
Foundations of Security
in Distributed Systems

Joshua D. Guttman
Worcester Polytechnic Institute

The MITRE Corporation

March 2013
Bertinoro International Spring School

Thanks to the US National Science Foundation, under grant 1116557

guttman@wpi.edu

Goals of this Course

Study the main mechanisms for
I authentication
I confidentiality
I authorization

Develop methods for
I finding attacks
I proof
I analysis
I systematic design

Present a useful tool, CPSA

Work within a single point of view mainly,
the strand space framework

JDG FOS Mar 2013 2 / 32

Structure of the Lectures

Monday Breaking and proving protocols

Tuesday Shapes and CPSA; the anatomy of TLS

Wednesday Protocol goals, composition, separability, transformation

Thursday Authorization, trust management, state change

Friday Foundations of cryptography, related to strands

Schedule at
http://cs.wpi.edu/~guttman/biss/schedule.pdf

JDG FOS Mar 2013 3 / 32

http://cs.wpi.edu/~guttman/biss/schedule.pdf

How to Break a Protocol
or prove it correct

Joshua D. Guttman

March 2013
Bertinoro International Spring School

Thanks to the US National Science Foundation, under grant 1116557

guttman@wpi.edu

What is a Security Protocol?

For instance, SSL (= TLS), SSH, OAuth, IKE
I Short sequence of messages
I Use cryptography for authentication, confidentiality
I Provide reliable communication
I Despite malicious attackers, who may control network

Protocols establish trust
I Remote access
I Secure networking
I E-commerce

Security protocols are often wrong
I Active attackers may subvert goals
I Even if cryptography is perfect
I Often fail because assumptions unclear
I Often misapplied because goals unclear

JG Break/Prove Mar 2013 5 / 32

What is a Security Protocol?

For instance, SSL (= TLS), SSH, OAuth, IKE
I Short sequence of messages
I Use cryptography for authentication, confidentiality
I Provide reliable communication
I Despite malicious attackers, who may control network

Protocols establish trust
I Remote access
I Secure networking
I E-commerce

Security protocols are often wrong
I Active attackers may subvert goals
I Even if cryptography is perfect
I Often fail because assumptions unclear
I Often misapplied because goals unclear

JG Break/Prove Mar 2013 5 / 32

What is a Security Protocol?

For instance, SSL (= TLS), SSH, OAuth, IKE
I Short sequence of messages
I Use cryptography for authentication, confidentiality
I Provide reliable communication
I Despite malicious attackers, who may control network

Protocols establish trust
I Remote access
I Secure networking
I E-commerce

Security protocols are often wrong
I Active attackers may subvert goals
I Even if cryptography is perfect
I Often fail because assumptions unclear
I Often misapplied because goals unclear

JG Break/Prove Mar 2013 5 / 32

How to break a protocol

Try to prove it correct
I Where you get stuck:

that’s where the flaw is

Central focus: services provided by protocol
I Actions the protocol requires

compliant principals to perform
I Produce values useful to adversary

Each protocol poses certain challenges to attacker
I Services help adversary

to meet those challenges

How to prove a protocol:
I Try to break it
I If you get stuck — run out of services — it’s correct

JG Break/Prove Mar 2013 6 / 32

Needham-Schroeder Protocol
A Simplest Example

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, Nb |}KAoo •

��

{|Na, Nb |}KAoo

•
{|Nb |}KB //

{|Nb |}KB // •
Terminology:

KA,KB Public encryption keys for A and B
Na,Nb Randomly chosen bitstrings “nonces”
{| t |}K t encrypted using K
Na, Nb new shared secret

JG Break/Prove Mar 2013 7 / 32

Roles are templates
Variables instantiated by values

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, Nb |}KAoo •

��

{|Na, Nb |}KAoo

•
{|Nb |}KB //

{|Nb |}KB // •

Initiator Responder

[A,B,Na,Nb] [A,B,Na,Nb]
whitespace

JG Break/Prove Mar 2013 8 / 32

Roles are templates
Variables instantiated by values

•

��

{|A, Na |}KB //
{|A′, Na

′ |}KB ′ // •

��
•

��

{|Na, Nb |}KAoo •

��

{|Na
′, Nb

′ |}KA′oo

•
{|Nb |}KB //

{|Nb
′ |}KB ′ // •

Initiator Responder

[A,B,Na,Nb] [A,B,Na,Nb]
whitespace

JG Break/Prove Mar 2013 8 / 32

Roles are templates
Variables instantiated by values

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, Nb |}KAoo •

��

{|Na, Nb |}KAoo

•
{|Nb |}KB //

{|Nb |}KB // •

Initiator Responder
[A,B,Na,Nb] [A,B,Na,Nb]

whitespace

JG Break/Prove Mar 2013 8 / 32

Essence of Cryptography
for today’s lecture

Symmetric key crypto: single shared key for sender, receiver
I Same key makes ciphertext, extracts plaintext

