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Goals of this Course

Study the main mechanisms for
I authentication
I confidentiality
I authorization

Develop methods for
I finding attacks
I proof
I analysis
I systematic design

Present a useful tool, CPSA

Work within a single point of view mainly,
the strand space framework
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Structure of the Lectures

Monday Breaking and proving protocols

Tuesday Shapes and CPSA; the anatomy of TLS

Wednesday Protocol goals, composition, separability, transformation

Thursday Authorization, trust management, state change

Friday Foundations of cryptography, related to strands

Schedule at
http://cs.wpi.edu/~guttman/biss/schedule.pdf
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What is a Security Protocol?

For instance, SSL (= TLS), SSH, OAuth, IKE
I Short sequence of messages
I Use cryptography for authentication, confidentiality
I Provide reliable communication
I Despite malicious attackers, who may control network

Protocols establish trust
I Remote access
I Secure networking
I E-commerce

Security protocols are often wrong
I Active attackers may subvert goals
I Even if cryptography is perfect
I Often fail because assumptions unclear
I Often misapplied because goals unclear
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How to break a protocol

Try to prove it correct
I Where you get stuck:

that’s where the flaw is

Central focus: services provided by protocol
I Actions the protocol requires

compliant principals to perform
I Produce values useful to adversary

Each protocol poses certain challenges to attacker
I Services help adversary

to meet those challenges

How to prove a protocol:
I Try to break it
I If you get stuck — run out of services — it’s correct
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Needham-Schroeder Protocol
A Simplest Example

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, Nb |}KAoo •

��

{|Na, Nb |}KAoo

•
{|Nb |}KB //

{|Nb |}KB // •
Terminology:

KA,KB Public encryption keys for A and B
Na,Nb Randomly chosen bitstrings “nonces”
{| t |}K t encrypted using K
Na, Nb new shared secret
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Roles are templates
Variables instantiated by values

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, Nb |}KAoo •

��

{|Na, Nb |}KAoo

•
{|Nb |}KB //

{|Nb |}KB // •

Initiator Responder

[A,B,Na,Nb] [A,B,Na,Nb]
whitespace
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Essence of Cryptography
for today’s lecture

Symmetric key crypto: single shared key for sender, receiver
I Same key makes ciphertext, extracts plaintext

Public key crypto: two related keys, one private, the other public
I Encryption: Public key creates, private key decrypts
I Signature: Private key creates, public key verifies

Terminology: A’s public key: KA A’s private key: K−1A

In symmetric crypto, K = K−1

Uncompromised key:

Key used only in accordance with this protocol
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Needham-Schroeder: How does it work?
K−1

A uncompromised, Nb fresh

{|A, Na |}KB // •

��
•

��

{|Na, Nb |}KAoo

{|Nb |}KB // •

Whoops
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Needham-Schroeder Failure

If ?? = KP , where K−1P is compromised:

•

��

{|A, Na |}KP // •

��
•

{|A, Na |}KB // •

��
•

��

•

��

{|Na, Nb |}KAoo

•
{|Nb |}KP

// •

��
•

{|Nb |}KB // •

due to Gavin Lowe
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Needham-Schroeder-Lowe

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, Nb, B |}KAoo •

��

{|Na, Nb, B |}KAoo

•
{|Nb |}KB //

{|Nb |}KB // •
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Needham-Schroeder-Lowe Analysis
K−1

A uncompromised, Nb fresh

{|A, Na |}KB // •

��
•

��

{|Na, Nb, B |}KAoo

{|Nb |}KB // •

This proves “everything that’s true” in this situation
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How to break a protocol:

Unintended services



Needham-Schroeder Failure

If ?? = KP , where K−1P is compromised:

•

��

{|A, Na |}KP // •

��
•

{|A, Na |}KB // •

��
•

��

•

��

{|Na, Nb |}KAoo

•
{|Nb |}KP

// •

��
•

{|Nb |}KB // •

due to Gavin Lowe
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Diagnosis of a failure

Who did the protocol betray? Not A, who
I Meant to share nonces with P
I Wrongly assumed K−1P uncompromised

B was betrayed
I Meant to share nonces with A
I Rightly assumed K−1A uncompromised
I Secrecy failed, since P knows nonces
I Authentication failed: A had no run with B

How? A offered P a service:
I Gave P a nonce NA

I Promised to translate any {|Na, N
′ |}KA

to {|N ′ |}KP

I “Unintended service”

Attacker needs to get some value i.e. Nb

Regular participant unwittingly provides it
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Another Example: ISO reject

