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Abstract

We say that a 3-uniform hypergraph has a Hamilton cycle if there is a cyclic ordering of its vertices such
that every pair of consecutive vertices lies in a hyperedge which consists of three consecutive vertices. Also,
let C4 denote the 3-uniform hypergraph on 4 vertices which contains 2 edges. We prove that for every ε > 0
there is an n0 such that for every n � n0 the following holds: Every 3-uniform hypergraph on n vertices
whose minimum degree is at least n/4 + εn contains a Hamilton cycle. Moreover, it also contains a perfect
C4-packing. Both these results are best possible up to the error term εn.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Hamilton cycles

A classical theorem of Dirac states that every graph on n vertices with minimum degree at least
n/2 contains a Hamilton cycle. If one seeks an analogue of this result for uniform hypergraphs,
then several alternatives suggest themselves. In the following, we will first restrict ourselves to
3-uniform hypergraphs and then discuss the r-uniform case at the beginning of Section 1.3.

A natural way to extend the notion of the minimum degree of a graph to that of a 3-uniform
hypergraph H is the following. Given two distinct vertices x and y of H, the neighbourhood
N(x,y) of (x, y) in H is the set of all those vertices z which form a hyperedge together with
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Fig. 1. Parts of a tight cycle, a cycle and a loose cycle.

x and y. The minimum degree δ(H) is defined to be the minimum |N(x,y)| over all pairs of
vertices of H.

We say that a 3-uniform hypergraph C is a cycle of order n if there exists a cyclic ordering
v1, . . . , vn of its vertices such that every consecutive pair vivi+1 lies in a hyperedge of C and
such that every hyperedge of C consists of 3 consecutive vertices. Thus the cyclic ordering of
the vertices of C induces a cyclic ordering of its hyperedges. A cycle is tight if every three
consecutive vertices form a hyperedge. Thus, up to isomorphisms, there is exactly one tight
cycle of order n and every cycle of order n is a subhypergraph of the tight cycle of order n.
A cycle of order n is loose if it has the minimum possible number of hyperedges among all
cycles on n vertices (Fig. 1). Thus if the number n of vertices in a loose cycle C is even and at
least 6, then consecutive hyperedges in C have exactly one vertex in common and the number of
hyperedges in C is exactly n/2. If n � 5 is odd, then exactly one pair of consecutive hyperedges
in a loose cycle C have two vertices in common and the number of hyperedges in C is exactly
�n/2�. A Hamilton cycle of a 3-uniform hypergraph H is a subhypergraph of H which is a cycle
containing all its vertices.

Theorem 1.1. For each σ > 0 there is an integer n0 = n0(σ ) such that every 3-uniform hyper-
graph H with n � n0 vertices and minimum degree at least n/4 + σn contains a loose Hamilton
cycle.

The bound on the minimum degree in Theorem 1.1 is best possible up to the error term σn.
In fact, Proposition 2.1 shows that if the minimum degree is less than �n/4�, then we cannot
even guarantee any Hamilton cycle. Moreover, if we had an algorithmic version of the Regu-
larity Lemma for 3-uniform hypergraphs (Lemma 5.8), then our proof of Theorem 1.1 would
yield a polynomial time randomised algorithm which finds the Hamilton cycle guaranteed by
Theorem 1.1 with high probability, see Section 3.2 for more details.

Recently, Rödl, Ruciński and Szemerédi [21] proved that if the minimum degree is at least
n/2 + σn and n is sufficiently large, then one can even guarantee a tight Hamilton cycle. Their
bound is best possible up to the error term σn. In [21] they also announced that they can eliminate
this error term. The proofs of both our Theorem 1.1 and the result in [21] rely on the recent
Regularity Lemma for 3-uniform hypergraphs due to Frankl and Rödl [5]. However, in [21] the
authors make extensive use of the fact that the intersection of the neighbourhoods of any two
pairs of vertices is nonempty, which is far from true in our case. For this reason, our argument
has a rather different structure.

In fact, if we assume that our hypergraph has minimum degree n/2 + σn and the number of
vertices is divisible by four, then our result is much easier to prove: consider a random partition
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of the vertex set of H into three parts X, Y and Z so that |Z| = 2|X| = 2|Y |. Choose a Hamilton
cycle in the complete bipartite graph spanned by X and Y uniformly at random. Consider a
bipartite auxiliary graph H where the first class C consists of all the pairs of consecutive vertices
in the Hamilton cycle and the other class is Z. Join a pair in C to a vertex in Z if together they
form a hyperedge in H. A standard application of a large deviation bound for the hypergeometric
distribution shows that with high probability every pair in C is adjacent to at least half of the
vertices in Z. By bounding the number of perfect matchings in a graph with given degrees, one
can also show that with high probability, every vertex in Z is adjacent to at least half of the pairs
in C—see [15] for a similar argument. Thus the minimum degree of H is at least |Z|/2 = |C|/2
and hence H contains a perfect matching. This in turn corresponds to the desired loose Hamilton
cycle in H.

