Authorization and Trust Management

Joshua D. Guttman Worcester Polytechnic Institute The MITRE Corporation

March 2013 Bertinoro International Spring School Thanks to the US National Science Foundation, under grant 1116557

guttman@wpi.edu

- A is permitted to do X
- A has the right to do X

- A is permitted to do X
- A has the right to do X
- An authorization policy describes
 - which people (or which roles)
 - are permitted to do actions
 - in an organization or interaction

- A is permitted to do X
- A has the right to do X
- An authorization policy describes
 - which people (or which roles)
 - are permitted to do actions
 - in an organization or interaction
- Traditionally, a per-organization choice

- A is permitted to do X
- A has the right to do X
- An authorization policy describes
 - which people (or which roles)
 - are permitted to do actions
 - in an organization or interaction
- Traditionally, a per-organization choice
- Increasingly, requires cross-organization trust or cooperation

An Example Authorization Policy

in a hospital

- A doctor may
 - Read a patient's chart
 - Make care updates
 - Update diagnosis
 - Allow a patient to be discharged
- A nurse may
 - Read a patient's chart
 - Make care updates
- A bill collector may
 - Read a patient's chart only if determining payment terms
- A patient may
 - Read a chart if it is his own
 - Leave the hospital if a doctor has discharged him

EPub gives discount if IEEE member and EPub student EPub student if ABU accredited(U) and U student IEEE member if ...

- ABU accredited(U) if ...
 - ${\sf U}$ student if \ldots

EPub gives discount if IEEE member and EPub student EPub student if ABU accredited(U) and U student IEEE member if ...

- ABU accredited(U) if ...
 - ${\sf U}$ student if \ldots

The ellipses (\dots) require a query against another principal

Distributed policies now frequent

- Log in via Facebook or Google
- Electronic purchase requires authorization from Visa
- Hospital grants rights to remote doctors and especially insurance companies
- Tax service allows me to avoid audit if my bank and brokerage confirm my data

A logical approach

- Express authorizations by formulas may(read, guttman, record12)
- Express policies by a set of rules may(read, A, R) if doctor(A) and patient_rec(R)
- Facts may be hard-coded in policy doctor(*guttman*)

or else obtained by database queries

• Decision is authorized if policy + queries prove it

May be formalized in Datalog

- Datalog is a language for recursive queries
- Sublanguage of first order logic
 - Constants a_i, variables X_i, relation symbols
 - But no function symbols
 - Term t is either constant or variable
- Fact means atomic formula $p(t_1, \ldots, t_i)$
- Rule means implication

$$p(t_1,\ldots,t_i) := q_1(s_1,\ldots,s_j), \ldots,$$
$$q_\ell(r_1,\ldots,r_k)$$

- p(t₁,...,t_i) called the head meaning consequent;
 the hypotheses are called the body
- Each t_n should appear in $s_1, \ldots, s_j, \ldots, r_1, \ldots, r_k$

Datalog semantics

• Domain of model:

```
constants mentioned in theory T
```

• Extensions of predicates:

Least set containing the facts and closed under the rules

Model uniquely determined

constructible in polynomial time

• Query may(read, guttman, X)

retrieves set of tuples matching pattern in extension of predicate

Datalog for Local Authorization Policies

 Most authorization policies fit nicely into Datalog possibly augmented with constraints, e.g. for linear inequalities

Guttman may enter the Sala Affrescata between 9.00 and 19.00

- Lack of disjunctions, universal quantifier in body rarely problematic
- Existential quantifier in body implicit

ancester(x, y) :- parent(x, y)ancester(x, y) :- parent(x, z),

ancester(z, y)

Datalog for Distributed Authorization Policies

- Each principal P has a (Datalog) theory T_P
- P does deduction in T_P
 - Allows ϕ if $T_P \vdash \phi$
 - Communicates "*P* says ϕ " only when $T_P \vdash \phi$

Datalog for Distributed Authorization Policies

- Each principal P has a (Datalog) theory T_P
- P does deduction in T_P
 - Allows ϕ if $T_P \vdash \phi$
 - Communicates "*P* says ϕ " only when $T_P \vdash \phi$
- To incorporate "says" operator
 - For each predicate $q(X_1, \ldots, X_i)$ add new predicate

 $says_q(P, X_1, \dots, X_i)$

with extra argument P

• Means P says $q(X_1, \ldots, X_i)$

Datalog for Distributed Authorization Policies

- Each principal P has a (Datalog) theory T_P
- P does deduction in T_P
 - Allows ϕ if $T_P \vdash \phi$
 - Communicates "*P* says ϕ " only when $T_P \vdash \phi$
- To incorporate "says" operator
 - For each predicate $q(X_1, \ldots, X_i)$ add new predicate

$$says_q(P, X_1, \ldots, X_i)$$

with extra argument P

• Means P says $q(X_1, \ldots, X_i)$

 Now each T_P can use both old predicates q(X₁,...,X_i) and new predicates says_q(P', X₁,...,X_i)

What is trust?

• One core meaning of trust:

$$q(X_1,\ldots,X_i) \quad : - \quad says_q(alice,X_1,\ldots,X_i) \tag{1}$$

- If T_{me} contains (11), then I trust Alice on the topic q()
 - If I learn that Alice says q holds, then I infer that it does hold

What is trust?

• One core meaning of trust:

$$q(X_1,\ldots,X_i) \quad : - \quad says_q(alice,X_1,\ldots,X_i) \tag{1}$$

- If T_{me} contains (11), then I trust Alice on the topic q()
 - If I learn that Alice says q holds, then I infer that it does hold
- Flexible, e.g.

$$q(bob, \ldots, X_i) : - says_q(alice, bob, \ldots, X_i)$$

• I trust Alice on q(), at least about Bob

What is trust?

