Protocol Independence and Protocol Design

+

+

Joshua D. Guttman F. Javier Thayer

September 2000

Protocol Independence

+

• Protocol independence problem

- Protocols Π_1, Π_2 may be OK separately

- But combination fails
- Protocol independence means
 - If Π_1 meets security goal alone
 - then Π_1 still does,
 - in combination with Π_2
- \bullet Disjoint encryption for Π_1,Π_2
 - Π_2 never undoes encrypted terms created by Π_1
 - Π_2 never creates encrypted terms accepted by Π_1
- Disjoint encryption ensures protocol independence

The Problem: Mixing Protocols

+

- General informal advice: Avoid collisions
 - If keys always different, no problem
 - If each ciphertext incorporates a protocol number, no problem
 (but: be careful about session keys)
- Goal: Justify informal advice rigorously
 - Protocol independence: Protocols no worse in combination than separately
- Why mixing important

- Potentially interfering protocols common:
 - Sub-protocols (e.g. TLS has 23)
 - Certificate management costs, re-use
 - Smart-card for several purposes
- Technical interest: reasoning about multiple protocols

An Example: Neuman-Stubblebine, Part I

Incoming Test Authentication

A Goal: Responder's Guarantee

• Assume:

+

- Server meets obligations
- Long-term keys K_A, K_B uncompromised

- Responder B has a complete strand, apparently with A
- Then:
 - There is a complete initiator strand with:
 - \circ Same principals A, B
 - Same nonce N_b , timestamp T
 - \circ Same session key K

Neuman-Stubblebine, Part II

+

$$t_2 = \{ |A K T| \}_{K_B}$$

+

Clearly, provides an unintended service:

$$N_a' t_2 \quad \Rightarrow \quad N_b' \{ |N_a'| \}_K$$

So mixing causes attack on NS Part I

Attack on Mixed Neuman-Stubblebine

+

 $t_2 = \{ |A K T| \}_{K_B}$

a ticket

Main Ingredients in Attack

+

• Area of activity for each protocol

Part I Strand B_1 and S

Part II Strand B_2

+

 Connected by penetrator activity (point of view: Part I)

Outbound Linking Paths From S to B_2

Inbound Linking Paths From B_2 to B_1

 May assume bundle normal Each linking path has bridge term

Outbound N_b , t_2

Inbound $\{|N_b|\}_K$

Inbound Bridge Terms

• Inbound bridge terms must be new components

+

- Otherwise, make bundle efficient
- Non-new inbound bridge terms gone
- For attacker,

+

Part II is a generator for new components

- Constructs terms accepted by Part I
- Not available to penetrator via Part I
- Defender wants to destroy inbound bridges
 - Modify Part II to avoid new components accepted by Part I
 - Assures authentication goals preserved
- Secrecy goals: careful about outbound paths

An Efficient Bundle

Neuman-Stubblebine Part II, Corrected

+

+

First message fictitious: Models state held by Abetween run of part I and run of part II

• No new components accepted by Part I

Formalizing

+

• Multiprotocol strand space

- $(\Sigma, tr), \Sigma_1$ where $\Sigma_1 \subset \Sigma$ and $s \in \Sigma$ implies s regular

• Σ_1 represents primary protocol

 $(\Sigma \setminus \Sigma_1) \setminus \mathcal{P} = \Sigma_2$

i.e. secondary protocol is non-primary regular

+

 Bundles C, C' are equivalent iff they have the same primary nodes

– Written $\mathcal{C} \equiv \mathcal{C}'$

- Penetrator, secondary nodes may differ arbitrarily
- Protocol independence:

For every Cthere exists C' where $C \equiv C'$ and $C' \cap \Sigma_2 = \emptyset$

Equivalent Sub-Bundles

+

```
Suppose {\mathcal C} a bundle and N a set of nodes. Let G such that
```

+

```
1. m \in G

if m \in C and

m \preceq_C n for some n \in N

2. m_1 \rightarrow m_2

if m_1 \rightarrow m_2 in C

and m_1, m_2 \in G

3. m_1 \Rightarrow m_2

if m_1 \Rightarrow m_2 in C

and m_1, m_2 \in G
```

Then G is a bundle. If $C \cap \Sigma_1 \subset N$ also, then $G \equiv C$.