A much weaker notion of a Hamilton cycle was also considered in Bermond et al. [1]. There an
r-uniform graph was said to have a Hamilton cycle if there is a cyclic ordering of its vertices such
that each consecutive pair of vertices lies in some hyperedge and all these hyperedges are distinct
for distinct consecutive pairs. Related problems are also studied in Katona and Kierstead [11].

1.2. Perfect packings

In the case of graphs, there are many results determining the minimum degree which guaran-
tees the existence of spanning substructures other than Hamilton cycles. For instance given two
graphs H and G, an H -packing in G is a collection of vertex-disjoint copies of H in G. It is
perfect if all of the vertices of G are covered. Let δ(H,n) denote the smallest integer k such that
every graph G whose order n is divisible by |H | and whose minimum degree is at least k contains
a perfect H -packing. In [17] we determined δ(H,n) up to an additive constant depending only
on H , which improves an earlier result of Komlós, Sárközy and Szemerédi [13]. For hypergraphs
no analogue of this result exists so far.

The following theorem gives a perfect packing result for loose cycles of sufficient length (but
bounded when compared to the order of the host hypergraph). It follows easily from Theorem 1.1
using a random vertex partition argument, see Section 12.2. We denote a loose cycle on k vertices
by Ck .

Theorem 1.2. For any γ > 0 there is an integer k0 = k0(γ ) such that the following holds for all
k � k0. Suppose that H is a 3-uniform hypergraph whose number n of vertices is divisible by k

and whose minimum degree is at least n/4 + γ n, then H contains a perfect Ck-packing.

As with Theorem 1.1, the bound on the minimum degree is best possible up to the error
term γ n (see Proposition 2.2). It is also best possible in the sense that the condition that k � k0(γ )

is needed if k is not divisible by 4 (see Proposition 2.3).
An easy modification of the proof of Theorem 1.1 yields the following result about C4-

packings, see Section 12.1. (Note the loose cycle C4 on 4 vertices has 2 hyperedges and these
hyperedges share 2 vertices.)

Theorem 1.3. For any γ > 0 there is an integer n1 = n1(γ ) such that every 3-uniform hyper-
graph H whose number n � n1 of vertices is divisible by 4 and whose minimum degree is at least
n/4 + γ n contains a perfect C4-packing.
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In [15], we proved that every r-uniform hypergraph whose order n is sufficiently large and
divisible by r and whose minimum degree is at least n/2+3r2√n logn contains a perfect match-
ing. This bound is best possible up to the error term 3r2√n logn. The error term was recently
improved to O(logn) by Rödl, Ruciński and Szemerédi [22]. Thus, as far as the minimum de-
gree is concerned, it is much harder to find a perfect matching in a 3-uniform hypergraph than a
perfect C4-packing or a perfect Ck-packing where k is sufficiently large.

1.3. Open problems

Very recently, the Regularity Lemma for 3-uniform hypergraphs due to Frankl and
Rödl [5] was generalised to r-uniform hypergraphs independently by Gowers [7] and Rödl and
Skokan [23]. In principle, this opens up the possibility of generalising the above results to r-
uniform hypergraphs (in which case we believe that the bound n/4 would be replaced by the
bound n

2(r−1)
, see the remark at the end of Section 2.2). However, it seems that such an extension

of our results will not be quite straightforward. For example, we use some results of Dementieva
et al. [4] for which analogues for r-uniform hypergraphs do not exist yet.

Another obvious open problem is of course whether the error term σn in Theorem 1.1 can be
removed.

