## An Algebra for Symbolic Diffie-Hellman Protocol Analysis

Daniel J. Dougherty and Joshua D. Guttman
Worcester Polytechnic Institute The MITRE Corporation

March 2013<br>Bertinoro International Spring School<br>Thanks to the US National Science Foundation, under grant 1116557<br>guttman@wpi.edu



## Ephemeral DH

the optimistic view


Amazing outcome: Shared secret via public information

## Ephemeral DH

the realistic view
$\begin{aligned} \bullet & \bullet \\ \downarrow & \bullet g_{B}\end{aligned}$


If $R_{A}=g^{x}$ and $R_{B}=g^{y}$
then shared secret established

## Ephemeral DH

the realistic view


If $R_{A}=g^{z}$ and $R_{B}=g^{w}$ where the adversary chose $z, w$ then $K_{A}, K_{B}$ available to adversary

## Security goal: Key secrecy

This diagram cannot occur


Subject to assumptions, e.g. $x, y$ randomly chosen by compliant principal

## Static DH

Certificate authority authenticates, signs cert:

$$
c_{P}=\llbracket \operatorname{cert} Y_{P}, P \rrbracket \rrbracket_{C A}
$$

where $Y_{A}=g^{a} \quad Y_{B}=g^{b}$
$A$
$B$


Drawback: $A, B$ get same $K$ for every run!

## Implicitly Authenticated DH

- Use both ephemeral and static (certified) values
- Ephemeral $g^{x}, g^{y}$ ensure variation in key
- Static $g^{a}, g^{b}$ ensure authenticity implicitly:

If any principal $P$ has computed $K$ then either $P=A$ or $P=B$

## Security goal: Implicit authentication



If long term values $a, b$ unknown to adversary then $A=A^{\prime}, B=B^{\prime}$

## This paper

(1) Gives equational theory of abelian groups with exponentiation:
$\mathrm{AG}^{\wedge}$ characterizes the equations $s=t$ that are uniformly valid as group varies

## This paper

(1) Gives equational theory of abelian groups with exponentiation:
$\mathrm{AG}^{\wedge}$ characterizes the equations $s=t$ that are uniformly valid as group varies
(2) Formalizes implicitly authenticated Diffie-Hellman protocol behavior and adversary over $\operatorname{Free}\left(\mathrm{AG}^{\wedge}\right)$

## This paper

(1) Gives equational theory of abelian groups with exponentiation:
$\mathrm{AG}^{\wedge}$ characterizes the equations $s=t$ that are uniformly valid as group varies
(2) Formalizes implicitly authenticated Diffie-Hellman protocol behavior and adversary over $\operatorname{Free}\left(\mathrm{AG}^{\wedge}\right)$
(3) Shows indicator theorem:

Occurrences of secret exponents do not change through adversary actions

## This paper

(1) Gives equational theory of abelian groups with exponentiation:
$\mathrm{AG}^{\wedge}$ characterizes the equations $s=t$ that are uniformly valid as group varies
(2) Formalizes implicitly authenticated Diffie-Hellman protocol behavior and adversary over $\operatorname{Free}\left(\mathrm{AG}^{\wedge}\right)$
(3) Shows indicator theorem:

Occurrences of secret exponents do not change through adversary actions
(9) Shows security goals using indicator theorem

Gives insights when they fail

## IADH Protocols

$$
c_{A}=\llbracket \operatorname{cert} g^{a}, A \rrbracket_{\mathrm{CA}} \quad c_{B}=\llbracket \operatorname{cert} g^{b}, B \rrbracket_{\mathrm{CA}}
$$


$K_{A}=f\left(A, B, a, x, R_{B}, Y_{B}\right) \quad K_{B}=f\left(A, B, b, y, R_{A}, Y_{A}\right)$