• One core meaning of trust:

$$q(X_1,\ldots,X_i) \quad :- \quad says_q(alice,X_1,\ldots,X_i) \tag{1}$$

- If T_{me} contains (11), then I trust Alice on the topic q()
 - If I learn that Alice says q holds, then I infer that it does hold
- Flexible, e.g.

$$q(bob, \ldots, X_i) : - says_q(alice, bob, \ldots, X_i)$$

- I trust Alice on q(), at least about Bob
- Allows local ontologies

$$p(X_1,\ldots,X_i)$$
 : - says_q(alice, X_1,\ldots,X_i)

• Digitally signed message was produced by signer p

 $\llbracket tag x, y \rrbracket_k$

• Digitally signed message was produced by signer p

 $[\![tag \ x, \ y]\!]_k$

• Translate this into a statement of p

• Digitally signed message was produced by signer p

 $\llbracket tag x, y \rrbracket_k$

- Translate this into a statement of p
- \bullet Conventional rules for msg \rightarrow statement

• Digitally signed message was produced by signer p

 $\llbracket \texttt{tag } x, \ y \rrbracket_k$

- Translate this into a statement of p
- Conventional rules for msg \rightarrow statement

p says pred(x, y)

or

 $says_pred(p, x, y)$

• Digitally signed message was produced by signer p

 $\llbracket \texttt{tag } x, \ y \rrbracket_k$

- Translate this into a statement of p
- Conventional rules for msg \rightarrow statement

p says pred(x, y)

or

 $says_pred(p, x, y)$

• Every signature received by R adds a formula to T_R

• Digitally signed message was produced by signer p

 $\llbracket \texttt{tag } x, \ y \rrbracket_k$

- Translate this into a statement of p
- Conventional rules for msg \rightarrow statement

p says pred(x, y)

or

says_pred
$$(p, x, y)$$

- Every signature received by R adds a formula to T_R
- All this, assuming $k = \operatorname{sk}(p)$ is p's signature key, and $\operatorname{sk}(p) \in \operatorname{non}$

Application: Certificate Authorities

• A certificate authority issues digitally signed msgs of form

```
[\![\operatorname{cert} P, K, \operatorname{etc}]\!]_{ck^{-1}}
```

• ca endeavors to ensure K is P's signature verification key

$$K = vk(P)$$

Application: Certificate Authorities

• A certificate authority issues digitally signed msgs of form

 $[\![\operatorname{cert} P, K, \operatorname{etc}]\!]_{ck^{-1}}$

• ca endeavors to ensure K is P's signature verification key

K = vk(P)

Principals R may translate [[cert p, k, etc]]_{ck-1} as meaning
 says_ver_key(ck, p, k)

Application: Certificate Authorities

• A certificate authority issues digitally signed msgs of form

 $[\![\operatorname{cert} P, K, \operatorname{etc}]\!]_{ck^{-1}}$

• ca endeavors to ensure K is P's signature verification key

K = vk(P)

- Principals R may translate [[cert p, k, etc]]_{ck-1} as meaning
 says_ver_key(ck, p, k)
- R trusts ck as signing key for ca if T_R contains
 ver_key(P, K) : says_ver_key(ck, P, K)

• ca, using key rk^{-1} , may also issue certificates

 $\llbracket \text{cert}_{\text{auth}} P, CK, \text{etc} \rrbracket_{rk^{-1}}$

asserting CK is valid to verify certificates from authority P

• ca, using key rk^{-1} , may also issue certificates

```
\llbracket \text{cert}_{\text{auth }} P, CK, \text{etc} \rrbracket_{rk^{-1}}
```

asserting CK is valid to verify certificates from authority P
These certificates

- Allow an organization to issue certificates for employees, e.g.
- Cost much more, from commercial CAs

• ca, using key rk^{-1} , may also issue certificates

```
\llbracket \text{cert}_{\text{auth}} P, CK, \text{etc} \rrbracket_{rk^{-1}}
```

asserting CK is valid to verify certificates from authority P
These certificates

- ► Allow an organization to issue certificates for employees, e.g.
 - Cost much more, from commercial CAs
- Interpret [[cert_auth $P, CK, etc]]_{RK^{-1}}$ to mean

says_certifying_key(RK, P, CK)

• ca, using key rk^{-1} , may also issue certificates

```
[[cert_auth P, CK, etc]]_{rk^{-1}}
```

asserting *CK* is valid to verify certificates from authority *P* • These certificates

- ► Allow an organization to issue certificates for employees, e.g.
- Cost much more, from commercial CAs
- Interpret [[cert_auth P, CK, etc]]_{RK⁻¹} to mean

says_certifying_key(RK, P, CK)

• Principal R accepts these if T_R contains

Trust Management Example

EPub gives discount if IEEE member and EPub student
EPub student if ABU accredited(U) and U student
IEEE member if ...
ABU accredited(U) if ...
U student if ...

The theory T_{EPub} contains:

discount(<i>Buyer</i>)	: –	<pre>says_member(ieee, Buyer),</pre>
		<pre>student(Buyer)</pre>
<pre>student(Buyer)</pre>	: –	$says_acc(abu, U),$
		$says_student(U, Buyer)$

Problem or Limitations

- No treatment of recency
- No private communications
- No conditional disclosure
 - I'll tell you X if you convince me that Y
- Needed: integrate trust mgt with protocols