Finally, it would be very desirable to obtain more general results on perfect packings in hy-
pergraphs. We are not aware of any results here except those mentioned in the previous two
subsections. For instance the minimum degree which is necessary to force a perfect packing of
the complete 3-uniform hypergraph K(3)

4 on 4 vertices is not yet known. In fact it is not even

known what minimum degree forces a single copy of K(3)
4 , see Czygrinow and Nagle [3] for a

discussion of these two problems. To make some progress on packing problems for hypergraphs,
it would be very helpful to obtain some analogue of the so-called ‘Blow-up Lemma’ of Komlós,
Sárközy and Szemerédi [12] which was used in [13,17]. Roughly speaking this lemma ensures
the existence of an arbitrary spanning subgraph H in a pseudo-random graph G, provided that
H has bounded maximum degree. Unfortunately, so far no analogue for hypergraphs is known
even for special hypergraphs H. One advantage of our proof of Theorem 1.1 is that it gives such
blow-up results in three special cases: Our argument shows that we can guarantee the existence
of a spanning subhypergraph H in a pseudo-random hypergraph in the case when H is a perfect
matching, when H is a loose Hamilton cycle and when H consists of a perfect C4-packing (see
Section 11 for the Hamilton cycle and Section 12.1 for the C4-packing and the perfect matching).

2. Basic definitions and extremal examples

In this section, we give some very basic definitions and discuss the extremal hypergraphs
which show that Theorems 1.1–1.3 are essentially best possible.

2.1. Basic definitions

Given a 3-uniform hypergraph H we denote the vertex set of H by V (H) and the set of
hyperedges by E(H). The order |V (H)| of H is denoted by |H|. Given a pair x, y of distinct
vertices in H, we let d(x, y) := |N(x,y)|.

A 3-uniform hypergraph P is a loose path if there is a linear ordering of its hyperedges such
that every hyperedge intersects its predecessor in exactly one vertex u and its successor in exactly
one vertex v �= u and does not intersect any other hyperedge. Thus the number of vertices in P
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must be odd and P can be obtained from a loose cycle of even order by deleting one hyperedge e

and the unique vertex w which is contained in e and not in any other hyperedge. The length of P
is the number of its hyperedges. A starting point of P is a vertex which lies in its first hyperedge
but not in the second one. Thus, if P has at least 5 vertices, then it has precisely 2 starting points.
Similarly, an endpoint of P is a vertex which lies in its last hyperedge but not in the last but one.

2.2. Extremal examples

We first prove that the bound on the minimum degree in Theorem 1.1 is best possible up to
the error term σn. In fact, Proposition 2.1 shows that if the minimum degree is less than �n/4�,
then we cannot even guarantee any Hamilton cycle.

Proposition 2.1. For every integer n � 3 there is a 3-uniform hypergraph H with n vertices and
minimum degree �n/4� − 1 which does not contain a Hamilton cycle.

Proof. Clearly, we may assume that n � 5. We construct the hypergraph H as follows. The
vertex set of H is the disjoint union of two sets A and B , where |B| = �n/4� − 1 and A =
n−|B|. H contains exactly those triples of vertices whose intersection with B is nonempty. Then
δ(H) = |B|. Suppose that H contains a Hamilton cycle C. Let v1, . . . , vn be a cyclic ordering of
the vertices of C as in the definition of a cycle. Consider any 4 consecutive vertices vi, . . . , vi+3.
We claim that at least one of these lies in B . (This would show that |B| � n/4, a contradiction.)
To prove the claim, simply note that the definition of a cycle implies that the pair vi+1vi+2 lies
in some hyperedge of C and the third vertex of this hyperedge must be vi or vi+3. The claim now
follows since every hyperedge meets B . �

The following result implies that the bounds on the minimum degree in Theorems 1.2 and 1.3
are also best possible up to the error term γ n. Its proof is essentially the same as that of the
previous proposition.

Proposition 2.2. Let k,n � 3 be integers such that n is divisible by k. There is a 3-uniform
hypergraph H with n vertices and minimum degree �n/4� − 1 which does not contain a perfect
Ck-packing.

Since �k/4�/k > 1/4 for any k which is not divisible by 4, the next proposition implies that
for any such k the condition that the length k of the cycle in Theorem 1.2 has to satisfy k � k0(γ )

is also necessary. In the case where k is divisible by 4, we conjecture that this restriction is not
necessary.

Proposition 2.3. Let k,n � 3 be integers such that k is not divisible by 4 and n is divisible by k.
There is a 3-uniform hypergraph H with minimum degree n�k/4�/k − 1 which does not contain
a perfect Ck-packing.