•

��

A, Na // A, Na // •

��
•

��

{|Nb, Na, A |}
K−1
Boo •

��

{|Nb, Na, A |}
K−1
Boo

•
{|N′a, Nb, B |}K−1

A //
{|N′a, Nb, B |}K−1

A // •

Digital signatures provide authentication
No new secrets
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Diagnosis: ISO reject

Responder only gets two messages
I First message A, Na has no authenticating force
I Anybody can create a message like that
I “Junk term”

Attacker only needs to create

{|N ′a, Nb, B |}K−1
A

for some N ′a

What services are useful?
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Services in ISO reject
lower case letters are variables chosen by adversary

• A, Na // x , n1 // •

��
•

��

{| n2, Na, A |}
K−1
yoo •

{|N, n1, x |}K−1
yoo

•
{|N, n2, y |}K−1

A // •

Adversary freely instantiates lower-case variables

Want to produce {|N, Nb, B |}K−1
A

for some N

Can use A as respondent, B, Nb as selected msg
i.e. substitution [B/x ,A/y ,Nb/n1]
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The resulting attack
The Canadian Attack

• A, Na // •
B
��

•

��

•

��

{|Nb, Na, A |}
K−1
Boo

• B, Nb // •
A
��

•

��

•
{|Na, Nb, B |}K−1

Aoo

•
{|Na, Nb, B |}K−1

A // •
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What goal is refuted?

A executed a signature

So “entity authentication” may hold for A
Whatever that means

But A never initiated any session with B
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Dolev-Yao Attacks: A Recipe

Identify and discard “junk” messages
I They don’t contribute to authentication
I Remaining (non-junk) incoming messages “Challenge”
I Adversary needs to synthesize them

Look for unintended services
I Criterion: Can they build challenge messages?

Combine unintended services
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What unintended services occur?

Signature: Na 7→ { Na }K−1

Encryption: Na 7→ { Na }K
Decryption: { Na }K 7→ Na

Translation: { Na }K 7→ { Na }K ′

Examples:

Signature service: ISO reject protocol
Encryption service: Woo-Lam
Decryption service: None (too obvious?)
Key-translation service: NS PK
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The Dolev-Yao Problem

Given a protocol, and assuming all cryptography perfect, find
I What secrecy properties
I What authentication properties

the protocol achieves

Find counterexamples to other properties
I Unintended services useful

What does perfect cryptography mean?
I No collisions
I Need key to make encrypted value
I Need key to decrypt and recover plaintext
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How to break a protocol

Try to prove it correct
I Where you get stuck:

that’s where the flaw is

Central focus: services provided by protocol
I Actions the protocol requires

compliant principals to perform
I Produce values useful to adversary

Each protocol poses certain challenges to attacker
I Services help adversary

to meet those challenges

How to prove a protocol:
I Try to break it
I If you get stuck — run out of services — it’s correct

JG Break/Prove Mar 2013 29 / 32



How to break a protocol

Try to prove it correct
I Where you get stuck:

that’s where the flaw is

Central focus: services provided by protocol
I Actions the protocol requires

compliant principals to perform
I Produce values useful to adversary

Each protocol poses certain challenges to attacker
I Services help adversary

to meet those challenges

How to prove a protocol:
I Try to break it
I If you get stuck — run out of services — it’s correct

JG Break/Prove Mar 2013 29 / 32



Needham-Schroeder Protocol
A Simplest Example

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, Nb |}KAoo •

��

{|Na, Nb |}KAoo

•
{|Nb |}KB //

{|Nb |}KB // •
Terminology:

KA,KB Public encryption keys for A and B
Na,Nb Randomly chosen bitstrings “nonces”
{| t |}K t encrypted using K
Na, Nb new shared secret
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NS Analysis: Initiator’s point of view
Assume K−1

A ,K−1
B uncompromised, Na fresh

•

��

{|A, Na |}KB //

•

��

{|Na, N |}KAoo

•

Does N = Nb?

Yes, there are no available services!
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Breaking and Proving

How to break a protocol
I Try to prove it correct
I Where you get stuck, look for trouble
I Specifically, look for unintended services to produce

non-junk terms expected by regular principals

How to prove a protocol correct
I Try to break it
I See what unintended services must be used
I “Read off” authentication properties

Strand spaces: make these ideas precise, justify method

Thanks to collaborators:

Marco Carbone, Dan Dougherty,
Amy Herzog, Jonathan Herzog,

John Ramsdell, Javier Thayer, Lenore Zuck
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