Public key crypto: two related keys, one private, the other public
I Encryption: Public key creates, private key decrypts
I Signature: Private key creates, public key verifies

Terminology: A’s public key: KA A’s private key: K−1A

In symmetric crypto, K = K−1

Uncompromised key:

Key used only in accordance with this protocol

JG Break/Prove Mar 2013 9 / 32

Essence of Cryptography
for today’s lecture

Symmetric key crypto: single shared key for sender, receiver
I Same key makes ciphertext, extracts plaintext

Public key crypto: two related keys, one private, the other public
I Encryption: Public key creates, private key decrypts
I Signature: Private key creates, public key verifies

Terminology: A’s public key: KA A’s private key: K−1A

In symmetric crypto, K = K−1

Uncompromised key:

Key used only in accordance with this protocol

JG Break/Prove Mar 2013 9 / 32

Essence of Cryptography
for today’s lecture

Symmetric key crypto: single shared key for sender, receiver
I Same key makes ciphertext, extracts plaintext

Public key crypto: two related keys, one private, the other public
I Encryption: Public key creates, private key decrypts
I Signature: Private key creates, public key verifies

Terminology: A’s public key: KA A’s private key: K−1A

In symmetric crypto, K = K−1

Uncompromised key:

Key used only in accordance with this protocol

JG Break/Prove Mar 2013 9 / 32

Essence of Cryptography
for today’s lecture

Symmetric key crypto: single shared key for sender, receiver
I Same key makes ciphertext, extracts plaintext

Public key crypto: two related keys, one private, the other public
I Encryption: Public key creates, private key decrypts
I Signature: Private key creates, public key verifies

Terminology: A’s public key: KA A’s private key: K−1A

In symmetric crypto, K = K−1

Uncompromised key:

Key used only in accordance with this protocol

JG Break/Prove Mar 2013 9 / 32

Needham-Schroeder: How does it work?
K−1

A uncompromised, Nb fresh

{|A, Na |}KB // •

��
•

��

{|Na, Nb |}KAoo

{|Nb |}KB // •

Whoops

JG Break/Prove Mar 2013 10 / 32

Needham-Schroeder: How does it work?
K−1

A uncompromised, Nb fresh

{|A, Na |}KB // •

��
•

��

{|Na, Nb |}KAoo

{|Nb |}KB // •

Whoops

JG Break/Prove Mar 2013 10 / 32

Roles are templates
Variables instantiated by values

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, Nb |}KAoo •

��

{|Na, Nb |}KAoo

•
{|Nb |}KB //

{|Nb |}KB // •

Initiator Responder
[A,B,Na,Nb] [A,B,Na,Nb]