Proof. Write k = 4�+ r , where �, r ∈ N and r � 3. (Thus � = �k/4�.) Consider a hypergraph H
as in the proof of Proposition 2.1 except that now we set |B| := (n/k)(�+1)−1 = n�k/4�/k−1.
Then the argument there shows that every copy of Ck in H contains at least �k/4� = �+1 vertices
in B . Thus H does not contain a perfect Ck-packing. �
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Given an integer r � 4, we say that an r-uniform hypergraph C is a cycle of order n if there
exists a cyclic ordering v1, . . . , vn of its vertices such that every consecutive pair vivi+1 lies in a
hyperedge of C and such that every hyperedge of C consists of r consecutive vertices. It is easy
to see that the above examples generalise to r-uniform hypergraphs if we replace the term n/4
by n/(2(r − 1)) in Propositions 2.1 and 2.2 and replace k/4 by k/(2(r − 1)) in Proposition 2.3.

3. Overview of the proof of Theorem 1.1 and algorithmic aspects

In the first subsection, we give an overview of the proof of Theorem 1.1 which is divided into
several subsections. In the second subsection, we discuss algorithmic aspects of this proof.

3.1. Overview of the proof of Theorem 1.1

In order to make the organisation of the proof of Theorem 1.1 clearer, each of the following
subsections in our overview of the proof corresponds to a separate section of the proof itself.

3.1.1. Basic probabilistic estimates
In Section 4 we describe a standard large deviation bound for the hypergeometric distribution

which we will need very frequently.

3.1.2. The Regularity Lemma
Roughly speaking, the Regularity Lemma for graphs states that the vertex set of every dense

graph can be partitioned into a bounded number of clusters Vi such that most of the bipar-
tite graphs (Vi,Vj ) induced by two of the clusters are pseudo-random in the sense that all of
its sufficiently large induced subgraphs have a similar density as the original bipartite graph
(Vi,Vj ) (i.e. they are ε-regular). In Section 5, we introduce the Regularity Lemma for 3-uniform
hypergraphs due to Frankl and Rödl [5]. There are several earlier weak versions (see e.g. the
survey [14]) which state that the vertex set of every dense hypergraph can be partitioned into a
bounded number of clusters Vi such that most of the tripartite hypergraphs (Vi,Vj ,Vk′) induced
by three of the clusters are pseudo-random in the sense that all of its sufficiently large induced
subhypergraphs have a similar density as the original hypergraph (Vi,Vj ,Vk′). However, for our
purposes this notion of pseudo-randomness or hypergraph-regularity is not strong enough, so we
apply the version in [5]. It states that for every dense hypergraph there is a partition of its vertices
into a bounded number of clusters Vi and a partition of the edge sets of the complete bipartite
graphs spanned by the pairs Vi,Vj into a bounded number of mostly ε-regular bipartite graphs
P ij such that in most cases, the tripartite graphs P ijk′

consisting the union of P ij ,P ik′
,P jk′

have the following hypergraph-regularity property: for every sufficiently large induced subgraph
of P ijk′

, the proportion of triangles which correspond to hyperedges of H is almost the same as
that of P ijk′

(see Lemma 5.8 for the precise statement).
One advantage of this stronger notion of the pseudo-randomness (or regularity) of a hy-

pergraph is for instance that typically the so-called link graph of a vertex x ∈ Vi in P ijk′
is

sufficiently large and (αd, ξ)-regular (the link graph is the set of all edges in P jk′
which form a

hyperedge in H together with x). We will make essential use of this later on.
Given a partition of a 3-uniform hypergraph H as guaranteed by the Regularity Lemma, one

can define a reduced hypergraph R which captures the coarse structure of H. The vertices of R
are the clusters Vi and the hyperedges of R are those triples of clusters ViVjVk′ for which there
is a tripartite graph P ijk′

which is hypergraph-regular in the sense described above and which is
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‘dense’ in the sense that a significant proportion of its triangles correspond to hyperedges of H
(see Definition 5.17). Thus R is again a 3-uniform hypergraph.

3.1.3. Finding an almost perfect cover of the reduced hypergraph R
Given a 3-uniform hypergraph H of minimum degree at least n/4 + σn and its reduced

graph R, we can show that almost all pairs of vertices of R have at least |R|/4 neighbours
(see Proposition 6.1). The analogue of this result for graphs is well known and very simple to
prove, to obtain the hypergraph version given here one has to work a little harder.

We define H8 to be the 3-uniform hypergraph on 8 vertices ai, bi, cj (where 1 � i � 3 and
1 � j � 2) which contains all hyperedges of the form aibicj . In Proposition 6.2 we show that
every 3-uniform hypergraph in which most pairs of vertices form a hyperedge together with at
least a quarter of the other vertices contains an almost perfect packing consisting of copies of H8.
So in particular, this applies to R. The fact that we seek an almost perfect packing of R with
copies of H8 and not of any other hypergraph is mainly for convenience: Another candidate
instead of H8 would have been C4, but we do not have an elementary proof of an analogue of
Proposition 6.2 for this.