Strategy

- Define disjoint encryption, which restricts the encrypted components:
 - Sent by Σ_1 and received by Σ_2 (outbound)
 - Sent by Σ_2 and received by Σ_1 (inbound)
- Prove absence of inbound linking paths using efficiency
 - Equivalent Sub-Bundle result guarantees authentication goals met
- Ensure outbound linking paths disclose no secrets

Silly Counterexample

+

+

• Presumably N'_a originates uniquely on A_2

- Can never get rid of that node without changing B_1
- But origination of N'_a irrelevant to goals of primary protocol
- Security value:
 - Value potentially relevant to security goals of primary protocol

Catalog of Goal Ingredients

- Origination assumptions:
 - Uniquely originating values
 - Key server: session key originates uniquely

+

- Non-originating values
- Authentication:

+

If s_1 has C-height ithen s_2 has C-height j

```
where s_1 \in \text{Init}[\vec{v}],
s_2 \in \text{Resp}[\vec{w}] (etc.)
```

subject to $\$ origination assumptions on \vec{v}, \vec{w}

• Secrecy of v:

- $v \not\sqsubseteq_{\emptyset} \mathsf{term}(n)$, for all $n \in \mathcal{C}$

subject to origination assumptions...

What is a Security Value?

• Origination assumptions: constrain values used in primary protocol

- Keys used on Σ_1 , originating nowhere
- Values originating uniquely on Σ_1
- Other values can occur anywhere
 - Values originating on Σ_2
 - Can also originate on penetrator strands
- Σ is full iff:

+

If v originates on $s \in \Sigma_2$

then v also originates on K or M strand

• Full spaces

- Respect privacy values
- Give penetrator other atomic values "free"

Disjoint Encryption

+

```
• Initial version (too crude):
         If n \in \Sigma_1 and \{|h|\}_K \sqsubseteq \operatorname{term}(n)
     and m \in \Sigma_2
    then \{|h|\}_K \not\sqsubseteq \operatorname{term}(m)
Initial version leaves out:
         Emphasis on new components from \Sigma_2
         Distinction between privacy values and others
    ____
• Disjoint outbound encryption:
  Let a private, n_1 \in \Sigma_1 pos., n_2 \in \Sigma_2 neg.
    Suppose a \sqsubseteq \{|h|\}_K \sqsubseteq \operatorname{term}(n_1),
                           \{|h|\}_K \sqsubseteq \operatorname{term}(n_2)
           and n_2 \Rightarrow n_2'
          then a \not\subseteq t if \boxed{t}^{\text{new}} \sqsubseteq \text{term}(n'_2)
```

• Says Σ_2 doesn't re-package privacy values

No ZigZags

+

Let Σ have disjoint outbound encryption; let C be well-behaved; let (p, \mathcal{L}) be a pedigree path for a +

 $\begin{array}{ll} \text{If} & p_j \in \Sigma_1 \\ \text{and} & p_k \in \Sigma_2 \text{ where } j < k \\ \text{then} & a \neq \operatorname{term}(\ell(p)) \end{array}$

In particular, privacy values not disclosed via $\boldsymbol{\Sigma}_2$

Disjoint Inbound Encryption

- Σ_2 doesn't make any new encrypted units accepted by Σ_1
- Def: Let $n_1 \in \Sigma_1$ neg., $n_2 \in \Sigma_2$ pos.
 - If ${|h|}_K \sqsubseteq \operatorname{term}(n_1)$ and ${|h|}_K \sqsubseteq \operatorname{term}(n_2)$

+

and
$$t_0^{\text{new}} \sqsubseteq \operatorname{term}(n_2)$$

then ${|h|}_K \not\sqsubseteq t_0$

+

• Example: NS Part II vs. modified version