## Some IADH shared secret computations

Computation done by $A$
$H(\cdot)$ is a hash $f n$

$$
K_{u m}=\mathrm{H}\left(Y_{B}{ }^{a}, R_{B}{ }^{x}\right) \stackrel{?}{=} \quad \mathrm{H}\left(g^{a b}, g^{x y}\right)
$$

## Security goal: No impersonation

This diagram should be prevented


Your long term value $b$ and my ephemeral value $x$ unknown to adversary

$$
K_{A}=\mathrm{H}\left(g^{a b}, g^{x y}\right)
$$

## Some IADH shared secret computations

Computation done by $A$
$H(\cdot)$ is a hash $f n$

$$
\begin{aligned}
& K_{u m}=\mathrm{H}\left(Y_{B}^{a}, R_{B}^{x}\right) \stackrel{?}{=} \quad \mathrm{H}\left(g^{a b}, g^{x y}\right) \\
& K_{c f}=\left(R_{B} Y_{B}\right)^{x+a} \stackrel{?}{=} g^{(y+b)(x+a)}=g^{x y} g^{a y} g^{x b} g^{a b}
\end{aligned}
$$

## Our central contribution

Formal theory and semantics in which occurrences of variables in exponents are a security invariant

## Some IADH shared secret computations

Computation done by $A$
$H(\cdot)$ is a hash $f n$

$$
\begin{aligned}
& K_{u m}=\mathrm{H}\left(Y_{B}{ }^{a}, R_{B}^{x}\right) \stackrel{?}{=} \\
& K_{c f}=\left(R_{B} Y_{B}\right)^{x+a} \stackrel{?}{=}\left(g^{a b}, g^{x y}\right) \\
& K_{-q v}=\left(R_{B} Y_{B}^{E}\right)^{x+D)(x+a)}=g^{x y} g^{a y} g^{x b} g^{a b} \\
& =
\end{aligned} g^{x y} g^{D a y} g^{x E b} g^{D E a b}
$$

## Some IADH shared secret computations

Computation done by $A$
$H(\cdot)$ is a hash $f n$

$$
\begin{array}{ll}
K_{u m}= & \mathrm{H}\left(Y_{B}^{a}, R_{B}^{x}\right) \stackrel{?}{=} \\
K_{c f} & =\left(R_{B} Y_{B}\right)^{x+a} \\
\stackrel{?}{=}\left(g^{a b}, g^{x y}\right) \\
K_{-q v}= & \left(R_{B} Y_{B}^{E}\right)^{x+D)(x+a)}=g^{x y} g^{a y} g^{x b} g^{a b} \\
\stackrel{?}{=} & g^{x y} g^{D a y} g^{x E b} g^{D E a b}
\end{array}
$$

$\mathrm{UM}=$ "Unified model" $\quad \mathrm{CF}=$ Cremers-Feltz
MQV: $\quad E=\left[R_{B}\right], \quad D=\left[g^{x}\right]$
HMQV: $\quad E=\mathrm{H}\left(R_{B}, B\right), \quad D=\mathrm{H}\left(g^{x}, A\right)$
(1) ( $G, \cdot$, inv, id) is an abelian group;
(2) $(E,+, 0,-, *, 1)$ is a commutative ring with identity;
(3) Exponentiation makes $G$ a right $E$-module with identity:

$$
\begin{array}{lll}
\left(a^{x}\right)^{y}=a^{x * y} & a^{1}=a & i d^{x}=i d \\
(a \cdot b)^{x}=a^{x} \cdot b^{x} & & a^{(x+y)}=a^{x} \cdot a^{y}
\end{array}
$$

(9) Multiplicative inverse, closure at sort NZE, subsort of $E$ :

$$
\begin{array}{lcl}
u * * v=u * v & u * i(u)=1 & i(-u)=-i(u) \\
i(u * v)=i(u) * i(v) & i(1)=1 & i(i(w))=w
\end{array}
$$

