Disconnected colors in generalized Gallai colorings - research project

July 24, 2009

Abstract

Gallai-colorings of complete graphs - edge colorings such that no triangle is colored with three distinct colors - occur in various contexts such as the theory of partially ordered sets (in Gallai’s original paper), information theory and the theory of perfect graphs. A basic property of Gallai-colorings with at least three colors is that at least one of the color classes must span a disconnected graph. We are interested here to find whether this or similar property remains true if we consider colorings that do not contain a multicolored copy of a fixed graph F.

1 Introduction

Edge colorings of complete graphs in which no triangle is colored with three distinct colors were called Gallai-partitions in [7], Gallai-colorings in [4], [5]. Here we call briefly these colorings as G-colorings and always assume that G-colorings are on the edges of a complete graph. More than just the term, the concept occurs in relation of deep structural properties of fundamental objects. An important result, Theorem 1, from Gallai’s original paper [3] – translated to English and endowed by comments in [8] – can be reformulated in terms of Gallai-colorings. Further occurrences are related to generalizations of the perfect graph theorem [1], or applications in information theory [6].

Our starting point is the following result of Gallai [3], see an explicit proof in [4].

Theorem 1. In every G-coloring with at least three colors, some of the color classes span a disconnected graph.

What is the role of forbidding a multicolored triangle? Can we extend some way Theorem 1 to colorings where a multicolored copy of some fixed graph F is forbidden?
This question is the central topic. An edge coloring of a complete graph K is connected if each color class has a spanning tree in K.

Let us say that a graph F has the disconnection property, DP, if there exists a natural number $m = m(F)$ such that the following holds: in every edge coloring of a complete graph with at least m colors either there is a multicolored F or at least one color class is disconnected. Equivalently, F has the disconnection property if in every connected coloring with $m(F)$ colors there is a multicolored copy of F. Notice that $m(F) \geq |E(F)|$ because large enough complete graph have connected colorings with $|V(F)| - 1$ colors. If a graph F has DP with $m(F) = |E(F)|$ we say that it has the Gallai property, GP. Sometimes GP and DP are just identified with the class of graphs having the property. Then we can say for example that by Theorem 1, $K_3 \in GP$.

Observation 1. If $F \in GP$ then $F \in DP$.

Observation 2. Assume that $F_1 \subset F_2$ and $F_2 \in DP$. Then $F_1 \in DP$.

Proposition 1. $P_3, P_4, P_5 \in GP$.

Proof. The result is trivial for P_3 and almost trivial for P_4 so we show only that P_5 is a Gallai-type graph. Let G be a graph whose edges are colored with $m \geq 4$ colors and assume all color classes span connected graphs. We shall reach a contradiction by finding a multicolored P_5.

We clearly have a path $P = v_1v_2v_3v_4$ colored with three distinct colors, say v_iv_{i+1} colored with i. Both v_1, v_4 is incident to an edge of color 4, with other end on P. Suppose first that those edges coincide, i.e. v_1v_4 has color 4. Observe that no edge of color i ($i = 1, 2, 3$) can go from an endpoint of an i-colored edge of P to $V(G) \setminus V(P)$. Therefore - since colors 1 and 3 are connected - the pair of edges v_1v_3, v_2v_4 are colored with 1 and 3. But now the edge v_2v_3 is isolated in color 2 - contradiction.

Thus we may assume that edges v_1v_3, v_2v_4 are both colored with color 4. Now we get the same contradiction as before - the edge v_2v_3 is isolated in color 2. \square

Problem 1. Are paths in GP?

The next natural question is perhaps whether $C_4 \in GP$? This question have been asked some years ago by Simonyi and me, Ákos found a counterexample which will be presented here in a somewhat more general form. However, it might be true that $C_4 \in DP$.

Problem 2. $C_4 \in DP$?
The following result of Fujita and Magnant [2] provides an infinite family of graphs with GP.

Theorem 2. Suppose F is a graph obtained from a star by adding a new edge between two endpoints. Then $F \in \mathcal{GP}$.

To get necessary conditions for $F \in \mathcal{GP}$ or $F \in \mathcal{DP}$ we define a specific m-colored complete graph, $K(m)$ for every $m \geq 2, k \geq 1$.