3.1.4. Almost covering H by triples and tidying them up
For each copy of H8 in the almost perfect packing of R we do the following: In Section 7.1

we first split the 8 clusters corresponding to this copy into a total of 18 smaller ones to obtain
6 triples (Xk,Yk,Zk) of clusters such that each of the triples is hypergraph-regular in the sense
described above and such that |Xk| = |Yk| = |Zk|/2. Each of these triples corresponds to one
of the 6 edges of H8. Thus we have covered almost all vertices of H by triples (Xk,Yk,Zk) of
vertex sets.

Recall that, when defining the reduced hypergraph R, to each hyperedge in E(R) ⊇ E(H8)

there belongs one of the hypergraph-regular tripartite graphs P ijk′
with the property that many

triangles in P ijk′
correspond to hyperedges of H. So each triple (Xk,Yk,Zk) induces a tripartite

subgraph of some P ijk′
(where P ijk′

is the tripartite graph belonging to the hyperedge of H8 ⊆ R
corresponding to (Xk,Yk,Zk)). We denote by PXkYk

, PYkZk
and PXkZk

the bipartite graphs form-
ing this subgraph of P ijk′

.
In Section 7.2 we then tidy up the triples (Xk,Yk,Zk) in the sense that we delete some of their

vertices in order to obtain triples (X′
k, Y

′
k,Z

′
k) which are even more ‘regular.’ All the deleted

vertices are collected in a set of so-called exceptional vertices. The properties of the modified
triples (X′

k, Y
′
k,Z

′
k) are summarised in Proposition 7.16. For instance, one of the properties is

that for every vertex z ∈ Z′
k the link graph Lz is (αd, ξ)-regular. (The edges of Lz are now those

pairs of vertices x ∈ X′
k and y ∈ Y ′

k with xy ∈ PXkYk
which form a hyperedge together with z.)

3.1.5. Incorporating the exceptional vertices and connecting the triples by bridges
To the exceptional vertices mentioned above we also add those vertices of H lying in clusters

which are not contained in the almost perfect H8-packing of R. In Section 8.1 we then find a
loose path L in H which contains all the exceptional vertices as well as some of the vertices of
the Z′

k . We choose L in such a way that when removing its vertices from the sets Z′
k we do not

destroy too much of the regularity properties of the triples (X′
k, Y

′
k,Z

′
k).

In Section 8.2 we find for each successive pair of triples a hyperedge which contains one
vertex from each of the triples in the pair (its third vertex is taken from some other triple). We
call the hyperedge connecting the kth triple to the (k + 1)th triple the kth bridge. The first bridge
will not be a single hyperedge but a longer path which contains L as a subpath. If n is even
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Fig. 2. Connecting the triples by bridges in the case when n is even.

then this path will be loose (Fig. 2). If n is odd then it will be loose except for two successive
hyperedges which have two vertices in common.

We would now like to find a loose Hamilton path in each of the triples (X′
k, Y

′
k,Z

′
k) which

starts in an endpoint of the (k − 1)th bridge and ends in a starting point of the kth bridge. (These
two vertices in Xk ∪Yk are called the bridge vertices of (X′

k, Y
′
k,Z

′
k).) For this, a trivial necessary

condition is that each (X′
k, Y

′
k,Z

′
k) contains an odd number of vertices. (Here we count the bridge

vertices but not any other vertices lying in bridges.) This can be obtained by deleting some further
vertices from the triples which are chosen such that they form a loose path extending the first
bridge. We still denote each modified triple by (X′

k, Y
′
k,Z

′
k).

3.1.6. Finding the equalising paths and augmenting the bridges
Consider some triple (X′

k, Y
′
k,Z

′
k). In Section 9 we find a loose path Qk which contains only

vertices from (X′
k, Y

′
k,Z

′
k), begins in the starting point of the kth bridge and has the follow-

ing additional property: Let (X∗∗
k , Y ∗∗

k ,Z∗∗
k ) denote the subtriple obtained from (X′

k, Y
′
k,Z

′
k)

by deleting the endpoint of the (k − 1)th bridge as well as all the vertices in Qk . Then
2|X∗∗

k | + 1 = 2|Y ∗∗
k | + 1 = |Z∗∗

k |. Moreover, the sets X∗∗
k , Y ∗∗

k and Z∗∗
k will be small compared

to X′
k , Y ′

k and Z′
k . We call Qk an equalising path and augment the kth bridge into a longer path

by adding Qk to it. The existence of Qk is shown using a greedy argument and the hypergraph-
regularity of (X′

k, Y
′
k,Z

′
k).

