w

E K

•←
KB •

π3

�

w

w

w

w

w

w

w

w

w

w

w

w

Na A
→π4

�

w

w

w

w

π5

�

w

w

w

w

{|Na A|}KB→π6

+ +

Construction and Destruction

③ A ⇒+-edge between penetrator nodes is

– Constructive if part of a E or C strand
– Destructive if part of a D or S strand
– Initial if part of a K or M strand

③ Constructive edge followed by a destructive edge
Possible forms:

– Node on Eh,K immediately followed by
node on Dh,K

(for some h,K)
– Node on Cg,h immediately followed by

node on Sg,h
(for some g, h)

③ This uses freeness of term algebra

+ +

Normality

③ Bundle C normal iff

No penetrator path p has constructive ⇒ edge
before destructive ⇒ edge

③ Any bundle is equivalent to a normal one

– Eliminate redundancies
– No other constructive/destructive pairs

by freeness

+ +

Rising and Falling Paths

③ Definitions: (p a penetrator path)

Rising term(pi) ⊑ term(pi+1)

Falling term(pi+1) ⊑ term(pi)
③ Destructive paths may not be falling:

D

•
K−1
→•

◦
{|h|}K

◮•
�

w

w

•
�

w

w

h
→

Constructive paths may not be rising:

E

•
K
→•

◦
h
◮•
�

w

w

•
�

w

w

{|h|}K→

+ +

Another Penetrator Path

D
K

•
K−1P →•

◦
{|Na A|}KP →•

�

w

w

E

ψ2←
KB

ψ1

•
�

w

w

w

w

w

w

w

w

w

w

w

w

w

Na A
→•

�

w

w

w

ψ3

�

w

w

w

w

{|Na A|}KB→ψ4

+ +

Paths that Avoid Key Edges

③ If p is destructive and p never traverses D-key edge
then p is falling

term(ℓ(p)) ⊑ term(p1)
③ If p is constructive and p never traverses E-key edge

then p is rising

term(p1) ⊑ term(ℓ(p))
③ If bundle normal and p avoids key edges

p = q → q′

q falling
q′ rising

③ term(ℓ(q)) = term(q′1) = pbt(p)
called “path bridge term”

pbt(p) ⊑ p1
pbt(p) ⊑ ℓ(p)

+ +

Classifying Penetrator Paths

③ Let p penetrator path; traverse backward.
It may either:

Reach an initial penetrator node (M, K)
or Reach a non-initial E- or D-key edge
or p1 is regular

③ If penetrator path p is useful, then either:

ℓ(p) is regular
or ℓ(p) is a key edge

③ All penetrator activity divides into paths p
where p never traverses key edge

p1, ℓ(p) both regular
p1 initial, ℓ(p) reg. ∗ term(p1) ⊑ term(ℓ(p))

p1 regular K = term(ℓ(p))
p1 a K-node ∗ p = p1 → p2

∗ If bundle C normal

+ +

Falling Penetrator Paths

③ Suppose pi negative with 1 < i < |p|
Then term(pi) not atomic and

either term(pi) = {|h|}K and pi on D
or term(pi) = g h and pi on S

③ If pi positive, term(pi) = term(pi+1)

③ Suppose p traverses D with key edge K−1

only if K ∈ K

Then term(ℓ(p)) ⊑K term(p1)

③ Definition: t0 ⊑K t iff
t can be built from t0 using only

– concatenation (with anything)
– encryption using K ∈ K

· · · {| · · · t0 · · · |}K · · ·

+ +

Well-Behaved

Bundles

+ +

Well-Behaved: Definition

③ A bundle is well-behaved if

– Normal
– Efficient
– Has simple bridges

③ Will define “efficient,” “simple bridges”
③ Every bundle is equivalent to a

well-behaved bundle

+ +

An Inefficient Bundle

m
{|Na A|}KP →P

•
�

w

w

w

w

w

{|Na A|}KB→B

•
�

w

w

w

w

w

w

w

w

w

w

w

w

←
{|Na Nb|}KA •

�

w

w

m′

�

w

† {|Na A|}KP →n

•
�

w

w

{|Na A|}KB→•
�

w

w

w

w

w

w

w

w

w

③ Note: This protocol is fictitious!

+ +

An Efficient Bundle

m
{|Na A|}KP→P

•
�

w

w

w

w

w

w

{|Na A|}KB→B

•
�

w

w

w

w

w

w

w

w

w

w

w

w

w

w

←
{|Na Nb|}KA •

�

w

w

w

m′
�

† n

{|N
a
A
|}
K
P

◮
•
�

w

w

w

{|Na A|}KB→•
�

w

w

w

w

w

w

w

w

w

+ +

Efficient Bundles

③ In efficient bundle,
penetrator avoids unnecessary regular nodes

③ C is an efficient bundle iff:
If m, n are nodes

n negative penetrator node
every component of n is a component of m

Then there are no regular nodes m′ such that

m ≺ m′ ≺ n
③ For all C, there exists C′ where

C ≡ C′

C′ efficient, normal

+ +

Simple Bridges

③ Simple term is either

An atomic value K, Na, etc.
An encryption {|h|}K

Anything but a concatenation
③ C has simple bridges iff

whenever p a penetrator path
pbt(p) is simple

③ Every C has an equivalent C′ with simple bridges

S

◦
gh
→•

C

•
�

w

w

g
→•

•
�

w

w

h
→•

�

w

w

•
�

w

w

gh
→◦

