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Ephemeral DH
the optimistic view

A • +3

gx

��

• +3
KA
.
=(gy )x

B • +3 •

gy

OO

+3
KB
.
=(gx )y

KA = (g y )x = (g x)y = KB

in a cyclic group of prime order q

Amazing outcome: Shared secret via public information
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Ephemeral DH
the realistic view

A • +3

gx

��

• +3
KA
.
=(RB)x

RB

OO

KA •

RA

��

KB •

B • +3 •
gy

OO

+3
KB
.
=(RA)y

If RA = g x and RB = g y

then shared secret established

DD & JG DH Alg Mar 2013 3 / 32



Ephemeral DH
the realistic view

A • +3

gx

��

• +3
KA
.
=(RB)x

RB

OO

KA •

RA

��

KB •

B • +3 •
gy

OO

+3
KB
.
=(RA)y

If RA = g z and RB = gw

where the adversary chose z ,w

then KA,KB available to adversary
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Security goal: Key secrecy
This diagram cannot occur

• +3 • +3 ◦ +3 ◦ KA

• KA

Subject to assumptions, e.g.
x , y randomly chosen by compliant principal
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Static DH

Certificate authority authenticates, signs cert:

cP = [[ cert YP , P ]]CA

where YA = ga YB = gb

A • +3

cA

��

• +3
KA
.
=(YB)a=gba

B • +3 •

cB

OO

+3
KB
.
=(YA)b=gab

Drawback: A,B get same K for every run!
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Implicitly Authenticated DH

Use both ephemeral and static (certified) values

Ephemeral g x , g y ensure variation in key

Static ga, gb ensure authenticity implicitly:

If any principal P has computed K
then either P = A or P = B
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Security goal: Implicit authentication

[A,B, . . .] • +3 • +3 ◦ +3 ◦ K

[B ′,A′, . . .] • +3 • +3 ◦ +3 ◦ K

If long term values a, b unknown to adversary
then A = A′, B = B ′
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This paper

1 Gives equational theory of abelian groups with exponentiation:

AGˆ characterizes the equations s = t
that are uniformly valid as group varies

2 Formalizes implicitly authenticated Diffie-Hellman protocol behavior
and adversary over Free(AG )̂

3 Shows indicator theorem:
Occurrences of secret exponents do not change
through adversary actions

4 Shows security goals using indicator theorem

Gives insights when they fail
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IADH Protocols

cA = [[ cert ga, A ]]CA cB = [[ cert gb, B ]]CA

A • +3

gx

��

• +3 ◦ +3
A,a,cB

KA

RB

OO

RA��
B • +3 • +3

gy

OO

◦ +3

B,b,cA

KB

KA = f (A,B, a, x ,RB ,YB) KB = f (A,B, b, y ,RA,YA)
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Some IADH shared secret computations
Computation done by A

H(·) is a hash fn

Kum = H(YB
a, RB

x)
?
= H(gab, g xy )

Kcf = (RBYB)x+a ?
= g (y+b)(x+a) = g xygayg xbgab

K qv = (RBYB
E )x+Da ?

= g xygDayg xEbgDEab

UM = “Unified model” CF = Cremers-Feltz

MQV: E = [RB ], D = [g x ]

HMQV: E = H(RB ,B), D = H(g x ,A)
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Security goal: No impersonation
This diagram should be prevented

• +3 • +3 ◦ +3 ◦ KA

• KA

Your long term value b
and my ephemeral value x

unknown to adversary

KA = H(gab, g xy )

Where your b and my x remain secret

Ind〈b,x〉(H(gab, g xy )) = {〈1, 0〉, 〈0, 1〉}
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Our central contribution

Formal theory and semantics in which
occurrences of variables in exponents

are a security invariant
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AGˆ

1 (G , ·, inv , id) is an abelian group;

2 (E ,+, 0,−, ∗ , 1) is a commutative ring with identity;

3 Exponentiation makes G a right E -module with identity:

(ax)y = ax ∗ y a1 = a idx = id

(a · b)x = ax · bx a(x+y) = ax · ay

4 Multiplicative inverse, closure at sort NZE,
subsort of E :

u ∗ ∗v = u ∗ v u ∗ i(u) = 1 i(−u) = −i(u)
i(u ∗ v) = i(u) ∗ i(v) i(1) = 1 i(i(w)) = w

DD & JG DH Alg Mar 2013 15 / 32



Rewriting relation →AGˆ

Theorem

The reduction →AGˆ is terminating

Verified with the Aprove termination tool

Theorem

The reduction →AGˆ is confluent mod AC

Verified with the Maude Church-Rosser checker
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Free(AG )̂ as a message algebra

Regular principals run protocol with values from Free(AG )̂
I Free choices are fresh variables a, b, x , y
I Message sent/received are Free(AG )̂ terms over them
I Augmented with encryption, signature, hashing, etc

Adversary model: can apply operations of Σ(AG )̂
I May multiply, add, take inverses, . . .
I No logarithms (:-)
I May also encrypt and decrypt with key, pair, unpair
I May choose variables unless assumed fresh

Messages s, t are equal if AGˆ entails s = t
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Indicators relative to secret vars

Indicator of a monomial m counts occurrences of these vars in m:

Ind〈a,b,x ,y〉(ab) = 〈1, 1, 0, 0〉 Ind〈a,b,x ,y〉(xy) = 〈0, 0, 1, 1〉

Ind〈b,x〉(ab) = 〈1, 0〉 Ind〈b,x〉(xy) = 〈0, 1〉

Indicators of gm singleton of indicator of m
Indicators of t1 · t2 union of indicators of t1 and t2