whitespace

JG Break/Prove Mar 2013 11 / 32

Needham-Schroeder: How does it work?
K−1

A uncompromised, Nb fresh

{|A, Na |}KB // •

��
•

��

{|Na, Nb |}KAoo

{|Nb |}KB // •

Whoops

JG Break/Prove Mar 2013 12 / 32

Needham-Schroeder: How does it work?
K−1

A uncompromised, Nb fresh

•

��

{|A, Na |}KB // •

��
•

��

{|Na, Nb |}KAoo •

��

{|Na, Nb |}KAoo

•
{|Nb |}KB // •

Whoops

JG Break/Prove Mar 2013 12 / 32

Needham-Schroeder: How does it work?
K−1

A uncompromised, Nb fresh

•

��

{|A, Na |}?? //
{|A, Na |}KB // •

��
•

��

{|Na, Nb |}KAoo •

��

{|Na, Nb |}KAoo

•
{|Nb |}KB // •

Whoops

JG Break/Prove Mar 2013 12 / 32

Needham-Schroeder: How does it work?
K−1

A uncompromised, Nb fresh

•

��

{|A, Na |}?? //
{|A, Na |}KB // •

��
•

��

{|Na, Nb |}KAoo •

��

{|Na, Nb |}KAoo

•
{|Nb |}?? //

{|Nb |}KB // •

Whoops

JG Break/Prove Mar 2013 12 / 32

Needham-Schroeder: How does it work?
K−1

A uncompromised, Nb fresh

•

��

{|A, Na |}?? //
{|A, Na |}KB // •

��
•

��

{|Na, Nb |}KAoo •

��

{|Na, Nb |}KAoo

•
{|Nb |}?? //

{|Nb |}KB // •

Whoops

JG Break/Prove Mar 2013 12 / 32

Needham-Schroeder Failure

If ?? = KP , where K−1P is compromised:

•

��

{|A, Na |}KP // •

��
•

{|A, Na |}KB // •

��
•

��

•

��

{|Na, Nb |}KAoo

•
{|Nb |}KP

// •

��
•

{|Nb |}KB // •

due to Gavin Lowe

JG Break/Prove Mar 2013 13 / 32

Needham-Schroeder-Lowe

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, Nb, B |}KAoo •

��

{|Na, Nb, B |}KAoo

•
{|Nb |}KB //

{|Nb |}KB // •

JG Break/Prove Mar 2013 14 / 32

Needham-Schroeder-Lowe Analysis
K−1

A uncompromised, Nb fresh

{|A, Na |}KB // •

��
•

��

{|Na, Nb, B |}KAoo

{|Nb |}KB // •

This proves “everything that’s true” in this situation

JG Break/Prove Mar 2013 15 / 32

Needham-Schroeder-Lowe Analysis
K−1

A uncompromised, Nb fresh

{|A, Na |}KB // •

��
•

��

{|Na, Nb, B |}KAoo

{|Nb |}KB // •

This proves “everything that’s true” in this situation

JG Break/Prove Mar 2013 15 / 32

Needham-Schroeder-Lowe

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, Nb, B |}KAoo •

��

{|Na, Nb, B |}KAoo

•
{|Nb |}KB //

{|Nb |}KB // •

JG Break/Prove Mar 2013 16 / 32

Needham-Schroeder-Lowe Analysis
K−1

A uncompromised, Nb fresh

{|A, Na |}KB // •

��
•

��

{|Na, Nb, B |}KAoo

{|Nb |}KB // •

This proves “everything that’s true” in this situation

JG Break/Prove Mar 2013 17 / 32

Needham-Schroeder-Lowe Analysis
K−1

A uncompromised, Nb fresh

•

��

{|A, Na |}KB // •

��
•

��

{|Na, Nb, B |}KAoo •

��

{|Na, Nb, B |}KAoo

•
{|Nb |}KB // •

This proves “everything that’s true” in this situation

JG Break/Prove Mar 2013 17 / 32

Needham-Schroeder-Lowe Analysis
K−1

A uncompromised, Nb fresh

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, Nb, B |}KAoo •

��

{|Na, Nb, B |}KAoo

•
{|Nb |}KB // •

This proves “everything that’s true” in this situation

JG Break/Prove Mar 2013 17 / 32

Needham-Schroeder-Lowe Analysis
K−1

A uncompromised, Nb fresh

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, Nb, B |}KAoo •

��

{|Na, Nb, B |}KAoo

•
{|Nb |}KB //

{|Nb |}KB // •

This proves “everything that’s true” in this situation

JG Break/Prove Mar 2013 17 / 32

Needham-Schroeder-Lowe Analysis
K−1

A uncompromised, Nb fresh

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, Nb, B |}KAoo •

��

{|Na, Nb, B |}KAoo

•
{|Nb |}KB //

{|Nb |}KB // •

This proves “everything that’s true” in this situation

JG Break/Prove Mar 2013 17 / 32

How to break a protocol:

Unintended services

Needham-Schroeder Failure

If ?? = KP , where K−1P is compromised:

•

��

{|A, Na |}KP // •

��
•

{|A, Na |}KB // •

��
•

��

•

��

{|Na, Nb |}KAoo

•
{|Nb |}KP

// •

��
•

{|Nb |}KB // •

due to Gavin Lowe

JG Break/Prove Mar 2013 19 / 32

Diagnosis of a failure

Who did the protocol betray? Not A, who
I Meant to share nonces with P
I Wrongly assumed K−1P uncompromised