## Rewriting relation $\rightarrow_{\mathrm{AG}^{\wedge}}$

Theorem
The reduction $\rightarrow_{\mathrm{AG}^{\wedge}}$ is terminating

Verified with the Aprove termination tool

Theorem
The reduction $\rightarrow_{\mathrm{AG}^{\wedge}}$ is confluent mod AC

Verified with the Maude Church-Rosser checker

## Free $\left(\mathrm{AG}^{\wedge}\right)$ as a message algebra

- Regular principals run protocol with values from Free( $\mathrm{AG}^{\wedge}$ )
- Free choices are fresh variables $a, b, x, y$
- Message sent/received are Free(AG^) terms over them
- Augmented with encryption, signature, hashing, etc


## Free $\left(\mathrm{AG}^{\wedge}\right)$ as a message algebra

- Regular principals run protocol with values from Free( $\mathrm{AG}^{\wedge}$ )
- Free choices are fresh variables $a, b, x, y$
- Message sent/received are Free( $\left.\mathrm{AG}^{\wedge}\right)$ terms over them
- Augmented with encryption, signature, hashing, etc
- Adversary model: can apply operations of $\Sigma\left(\mathrm{AG}^{\wedge}\right)$
- May multiply, add, take inverses, ...
- No logarithms (:-)
- May also encrypt and decrypt with key, pair, unpair
- May choose variables unless assumed fresh
- Messages $s, t$ are equal if $\mathrm{AG}^{\wedge}$ entails $s=t$


## Indicators relative to secret vars

Indicator of a monomial $m$ counts occurrences of these vars in $m$ :

$$
\begin{aligned}
\operatorname{Ind}_{\langle a, b, x, y\rangle}(a b)=\langle 1,1,0,0\rangle & \operatorname{Ind}_{\langle a, b, x, y\rangle}(x y)=\langle 0,0,1,1\rangle \\
\operatorname{Ind}_{\langle b, x\rangle}(a b)=\langle 1,0\rangle & \operatorname{Ind}_{\langle b, x\rangle}(x y)=\langle 0,1\rangle
\end{aligned}
$$

## Indicators relative to secret vars

Indicator of a monomial $m$ counts occurrences of these vars in $m$ :

$$
\begin{aligned}
\operatorname{Ind}_{\langle a, b, x, y\rangle}(a b)=\langle 1,1,0,0\rangle & \operatorname{Ind}_{\langle a, b, x, y\rangle}(x y)=\langle 0,0,1,1\rangle \\
\operatorname{Ind}_{\langle b, x\rangle}(a b)=\langle 1,0\rangle & \operatorname{lnd}_{\langle b, x\rangle}(x y)=\langle 0,1\rangle
\end{aligned}
$$

Indicators of $g^{m} \quad$ singleton of indicator of $m$ Indicators of $t_{1} \cdot t_{2} \quad$ union of indicators of $t_{1}$ and $t_{2}$

## Indicators relative to secret vars

Indicator of a monomial $m$ counts occurrences of these vars in $m$ :

$$
\begin{aligned}
\operatorname{Ind}_{\langle a, b, x, y\rangle}(a b)=\langle 1,1,0,0\rangle & \operatorname{Ind}_{\langle a, b, x, y\rangle}(x y)=\langle 0,0,1,1\rangle \\
\operatorname{lnd}_{\langle b, x\rangle}(a b)=\langle 1,0\rangle & \operatorname{lnd}_{\langle b, x\rangle}(x y)=\langle 0,1\rangle
\end{aligned}
$$

Indicators of $g^{m} \quad$ singleton of indicator of $m$ Indicators of $t_{1} \cdot t_{2} \quad$ union of indicators of $t_{1}$ and $t_{2}$

$$
\operatorname{Ind}_{\langle b, x\rangle}\left(g^{x y} g^{a y} g^{x b} g^{a b}\right)=\{\langle 0,1\rangle,\langle 1,1\rangle,\langle 1,0\rangle\}
$$

