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Protocol Independence

③Protocol independence problem

– Protocols Π1,Π2 may be OK separately
– But combination fails

③Protocol independence means

If Π1 meets security goal alone
then Π1 still does,

in combination with Π2
③Disjoint encryption for Π1,Π2

– Π2 never undoes encrypted terms
created by Π1

– Π2 never creates encrypted terms
accepted by Π1

③Disjoint encryption ensures
protocol independence
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The Problem: Mixing Protocols

③General informal advice: Avoid collisions

– If keys always different, no problem
– If each ciphertext incorporates a

protocol number, no problem
(but: be careful about session keys)

③Goal: Justify informal advice rigorously

– Protocol independence: Protocols
no worse in combination than separately

③Why mixing important

– Potentially interfering protocols common:
◦ Sub-protocols (e.g. TLS has 23)
◦ Certificate management costs, re-use
◦ Smart-card for several purposes

– Technical interest:
reasoning about multiple protocols
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An Example:
Neuman­Stubblebine, Part I
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a “distribution”

t2 = {|A K T |}KB
a “ticket”

{|Nb|}K a “confirmation”
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Incoming Test Authentication
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A Goal: Responder’s Guarantee

③Assume:

– Server meets obligations
– Long-term keys KA,KB uncompromised
– Responder B has a complete strand,

apparently with A

③Then:

– There is a complete initiator strand with:
◦ Same principals A,B

◦ Same nonce Nb, timestamp T

◦ Same session key K
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Neuman­Stubblebine, Part II
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Clearly, provides an unintended service:

N ′a t2 ⇒ N ′b {|N
′
a|}K

So mixing causes attack on NS Part I
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Attack on Mixed
Neuman­Stubblebine
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Main Ingredients in Attack

③Area of activity for each protocol

Part I Strand B1 and S

Part II Strand B2
③Connected by penetrator activity
(point of view: Part I)

Outbound Linking Paths From S to B2

Inbound Linking Paths From B2 to B1
③May assume bundle normal
Each linking path has bridge term

Outbound Nb, t2

Inbound {|Nb|}K
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Inbound Bridge Terms

③Inbound bridge terms must be new components

– Otherwise, make bundle efficient
– Non-new inbound bridge terms gone

③For attacker,
Part II is a generator for new components

– Constructs terms accepted by Part I
– Not available to penetrator via Part I

③Defender wants to destroy inbound bridges

– Modify Part II to avoid new components
accepted by Part I

– Assures authentication goals preserved
③Secrecy goals: careful about outbound paths
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An Efficient Bundle
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Neuman­Stubblebine Part II,
Corrected
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First message fictitious:

Models state held by A

between run of part I and run of part II

• No new components accepted by Part I
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Formalizing

③Multiprotocol strand space

– (Σ, tr),Σ1 where Σ1 ⊂ Σ
and s ∈ Σ implies s regular

③Σ1 represents primary protocol

(Σ \Σ1) \ P = Σ2
i.e. secondary protocol is non-primary regular

③Bundles C, C′ are equivalent iff
they have the same primary nodes

– Written C ≡ C′

– Penetrator, secondary nodes
may differ arbitrarily

③Protocol independence:

For every C
there exists C′ where C ≡ C′

and C′ ∩Σ2 = ∅
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Equivalent Sub­Bundles

Suppose C a bundle and N a set of nodes.
Let G such that

1. m ∈ G
if m ∈ C and
m �C n for some n ∈ N

2. m1 → m2
if m1 → m2 in C
and m1,m2 ∈ G

3. m1 ⇒ m2
if m1 ⇒ m2 in C
and m1,m2 ∈ G

Then G is a bundle.

If C ∩Σ1 ⊂ N also, then G ≡ C.
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Strategy

③Define disjoint encryption, which restricts
the encrypted components:

– Sent by Σ1 and received by Σ2
(outbound)

– Sent by Σ2 and received by Σ1
(inbound)

③Prove absence of inbound linking paths
using efficiency

– Equivalent Sub-Bundle result
guarantees authentication goals met

③Ensure outbound linking paths
disclose no secrets
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Silly Counterexample
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③Presumably N ′a originates uniquely on A2

– Can never get rid of that node
without changing B1

– But origination of N ′a irrelevant
to goals of primary protocol

③Security value:

– Value potentially relevant to
security goals of primary protocol
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Catalog of Goal Ingredients

③Origination assumptions:

– Uniquely originating values
– Key server: session key originates uniquely
– Non-originating values

③Authentication:

If s1 has C-height i
then s2 has C-height j

where s1 ∈ Init[~v],
s2 ∈ Resp[~w] (etc.)

subject to origination assumptions on ~v, ~w
③Secrecy of v:

– v 6⊑∅ term(n), for all n ∈ C

subject to origination assumptions. . .
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What is a Security Value?

③Origination assumptions:
constrain values used in primary protocol

– Keys used on Σ1, originating nowhere
– Values originating uniquely on Σ1

③Other values can occur anywhere

– Values originating on Σ2
– Can also originate on penetrator strands

③Σ is full iff:

If v originates on s ∈ Σ2
then v also originates on K or M strand

③Full spaces

– Respect privacy values
– Give penetrator other atomic values “free”
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Disjoint Encryption

③Initial version (too crude):

If n ∈ Σ1 and {|h|}K ⊑ term(n)
and m ∈ Σ2
then {|h|}K 6⊑ term(m)

③Initial version leaves out:

– Emphasis on new components from Σ2
– Distinction between privacy values and others

③Disjoint outbound encryption:
Let a private, n1 ∈ Σ1 pos., n2 ∈ Σ2 neg.

Suppose a ⊑ {|h|}K ⊑ term(n1),
{|h|}K ⊑ term(n2)

and n2 ⇒ n′2

then a 6⊑ t if t
new
⊑ term(n′2)

③Says Σ2 doesn’t re-package privacy values
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No ZigZags

Let Σ have disjoint outbound encryption;
let C be well-behaved; let (p,L) be a pedigree path
for a

If pj ∈ Σ1

and pk ∈ Σ2 where j < k

then a 6= term(ℓ(p))

In particular, privacy values not disclosed via Σ2
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Disjoint Inbound Encryption

③Σ2 doesn’t make any new encrypted units
accepted by Σ1

③Def: Let n1 ∈ Σ1 neg., n2 ∈ Σ2 pos.

If {|h|}K ⊑ term(n1) and {|h|}K ⊑ term(n2)

and t0
new
⊑ term(n2)

then {|h|}K 6⊑ t0
③Example: NS Part II vs. modified version