3.1.7. Perfect matchings in superregular graphs
In Section 10 we collect results from [16] about (random) perfect matchings in ε-regular

graphs. Theorem 10.3 is the main result of this section. This will be an important tool when
choosing the path R∗ in Section 11 (see below).

3.1.8. Finding a loose Hamilton path in the remainder of each triple
In fact, before we incorporate the exceptional vertices and glue the triples together as de-

scribed in Section 3.1.5, from each triple (X′
k, Y

′
k,Z

′
k) we set aside a subtriple (X′′

k , Y ′′
k ,Z′′

k )

using a probabilistic argument. Thus (X′′
k , Y ′′

k ,Z′′
k ) is very regular. Moreover, it will satisfy

2|X′′
k | = 2|Y ′′

k | = |Z′′
k | and X′′

k will be much larger than each of X∗∗
k , Y ∗∗

k and Z∗∗
k . The latter

property ensures that the triple Wk := (X∗∗
k ∪X′′

k , Y ∗∗
k ∪Y ′′

k ,Z∗∗
k ∪Z′′

k ) is still rather regular. (We
cannot guarantee this for (X∗∗

k , Y ∗∗
k ,Z∗∗

k ) since it was left over by a greedy argument. This is
the reason to set aside the random subtriple (X′′

k , Y ′′
k ,Z′′

k ) earlier.) In Section 11 we will find a
Hamilton path R∗

k in the bipartite subgraph G∗
k of PXkYk

induced by X∗∗
k ∪ X′′

k and Y ∗∗
k ∪ Y ′′

k

(Fig. 3).
This Hamilton path R∗

k will have the following properties: Firstly, there are vertices
z∗
x, z

∗
y ∈ Z′′ such that z∗

y forms a hyperedge together with one endvertex of R∗ and an end-
k k
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Fig. 3. The Hamilton path R∗
k

which forms the ‘base’ of Q∗
k

.

point of the (k − 1)th bridge while z∗
x forms a hyperedge together with the one endvertex of R∗

k

and a starting point of the kth bridge. Secondly, consider the auxiliary bipartite graph H ∗
k whose

vertex classes are Z∗∗
k ∪ (Z′′

k \ {z∗
x, z

∗
y}) and the edges of R∗

k and where an edge of R∗
k is joined to

a vertex z if they form a hyperedge in H. Then H ∗
k will contain a perfect matching. The perfect

matching in H ∗
k obviously corresponds to a loose Hamilton path Q∗

k in Wk which connects the
(k − 1)th bridge to the kth bridge. All these loose paths Q∗

k together with all the bridges then
form our desired loose Hamilton cycle of H.

The existence of the graph Hamilton path R∗
k is (very roughly) shown as follows: We consider

the 2-factor obtained by choosing two random perfect matchings in G∗
k and turn it into a Hamilton

cycle by changing a few of its edges. This enables us to use Theorem 10.3 to provide information
about the auxiliary graph H ∗

k : For instance, we apply Theorem 10.3 with H = Lz[X∗∗
k ∪ X′′

k ∪
Y ∗∗

k ∪Y ′′
k ], where Lz denotes the link graph of a given vertex in Z∗∗

k ∪Z′′
k (i.e. those edges of G∗

k

which form a hyperedge together with z). In this case the lemma implies that R∗
k contains many

edges of Lz and thus that z has many neighbours in H ∗
k . The latter property will be useful when

showing that H ∗
k satisfies Hall’s condition and thus contains a perfect matching.

3.2. Algorithmic aspects

As mentioned in the introduction, if we had an algorithmic version of the Regularity Lemma
for 3-uniform hypergraphs (Lemma 5.8), then our proof of Theorem 1.1 would yield a poly-
nomial time randomised algorithm which finds the Hamilton cycle guaranteed by Theorem 1.1
with high probability. Such an algorithmic version is known for the case r = 1 of Lemma 5.8
(see [8]). As mentioned after Lemma 5.19, the only place where we use the (δ∗, r)-regularity
instead of just the (δ∗,1)-regularity is Lemma 5.19 due to Dementieva et al. [4]. In fact, in [4]
the authors conjecture that Lemma 5.19 even holds for r = 1, i.e. if we only assume that the triad
P is (δ∗,1)-regular. Thus if either this conjecture is true or if there is an algorithmic version of
Lemma 5.8 then the proof of Theorem 1.1 translates into a randomised polynomial time algo-
rithm which finds the loose Hamilton cycle guaranteed by the theorem with high probability (the
same also holds for the packings guaranteed by Theorems 1.2 and 1.3).