## Indicators relative to secret vars

Indicator of a monomial $m$ counts occurrences of these vars in $m$ :

$$
\begin{aligned}
\operatorname{Ind}_{\langle a, b, x, y\rangle}(a b)=\langle 1,1,0,0\rangle & \operatorname{Ind}_{\langle a, b, x, y\rangle}(x y)=\langle 0,0,1,1\rangle \\
\operatorname{Ind} & \langle b, x\rangle \\
(a b)=\langle 1,0\rangle & \operatorname{lnd}_{\langle b, x\rangle}(x y)=\langle 0,1\rangle
\end{aligned}
$$

Indicators of $g^{m} \quad$ singleton of indicator of $m$ Indicators of $t_{1} \cdot t_{2} \quad$ union of indicators of $t_{1}$ and $t_{2}$

$$
\operatorname{Ind}_{\langle b, x\rangle}\left(g^{x y} g^{a y} g^{x b} g^{a b}\right)=\{\langle 0,1\rangle,\langle 1,1\rangle,\langle 1,0\rangle\}
$$

Indicators of pairs union of indicators

$$
\operatorname{Ind}_{\langle b, x\rangle}\left(\mathrm{H}\left(g^{a b}, g^{x y}\right)\right)=\{\langle 1,0\rangle,\langle 0,1\rangle\}
$$

## IADH Regular Behavior

For any basis $\vec{v}$

If $t$ is any message sent by any compliant IADH participant, then $\operatorname{Ind}_{\vec{v}}(t)$ is a basis vector

$$
\langle\overrightarrow{0}, 1, \overrightarrow{0}\rangle
$$

## The indicator theorem

Theorem
If the adversary can build $t$ given messages $S$ then

$$
\operatorname{Ind}_{\vec{v}}(t) \subseteq \bigcup_{s \in S} \operatorname{lnd}_{\vec{v}}(s) \cup\{\langle\overrightarrow{0}\rangle\}
$$

when $\vec{v}$ is a list of secret NZE-variables

## Security goal: Key secrecy

This diagram cannot occur in UM


$$
\begin{aligned}
& K_{A}=\mathrm{H}\left(g^{a b}, R_{B}{ }^{x}\right) \\
& \text { Long term secrets } a, b \\
& \text { uncompromised }
\end{aligned}
$$

## Security goal: Key secrecy

This diagram cannot occur in UM

$$
\bullet \Longrightarrow \bullet \Longrightarrow 0 \Longrightarrow K_{A}
$$

$$
\text { - } K_{A}
$$

$$
K_{A}=\mathrm{H}\left(g^{a b}, R_{B}{ }^{x}\right)
$$

Long term secrets $a, b$
uncompromised

$$
\langle 1,1\rangle \in \operatorname{Ind}_{\langle a, b\rangle}\left(\mathrm{H}\left(g^{a b}, R_{B}{ }^{x}\right)\right)
$$

## Security goal: No impersonation

This diagram unfortunately can occur


$$
K_{A}=\mathrm{H}\left(g^{a b}, g^{x y}\right)
$$

Where your $b$ and my $x$ remain secret

## Security goal: No impersonation

This diagram unfortunately can occur


$$
K_{A}=\mathrm{H}\left(g^{a b}, g^{x y}\right)
$$

Where your $b$ and my $x$ remain secret $\operatorname{Ind}_{\langle b, x\rangle}\left(\mathrm{H}\left(g^{a b}, g^{x y}\right)\right)=\{\langle 1,0\rangle,\langle 0,1\rangle\}$

## semantics

## Mathematical context

## DH structures

$G \quad$ a cyclic group of prime order $q$
$g$ a generator of $G$
set $E$ of exponents $\{0,1, \ldots,(q-1)\}$ forms a field: $\mathbb{F}_{q}$
Useful group presentations for crypto include subgroups of $\mathbb{Z}_{p}^{*}$ the integers $\bmod p$
elliptic curve over a finite field