B was betrayed
I Meant to share nonces with A
I Rightly assumed K−1A uncompromised
I Secrecy failed, since P knows nonces
I Authentication failed: A had no run with B

How? A offered P a service:
I Gave P a nonce NA

I Promised to translate any {|Na, N
′ |}KA

to {|N ′ |}KP

I “Unintended service”

Attacker needs to get some value i.e. Nb

Regular participant unwittingly provides it

JG Break/Prove Mar 2013 20 / 32

Diagnosis of a failure

Who did the protocol betray? Not A, who
I Meant to share nonces with P
I Wrongly assumed K−1P uncompromised

B was betrayed
I Meant to share nonces with A
I Rightly assumed K−1A uncompromised
I Secrecy failed, since P knows nonces
I Authentication failed: A had no run with B

How? A offered P a service:
I Gave P a nonce NA

I Promised to translate any {|Na, N
′ |}KA

to {|N ′ |}KP

I “Unintended service”

Attacker needs to get some value i.e. Nb

Regular participant unwittingly provides it

JG Break/Prove Mar 2013 20 / 32

Diagnosis of a failure

Who did the protocol betray? Not A, who
I Meant to share nonces with P
I Wrongly assumed K−1P uncompromised

B was betrayed
I Meant to share nonces with A
I Rightly assumed K−1A uncompromised
I Secrecy failed, since P knows nonces
I Authentication failed: A had no run with B

How? A offered P a service:
I Gave P a nonce NA

I Promised to translate any {|Na, N
′ |}KA

to {|N ′ |}KP

I “Unintended service”

Attacker needs to get some value i.e. Nb

Regular participant unwittingly provides it

JG Break/Prove Mar 2013 20 / 32

Diagnosis of a failure

Who did the protocol betray? Not A, who
I Meant to share nonces with P
I Wrongly assumed K−1P uncompromised

B was betrayed
I Meant to share nonces with A
I Rightly assumed K−1A uncompromised
I Secrecy failed, since P knows nonces
I Authentication failed: A had no run with B

How? A offered P a service:
I Gave P a nonce NA

I Promised to translate any {|Na, N
′ |}KA

to {|N ′ |}KP

I “Unintended service”

Attacker needs to get some value i.e. Nb

Regular participant unwittingly provides it

JG Break/Prove Mar 2013 20 / 32

Another Example: ISO reject

•

��

A, Na // A, Na // •

��
•

��

{|Nb, Na, A |}
K−1
Boo •

��

{|Nb, Na, A |}
K−1
Boo

•
{|N′a, Nb, B |}K−1

A //
{|N′a, Nb, B |}K−1

A // •

Digital signatures provide authentication
No new secrets

JG Break/Prove Mar 2013 21 / 32

Diagnosis: ISO reject

Responder only gets two messages
I First message A, Na has no authenticating force
I Anybody can create a message like that
I “Junk term”

Attacker only needs to create

{|N ′a, Nb, B |}K−1
A

for some N ′a

What services are useful?

JG Break/Prove Mar 2013 22 / 32

Services in ISO reject
lower case letters are variables chosen by adversary

• A, Na // x , n1 // •

��
•

��

{| n2, Na, A |}
K−1
yoo •

{|N, n1, x |}K−1
yoo

•
{|N, n2, y |}K−1

A // •

Adversary freely instantiates lower-case variables

Want to produce {|N, Nb, B |}K−1
A

for some N

Can use A as respondent, B, Nb as selected msg
i.e. substitution [B/x ,A/y ,Nb/n1]

JG Break/Prove Mar 2013 23 / 32

Services in ISO reject
lower case letters are variables chosen by adversary

• A, Na // x , n1 // •

��
•

��

{| n2, Na, A |}
K−1
yoo •

{|N, n1, x |}K−1
yoo

•
{|N, n2, y |}K−1

A // •

Adversary freely instantiates lower-case variables

Want to produce {|N, Nb, B |}K−1
A

for some N

Can use A as respondent, B, Nb as selected msg
i.e. substitution [B/x ,A/y ,Nb/n1]