Construction 1. Let A, B be disjoint sets, $|A| = |B| = 2(m - 1)k + 1$. Define

$$A = \bigcup_{i=1}^{m-1} A_i \cup \{a\}, B = \bigcup_{i=1}^{m-1} B_i \cup \{b\},$$

where the sets are all disjoint and $|A_i| = |B_i| = 2k$. Color 0 is distinguished, the edge ab and the edges within A and B are colored with 0. For $i = 1, 2, \ldots, m - 1$, the edges of the complete bipartite graphs $[a, B_i], [b, A_i], [A_i, B_i]$ are colored with color i. Split each A_i, B_i into two disjoint equal parts, $A_i = X_i \cup Y_i, B_i = U_i \cup W_i$ (k vertices in each). For any $1 \leq i < j \leq m - 1$, color $[X_i, U_j], [Y_i, W_j]$ with color i and color $[X_i, W_j], [Y_i, U_j]$ with color j. This colors all edges of the complete graph induced by $A \cup B$, we shall refer to it as $K(m)$.

A graph is called unicyclic if it has exactly one cycle, i.e. it has exactly one component that is not a tree and that component can be obtained by adding an edge to a tree.

Lemma 1. Suppose that H is a multicolored connected bipartite subgraph of Construction 1. Then H is either acyclic or unicyclic. An edge of H with color 0 can not be on a cycle of H.

Proof. \(\Box\)

Corollary 1. Suppose that $F \in \mathcal{DP}$ is connected and bipartite. Then F is either acyclic or unicyclic.

Proof. Suppose that $F \in \mathcal{DP}$ is bipartite. Consider the coloring of Construction 1 with $m \geq |E(F)|$. Since the coloring is connected we have a multicolored copy of F. By Lemma 1 the proof is finished. \(\Box\)

The next corollary shows that DP graphs are very close to acyclic graphs.

Corollary 2. Suppose that $F \in \mathcal{DP}$. Then for some $e \in E(F)$, the graph $F - e$ is bipartite.
Proof. Suppose that $F \in DP$. Consider the connected coloring of Construction 1 with $m \geq |E(F)|$. This coloring must contain a multicolored F. At most one edge of F can be colored with color 0 and all other colors span bipartite graphs. Thus by the removal of at most one edge, F becomes bipartite. \Box

Corollary 2 implies that every connected $F \in DP$ can be reduced to a connected bipartite graph, the core of F by deleting at most one edge. However, one can say more about the core graphs, they have to be close to acyclic graphs.

Corollary 3. Every connected $F \in DP$ can be obtained from an acyclic graph by adding at most two edges.

Proposition 2. $C_{2i} \not\in GP$.

Proof. Consider Construction 1 with $m = 2i$. If $C_{2i} \in GP$ then the coloring of $K(m)$ must contain a multicolored $F = C_{2i}$. However, this is possible only if color 0 is used on F but this contradicts Lemma 1. \Box

Problem 3. Are odd cycles in GP? Or at least in DP?

Theorem 3. Assume that F is a unicyclic graph such that its cycle is a triangle. Then $F \in DP$.

Corollary 4. Acyclic graphs are in DP.

Problem 4. Is $DP \setminus GP \neq \emptyset$?

There are several possibilities to sharpen Theorem 3. ($\sim N$ is not precise, means ”about” N) For example:

1. Of course it is possible that $F \in GP$ (like in Theorem 2) For example the graph $F(1,1,1)$ obtained when each vertex of the triangle sends one edge out (six vertices) is in GP - needed some hours of thinking and there are cases... Of course nice infinite families would be better - preferably with nice proof.

2. To improve the obvious bound ($\sim 2k$) when F has k vertices.

3. I looked briefly at the case when F is a triangle plus edges going out from the triangle - $F(a,b,c)$. For $F(a,a,0)$ the obvious bound $\sim 4a$ went down to $\sim 3a$ by a nontrivial idea. Probably there are possibilities here...

NEW BRANCH

With Stanley we looked at the following variation: a balanced complete bipartite graph is colored (instead of a complete graph) and all color classes are connected... Now Ákos’s construction does not work - perhaps there is a rainbow C_4 in every connected coloring....
References