## Mathematical context

hard problems
(1) Discrete Logarithm problem:

$$
\text { given } g^{x}, \text { compute } x
$$

(2) Computational Diffie-Hellman problem:

$$
\text { given } g^{x}, g^{y} \in G, \text { compute } g^{x y}
$$

(3) Decisional Diffie-Hellman problem:

$$
\text { given } g^{x}, g^{y} \in G, \text { distinguish } g^{x y} \text { from random } g^{z}
$$

Considered intractable in suitable groups

## Mathematical context

hard problems
(1) Discrete Logarithm problem:

$$
\text { given } g^{x}, \text { compute } x
$$

(2) Computational Diffie-Hellman problem:

$$
\text { given } g^{x}, g^{y} \in G, \text { compute } g^{x y}
$$

(3) Decisional Diffie-Hellman problem:

$$
\text { given } g^{x}, g^{y} \in G, \text { distinguish } g^{x y} \text { from random } g^{z}
$$

> Considered intractable in suitable groups there is an infinite family of primes $q$ s.t. every PPT algorithm achieves advantage only finitely often

## Semantic requirement on $\mathrm{AG}^{\wedge}$

- If $s=t$ valid for infinitely many $q$, adversary may use $s=t$
- Other tractable computations useful only in finitely many $q$


## Semantic requirement on $\mathrm{AG}^{\wedge}$

- If $s=t$ valid for infinitely many $q$, adversary may use $s=t$
- Other tractable computations useful only in finitely many $q$
- Equational completeness property:
$\mathbb{F}_{q} \models s=t$ for infinitely many finite fields $\mathbb{F}_{q}$
implies

$$
\mathrm{AG}^{\wedge} \vdash s=t
$$

## Semantic requirement on $\mathrm{AG}^{\wedge}$

- If $s=t$ valid for infinitely many $q$, adversary may use $s=t$
- Other tractable computations useful only in finitely many $q$
- Equational completeness property:

$$
\begin{gathered}
\mathbb{F}_{q} \equiv s=t \text { for infinitely many finite fields } \mathbb{F}_{q} \\
\text { implies }
\end{gathered}
$$

$$
\mathrm{AG}^{\wedge} \vdash s=t
$$

- Actually: $\quad \mathbb{F}_{q} \models s=t$ infinitely often iff $\quad \mathrm{AG}^{\wedge} \vdash s=t$


## Models of $\mathrm{AG}^{\wedge}, 1$

For any field $F$, define $\mathcal{M}_{F}$ such that $\mathcal{M}_{F} \models \mathrm{AG}^{\wedge}$ :
$E, G$ both interpreted as $\operatorname{dom}(F)$
NZE interpreted as $\operatorname{dom}(F) \backslash\{0\}$
Operations of $E$ interpreted as in $F$ itself
$\cdot$, inv, id interpreted as $+_{F},{ }_{F}, 0$
$a^{e}$ interpreted as $a * e$

## Models of $\mathrm{AG}^{\wedge}, 1$

For any field $F$, define $\mathcal{M}_{F}$ such that $\mathcal{M}_{F} \models \mathrm{AG}^{\wedge}$ :
$E, G$ both interpreted as $\operatorname{dom}(F)$
NZE interpreted as $\operatorname{dom}(F) \backslash\{0\}$
Operations of $E$ interpreted as in $F$ itself
$\cdot$, inv, id interpreted as $+_{F},{ }_{F}, 0$
$a^{e}$ interpreted as $a * e$

Some $\mathcal{M}_{F}$ : When $F=\mathbb{F}_{q}$, we obtain $\mathcal{M}_{q}$ When $F=\mathbb{Q}$, we obtain $\mathcal{M}_{\mathbb{Q}}$

## Models of $\mathrm{AG}^{\wedge}, 2$

Let $D$ be a non-principal ultrafilter over the prime numbers $q$
Write $\mathbb{F}_{D}$ for the ultraproduct

$$
\prod_{D}\left\{\mathbb{F}_{q}: q \text { prime }\right\}
$$

Let $\mathcal{M}_{D} \models \mathrm{AG}$ be obtained from $\mathbb{F}_{D}$ as on last slide