JG Break/Prove Mar 2013 23 / 32

Services in ISO reject
lower case letters are variables chosen by adversary

• A, Na // x , n1 // •

��
•

��

{| n2, Na, A |}
K−1
yoo •

{|N, n1, x |}K−1
yoo

•
{|N, n2, y |}K−1

A // •

Adversary freely instantiates lower-case variables

Want to produce {|N, Nb, B |}K−1
A

for some N

Can use A as respondent, B, Nb as selected msg
i.e. substitution [B/x ,A/y ,Nb/n1]

JG Break/Prove Mar 2013 23 / 32

Services in ISO reject
lower case letters are variables chosen by adversary

• A, Na // x , n1 // •

��
•

��

{| n2, Na, A |}
K−1
yoo •

{|N, n1, x |}K−1
yoo

•
{|N, n2, y |}K−1

A // •

Adversary freely instantiates lower-case variables

Want to produce {|N, Nb, B |}K−1
A

for some N

Can use A as respondent, B, Nb as selected msg
i.e. substitution [B/x ,A/y ,Nb/n1]

JG Break/Prove Mar 2013 23 / 32

The resulting attack
The Canadian Attack

• A, Na // •
B
��

•

��

•

��

{|Nb, Na, A |}
K−1
Boo

• B, Nb // •
A
��

•

��

•
{|Na, Nb, B |}K−1

Aoo

•
{|Na, Nb, B |}K−1

A // •

JG Break/Prove Mar 2013 24 / 32

What goal is refuted?

A executed a signature

So “entity authentication” may hold for A
Whatever that means

But A never initiated any session with B

JG Break/Prove Mar 2013 25 / 32

Dolev-Yao Attacks: A Recipe

Identify and discard “junk” messages
I They don’t contribute to authentication
I Remaining (non-junk) incoming messages “Challenge”
I Adversary needs to synthesize them

Look for unintended services
I Criterion: Can they build challenge messages?

Combine unintended services

JG Break/Prove Mar 2013 26 / 32

Dolev-Yao Attacks: A Recipe

Identify and discard “junk” messages
I They don’t contribute to authentication
I Remaining (non-junk) incoming messages “Challenge”
I Adversary needs to synthesize them

Look for unintended services
I Criterion: Can they build challenge messages?

Combine unintended services

JG Break/Prove Mar 2013 26 / 32

Dolev-Yao Attacks: A Recipe

Identify and discard “junk” messages
I They don’t contribute to authentication
I Remaining (non-junk) incoming messages “Challenge”
I Adversary needs to synthesize them

Look for unintended services
I Criterion: Can they build challenge messages?

Combine unintended services

JG Break/Prove Mar 2013 26 / 32

What unintended services occur?

Signature: Na 7→ { Na }K−1

Encryption: Na 7→ { Na }K
Decryption: { Na }K 7→ Na

Translation: { Na }K 7→ { Na }K ′

Examples:

Signature service: ISO reject protocol
Encryption service: Woo-Lam
Decryption service: None (too obvious?)
Key-translation service: NS PK

JG Break/Prove Mar 2013 27 / 32

The Dolev-Yao Problem

Given a protocol, and assuming all cryptography perfect, find
I What secrecy properties
I What authentication properties

the protocol achieves

Find counterexamples to other properties
I Unintended services useful

What does perfect cryptography mean?
I No collisions
I Need key to make encrypted value
I Need key to decrypt and recover plaintext

JG Break/Prove Mar 2013 28 / 32

How to break a protocol

Try to prove it correct
I Where you get stuck:

that’s where the flaw is

Central focus: services provided by protocol
I Actions the protocol requires

compliant principals to perform
I Produce values useful to adversary

Each protocol poses certain challenges to attacker
I Services help adversary

to meet those challenges

How to prove a protocol:
I Try to break it
I If you get stuck — run out of services — it’s correct

JG Break/Prove Mar 2013 29 / 32

How to break a protocol

Try to prove it correct
I Where you get stuck:

that’s where the flaw is

Central focus: services provided by protocol
I Actions the protocol requires

compliant principals to perform
I Produce values useful to adversary

Each protocol poses certain challenges to attacker
I Services help adversary

to meet those challenges

How to prove a protocol:
I Try to break it
I If you get stuck — run out of services — it’s correct