With two exceptions, the translation of the rest of our argument into an algorithm is elemen-
tary:

The first exception is in Section 10.1 where we need the result of Jerrum, Sinclair and
Vigoda [10] (based on rapidly mixing Markov chains) that in an arbitrary bipartite graph one
can sample a random perfect matching in polynomial time so that the distribution is almost uni-
form. More precisely, given ε there is a randomised algorithm whose running time is polynomial
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in the number of vertices of the input graph G and which does the following: the algorithm re-
turns a random perfect matching M in G so that for any perfect matching M ′ in G we have
1/(2K) � P(M = M ′) � 2/K , where K denotes the number of perfect matchings in G. Thus
with high probability, in Section 10.1 we can find a random perfect matching M which is almost
uniformly distributed. Since the error probabilities in Section 10.1 are all exponential, the extra
factor 2 in the distribution of M is not a problem.

The second exception is the nontrivial but well-known fact that a maximum matching in a
bipartite graph can be found in polynomial time (see e.g. [18]). Thus the perfect matchings
guaranteed in Sections 10.2 and 11.2 can be found in polynomial time.

4. Basic probabilistic estimates

Given a positive number ε and sets A,Q ⊆ T , we say that A is split ε-fairly by Q if∣∣∣∣ |A ∩ Q|
|Q| − |A|

|T |
∣∣∣∣ � ε.

Thus, if ε is small and A is split ε-fairly by Q, then the proportion of all those elements of T

which lie in A is almost equal to the proportion of all those elements of Q which lie in A. We
will use the following version of the well-known fact that if Q is random then it tends to split
large sets ε-fairly.

Proposition 4.1. For each 0 < ε < 1 there exists an integer q0 = q0(ε) such that the following
holds. Given t � q � q0 and a set T of size t , let Q be a subset of T which is obtained by
successively selecting q elements uniformly at random without repetitions. Let A be a family of
at most q10 subsets of T such that |A| � εt for each A ∈ A. Then with probability at least 1/2
every set in A is split ε-fairly by Q.

To prove Proposition 4.1 we will use the following large deviation bound for the hypergeo-
metric distribution (see e.g. [9, Theorem 2.10 and Corollary 2.3]).

Lemma 4.2. Given q ∈ N and sets A ⊆ T with |T | � q , let Q be a subset of T which is obtained
by successively selecting q elements of T uniformly at random without repetitions. Let X :=
|A ∩ Q|. Then for all 0 < ε < 1 we have

P
(|X − EX| � εEX

)
� 2e− ε2

3 EX.

Proof of Proposition 4.1. Given A ∈A, Lemma 4.2 implies that

P(A is not split ε-fairly by Q) � P
(∣∣|A ∩ Q| − q|A|/t

∣∣ � εq|A|/t
)

� 2e− ε2
3

q|A|
t � 2e

−ε3q
3 .

Hence, if q0 is sufficiently large compared with ε, the probability that there is an A ∈ A which is
not split ε-fairly is at most 2q10e−ε3q/3 < 1/2, as required. �
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5. The Regularity Lemma

5.1. Regular bipartite graphs

In this subsection, we introduce some well-known definitions and facts about ε-regular graphs.
Given a bipartite graph G = (A,B) with vertex classes A and B , we denote the edge set of G

by E(A,B) and let e(G) := e(A,B) := |E(A,B)|. We write NG(x) for the neighbourhood of a
vertex x in G and let dG(x) := |NG(x)|. The density of a bipartite graph G = (A,B) is defined
to be

dG(A,B) := e(A,B)

|A||B| .

We will also use d(A,B) instead of dG(A,B) if this is unambiguous. Given ε > 0, we say
that G is ε-regular if for all sets X ⊆ A and Y ⊆ B with |X| � ε|A| and |Y | � ε|B| we have
|d(A,B)−d(X,Y )| < ε. Given 0 < ε,d � 1, we say that G is (d, ε)-regular if for all sets X ⊆ A

and Y ⊆ B with |X| � ε|A| and |Y | � ε|B| we have (1 − ε)d < d(X,Y ) < (1 + ε)d . These two
concepts are more or less equivalent. Indeed, every (d, ε)-regular graph is 2εd-regular and thus
also 2ε-regular. Conversely, if d := d(A,B) � √

ε, then every ε-regular bipartite graph (A,B)

is (d,
√

ε )-regular. Given d ∈ [0,1], we say that G is (d, ε)-superregular if it is (d, ε)-regular
and, furthermore, if (1 − ε)d|B| < dG(a) < (1 + ε)d|B| for all vertices a ∈ A and (1 − ε)d|A| <
dG(b) < (1 + ε)d|A| for all b ∈ B . Note that the latter two notions of regularity also make sense
if we allow ε to be larger than d .