## Completeness of $\mathrm{AG}^{\wedge}$ for uniform equality

## Theorem

For each pair of $G$-terms $s$ and $t$, the following are equivalent
(1) $\mathrm{AG}^{\wedge} \vdash s=t$
(2) For all $q, \mathcal{M}_{q}=s=t$
(3) For all non-principal $D, \mathcal{M}_{D} \models s=t$
(9) For infinitely many $q, \mathcal{M}_{q} \models s=t$
(3) For some non-principal $D, \mathcal{M}_{D} \models s=t$
(6) $\mathcal{M}_{\mathbb{Q}}=s=t$
(1) $s, t$ have the same normal form modulo $A C$

## This paper

(1) Gives equational theory of abelian groups with exponentiation:

- $\mathrm{AG}^{\wedge} \mid s=t$ iff $\mathbb{F}_{q} \models s=t \quad$ for infinitely many finite fields $\mathbb{F}_{q}$
- Convergent associative-commutative rewriting system
- Symbolic algebra Free( $\mathrm{AG}^{\wedge}$ ) of normal forms
(2) Formalizes implicitly authenticated Diffie-Hellman protocol behavior and adversary over Free( $\mathrm{AG}^{\wedge}$ )
(3) Shows indicator theorem:

Occurrences of secret exponents do not change through adversary actions
(9) Shows security goals using indicator theorem

Gives insights when they fail

## A Handy Lemma about $\mathcal{M}_{\mathbb{Q}}$

## Lemma

(1) $\mathcal{M}_{\mathbb{Q}}$ can be embedded as a submodel in any $\mathcal{M}_{D}$.
(2) If $s$ and $t$ are distinct normal forms then $\mathcal{M}_{\mathbb{Q}} \not \vDash s=t$.

## Ultraproducts

$D$ is an ultrafilter iff $D$ is a maximal family of sets $\subseteq X$ such that:

- $\emptyset \notin D$
- $s_{1}, s_{2} \in D$ implies $s_{1} \cap s_{2} \in D$
- $s_{1} \in D$ and $s_{1} \subseteq s_{2} \quad$ implies $\quad s_{2} \in D$
$D$ is principal iff $D=\left\{s: s_{0} \subseteq s\right\}$ for some $s_{0}$
Ultraproduct $\prod_{D} \mathcal{M}_{q}$, for ultrafilter $D$ :
let $\mathcal{M}_{q}$ be a family of structures indexed by $q \in X$
$\prod_{D} \mathcal{M}_{q}$ is a factored product such that

$$
\prod_{D} \mathcal{M}_{q} \models \phi \quad \text { iff } \quad\left\{q \in X: \mathcal{M}_{q} \models \phi\right\} \in D
$$

## Ultraproducts

$D$ is an ultrafilter iff $D$ is a maximal family of sets $\subseteq X$ such that:

- $\emptyset \notin D$
- $s_{1}, s_{2} \in D \quad$ implies $\quad s_{1} \cap s_{2} \in D$
- $s_{1} \in D$ and $s_{1} \subseteq s_{2} \quad$ implies $\quad s_{2} \in D$
$D$ is principal iff $D=\left\{s: s_{0} \subseteq s\right\}$ for some $s_{0}$
Ultraproduct $\prod_{D} \mathcal{M}_{q}$, for ultrafilter $D$ :
let $\mathcal{M}_{q}$ be a family of structures indexed by $q \in X$
$\prod_{D} \mathcal{M}_{q}$ is a factored product such that

$$
\prod_{D} \mathcal{M}_{q} \models \phi \quad \text { iff } \quad\left\{q \in X: \mathcal{M}_{q} \models \phi\right\} \in D
$$

Only consider non-principal ultrafilters