Ind〈b,x〉(g
xygayg xbgab) = {〈0, 1〉, 〈1, 1〉, 〈1, 0〉}

Indicators of pairs union of indicators etc

Ind〈b,x〉(H(gab, g xy )) = {〈1, 0〉, 〈0, 1〉}
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IADH Regular Behavior

For any basis ~v

If t is any message sent by any compliant IADH participant,
then Ind~v (t) is a basis vector

〈~0, 1,~0〉
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The indicator theorem

Theorem

If the adversary can build t given messages S
then

Ind~v (t) ⊆
⋃
s∈S

Ind~v (s) ∪ {〈~0〉}

when ~v is a list of secret NZE -variables
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Security goal: Key secrecy
This diagram cannot occur in UM

• +3 • +3 ◦ +3 ◦ KA

• KA

KA = H(gab, RB
x)

Long term secrets a, b
uncompromised

〈1, 1〉 ∈ Ind〈a,b〉(H(gab, RB
x))
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Security goal: No impersonation
This diagram unfortunately can occur

• +3 • +3 ◦ +3 ◦ KA

• KA

KA = H(gab, g xy )
Where your b and my x remain secret

Ind〈b,x〉(H(gab, g xy )) = {〈1, 0〉, 〈0, 1〉}
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semantics
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Mathematical context
DH structures

G a cyclic group of prime order q
g a generator of G

set E of exponents {0, 1, . . . , (q − 1)} forms a field: Fq

Useful group presentations for crypto include subgroups of

Z∗p the integers mod p

elliptic curve over a finite field
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Mathematical context
hard problems

1 Discrete Logarithm problem:

given g x , compute x

2 Computational Diffie-Hellman problem:

given g x , g y ∈ G , compute g xy

3 Decisional Diffie-Hellman problem:

given g x , g y ∈ G , distinguish g xy from random g z

Considered intractable in suitable groups

there is an infinite family of primes q s.t.
every PPT algorithm achieves advantage

only finitely often
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Semantic requirement on AGˆ

If s = t valid for infinitely many q, adversary may use s = t

Other tractable computations useful only in finitely many q

Equational completeness property:

Fq |= s = t for infinitely many finite fields Fq

implies
AGˆ|− s = t

Actually: Fq |= s = t infinitely often iff AGˆ|− s = t
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Models of AG ,̂ 1

For any field F , define MF such that MF |= AG :̂

E ,G both interpreted as dom(F )

NZE interpreted as dom(F ) \ {0}
Operations of E interpreted as in F itself

·, inv , id interpreted as +F , −F , 0

ae interpreted as a ∗ e

Some MF : When F = Fq, we obtain Mq

When F = Q, we obtain MQ
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Models of AG ,̂ 2

Let D be a non-principal ultrafilter over the prime numbers q

Write FD for the ultraproduct∏
D

{Fq : q prime}

Let MD |= AGˆ be obtained from FD as on last slide
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Completeness of AGˆ for uniform equality

Theorem

For each pair of G -terms s and t, the following are equivalent

1 AGˆ ` s = t

2 For all q, Mq |= s = t

3 For all non-principal D, MD |= s = t

4 For infinitely many q, Mq |= s = t

5 For some non-principal D, MD |= s = t

6 MQ |= s = t

7 s, t have the same normal form modulo AC
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This paper

1 Gives equational theory of abelian groups with exponentiation:
I AGˆ|− s = t iff

Fq |= s = t for infinitely many finite fields Fq

I Convergent associative-commutative rewriting system
I Symbolic algebra Free(AG )̂ of normal forms

2 Formalizes implicitly authenticated Diffie-Hellman protocol behavior
and adversary over Free(AG )̂

3 Shows indicator theorem:
Occurrences of secret exponents do not change
through adversary actions

4 Shows security goals using indicator theorem

Gives insights when they fail
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A Handy Lemma about MQ

Lemma

1 MQ can be embedded as a submodel in any MD .

2 If s and t are distinct normal forms then MQ 6|= s = t.
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Ultraproducts

D is an ultrafilter iff D is a maximal family of sets ⊆ X such that:

∅ 6∈ D

s1, s2 ∈ D implies s1 ∩ s2 ∈ D

s1 ∈ D and s1 ⊆ s2 implies s2 ∈ D

D is principal iff D = {s : s0 ⊆ s} for some s0

Ultraproduct
∏

DMq, for ultrafilter D:

let Mq be a family of structures indexed by q ∈ X∏
DMq is a factored product such that

∏
D

Mq |= φ iff {q ∈ X : Mq |= φ} ∈ D

Only consider non-principal ultrafilters

DD & JG DH Alg Mar 2013 32 / 32



Ultraproducts

D is an ultrafilter iff D is a maximal family of sets ⊆ X such that:

∅ 6∈ D

s1, s2 ∈ D implies s1 ∩ s2 ∈ D

s1 ∈ D and s1 ⊆ s2 implies s2 ∈ D

D is principal iff D = {s : s0 ⊆ s} for some s0

Ultraproduct
∏

DMq, for ultrafilter D:

let Mq be a family of structures indexed by q ∈ X∏
DMq is a factored product such that

∏
D

Mq |= φ iff {q ∈ X : Mq |= φ} ∈ D

Only consider non-principal ultrafilters

DD & JG DH Alg Mar 2013 32 / 32


