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Art of the impossible
Or rather: The exceedingly unlikely

Cryptography is about randomized games between
I Adversary
I System, i.e. compliant processes

Criterion of a good cryptosystem:
I No adversary strategy is better than chance

Games characterize:
I Secrecy
I Message integrity/digital signature
I Many other functionalities
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Computational Style
“No adversary strategy is better than chance”

“Adversary strategy” means:

Tractable randomized algorithm A

Runtime bounded by p(n) for security parameter n

A is “better than chance” means

Expectation of A differs little from chance

EA(n)− Echance(n) < 1/q(n)

for all polynomials q(n)
and sufficiently large n

An asymptotic property
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CPA game: Distinguishing ciphertexts
A specification for symmetric-key secrecy

1 System generates key k of length n
2 While adversary requests,

I System provides {| s |}k for chosen plaintexts s

3 Adversary chooses two target msgs m0,m1

4 System flips coin, obtaining bit b

5 System emits test value c := {|mb |}k
6 While adversary requests,

I System provides {| s |}k for chosen plaintexts s

7 Adversary outputs bit b′

Adversary wins run if b = b′

Echance(n) = 1/2
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Corollary: CPA-secure encryption is probabilistic

Consider attacker strategy A1:

Request encryptions of m0, obtaining c∗ := {|m0 |}k
If test value c = c∗, emit 0

Otherwise, flip coin

Message m0 can’t always yield same value

P[{|m0 |}k = c | b = 0]− P[{|m0 |}k = c | b = 1] < 1/2q(n)
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Pseudorandom Expander
Let G : {0, 1}n → {0, 1}`(n), where `(n) > n

Consider the game:

1 System flips a coin, obtaining a bit b

2 If b = 0, then return r , where r
u← {0, 1}`(n) is selected randomly

3 If b = 1, then return G (s), where s
u← {0, 1}n is selected randomly

4 Adversary receives this value and returns a bit b′

Adversary wins if b = b′

G is a pseudorandom expander if no adversary strategy is much better
than choosing b′ at random
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A crypto construction, 1

Let G be a pseudorandom function expander

G : {0, 1}n → {0, 1}`(n)

To encrypt m with key k of length n output

G (k)⊕m

Is this construction CPA-secure?
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A Game for Construction 1
Indistinguishability under eavesdropping

1 System generates key k of length n
2 While adversary requests,
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Pseudorandom Function Family

Let F : {0, 1}n × {0, 1}n → {0, 1}`(n) and let

F (k, ·) be the function of its second argument, for k
u← {0, 1}n

f be chosen at random from all functions f : {0, 1}n → {0, 1}`(n)

F is a pseudorandom function family if adversary cannot distinguish
between F (k , ·) and f
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A crypto construction, 2

Let F be a pseudorandom function family

F : {0, 1}2n → {0, 1}`(n)

To encrypt m with key k

1 select r
u← {0, 1}`(n) at random

2 output

〈r , F (k, r)⊕m〉

Is this construction CPA-secure?

Proof idea: If there’s a good strategy A in the CPA game, we could use it
distinguish F (k , ·) from a random f
Reduce problem of distinguishing F (k , ·) to the problem of breaking this
construction
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Three Elements of Modern Cryptography

Define crypto functionalities by games
I Adversary wins by distinguishing

Assume hard challenges
I e.g. F a pseudorandom function family

Prove constructions by reduction:
I A strategy against the construction yields

a strategy against the assumption
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Contrast with Strand Space Model

1 Cryptographic model is
I quantitative
I probabilistic
I asymptotic

2 Cryptographic model is about games
I Though: Strand space results also

concern all adversary strategies

3 Cryptographic model is about distinguishing runs
I Strand space results about all bundles (or models)

considered each individually

Item 3 is the decisive difference
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