JG Break/Prove Mar 2013 29 / 32

Needham-Schroeder Protocol
A Simplest Example

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, Nb |}KAoo •

��

{|Na, Nb |}KAoo

•
{|Nb |}KB //

{|Nb |}KB // •
Terminology:

KA,KB Public encryption keys for A and B
Na,Nb Randomly chosen bitstrings “nonces”
{| t |}K t encrypted using K
Na, Nb new shared secret

JG Break/Prove Mar 2013 30 / 32

NS Analysis: Initiator’s point of view
Assume K−1

A ,K−1
B uncompromised, Na fresh

•

��

{|A, Na |}KB //

•

��

{|Na, N |}KAoo

•

Does N = Nb?

Yes, there are no available services!

JG Break/Prove Mar 2013 31 / 32

NS Analysis: Initiator’s point of view
Assume K−1

A ,K−1
B uncompromised, Na fresh

•

��

{|A, Na |}KB //

•

��

{|Na, N |}KAoo

•

Does N = Nb?

Yes, there are no available services!

JG Break/Prove Mar 2013 31 / 32

NS Analysis: Initiator’s point of view
Assume K−1

A ,K−1
B uncompromised, Na fresh

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, N |}KAoo •
{|Na, Nb |}KBoo

•

Does N = Nb?

Yes, there are no available services!

JG Break/Prove Mar 2013 31 / 32

NS Analysis: Initiator’s point of view
Assume K−1

A ,K−1
B uncompromised, Na fresh

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, N |}KAoo •
{|Na, Nb |}KBoo

•

Does N = Nb?

Yes, there are no available services!

JG Break/Prove Mar 2013 31 / 32

NS Analysis: Initiator’s point of view
Assume K−1

A ,K−1
B uncompromised, Na fresh

•

��

{|A, Na |}KB //
{|A, Na |}KB // •

��
•

��

{|Na, N |}KAoo •
{|Na, Nb |}KBoo

•

Does N = Nb?
Yes, there are no available services!

JG Break/Prove Mar 2013 31 / 32

Breaking and Proving

How to break a protocol
I Try to prove it correct
I Where you get stuck, look for trouble
I Specifically, look for unintended services to produce

non-junk terms expected by regular principals

How to prove a protocol correct
I Try to break it
I See what unintended services must be used
I “Read off” authentication properties

Strand spaces: make these ideas precise, justify method

Thanks to collaborators:

Marco Carbone, Dan Dougherty,
Amy Herzog, Jonathan Herzog,

John Ramsdell, Javier Thayer, Lenore Zuck

JG Break/Prove Mar 2013 32 / 32

Breaking and Proving

How to break a protocol
I Try to prove it correct
I Where you get stuck, look for trouble
I Specifically, look for unintended services to produce

non-junk terms expected by regular principals

How to prove a protocol correct
I Try to break it
I See what unintended services must be used
I “Read off” authentication properties

Strand spaces: make these ideas precise, justify method

Thanks to collaborators:

Marco Carbone, Dan Dougherty,
Amy Herzog, Jonathan Herzog,

John Ramsdell, Javier Thayer, Lenore Zuck

JG Break/Prove Mar 2013 32 / 32

Breaking and Proving

How to break a protocol
I Try to prove it correct
I Where you get stuck, look for trouble
I Specifically, look for unintended services to produce

non-junk terms expected by regular principals

How to prove a protocol correct
I Try to break it
I See what unintended services must be used
I “Read off” authentication properties

Strand spaces: make these ideas precise, justify method

Thanks to collaborators:

Marco Carbone, Dan Dougherty,
Amy Herzog, Jonathan Herzog,

John Ramsdell, Javier Thayer, Lenore Zuck

JG Break/Prove Mar 2013 32 / 32

Breaking and Proving

How to break a protocol
I Try to prove it correct
I Where you get stuck, look for trouble
I Specifically, look for unintended services to produce

non-junk terms expected by regular principals

How to prove a protocol correct
I Try to break it
I See what unintended services must be used
I “Read off” authentication properties

Strand spaces: make these ideas precise, justify method

Thanks to collaborators:

Marco Carbone, Dan Dougherty,
Amy Herzog, Jonathan Herzog,

John Ramsdell, Javier Thayer, Lenore Zuck

JG Break/Prove Mar 2013 32 / 32