We will often use the following simple fact.

Proposition 5.1. Given a (d, ε)-regular bipartite graph (A,B) and a set X ⊆ A with |X| � ε|A|,
there are less than ε|B| vertices in B which have at most (1−ε)d|X| neighbours in X. Similarly,
there are less than ε|B| vertices in B which have at least (1 + ε)d|X| neighbours in X.

Using Proposition 5.1 it is easy to prove the following well-known fact which states that,
given d � ε and a 3-partite graph P formed by (d, ε)-regular bipartite graphs, one can slightly
modify the vertex classes of P such that each of the 3 bipartite graphs becomes superregular.

Proposition 5.2. Let d � 8
√

ε and let P be a 3-partite graph with vertex classes V1, V2 and
V3 such that |V1| = |V2| = |V3| =: m. Suppose that each of the bipartite graphs P [V1 ∪ V2],
P [V2 ∪V3], and P [V1 ∪V3] is (d, ε)-regular. Then each Vi contains a subset V ′

i of size (1−4ε)m

such that all the restricted bipartite graphs P [V ′
1 ∪V ′

2], P [V ′
2 ∪V ′

3] and P [V ′
1 ∪V ′

3] are (d,
√

ε )-
superregular.

5.2. The Regularity Lemma for 3-uniform hypergraphs

The main purpose of this section is to introduce the Regularity Lemma for 3-uniform hy-
pergraphs due to Frankl and Rödl [5]. Before we can state it, we will collect the necessary
definitions.

Consider a 3-uniform hypergraph H. Suppose that V0,V1, . . . , Vt is a partition of V (H) such
that |V1| = · · · = |Vt | = �|V |/t�. Furthermore, suppose that for each pair 1 � i < j � t we are

given a family (P
ij
α )

�ij of �ij + 1 edge-disjoint bipartite graphs with vertex classes Vi and Vj
α=0
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such that the union
⋃�ij

α=0 P
�ij
α of all these graphs is the complete bipartite graph with vertex

classes Vi and Vj .

We will refer to each 3-partite graph of the form P
ij
α ∪ P

jk
β ∪ P ik

γ (where 1 � i < j < k � t)
as a triad. More precisely, given a triple ViVjVk (1 � i < j < k � t), we refer to each triad of

the form P
ij
α ∪ P

jk
β ∪ P ik

γ as a triad belonging to the triple ViVjVk . We say that P
ij
α , P

jk
β and

P ik
γ are the bipartite graphs forming the triad P

ij
α ∪ P

jk
β ∪ P ik

γ =: P . We write T (P ) for the set
of all triangles contained in P and let t (P ) denote the number of these triangles.

We will usually consider triads P which are formed by (d, ε)-regular bipartite graphs. For
such triads, one can easily estimate t (P ) using Proposition 5.1:

Proposition 5.3. Let 0 < 2ε1/6 � d � 1 be given constants. Suppose that P = P
ij
α ∪ P

jk
β ∪ P ik

γ

is a triad formed by (d, ε)-regular bipartite graphs. Then(
1 − √

ε
)
(1 − ε)3d3|Vi ||Vj ||Vk| < t(P ) <

(
1 + √

ε
)
(1 + ε)3d3|Vi ||Vj ||Vk|.

Definition 5.4 (densities dH(P ) and dH( �Q)). The density of a triad P = P
ij
α ∪ P

jk
β ∪ P ik

γ with
respect to H is defined by

dH(P ) :=
{ |E(H) ∩ T (P )|/t (P ) if t (P ) > 0,

0 otherwise.

In other words, dH(P ) denotes the proportion of all those triangles in P which are hyperedges
of H. More generally, suppose that we are given an r-tuple �Q = (Q(1), . . . ,Q(r)) of subtriads
of P , where Q(s) = Q

ij
α (s) ∪ Q

jk
β (s) ∪ Qik

γ (s), Q
ij
α (s) ⊆ P

ij
α , Q

jk
β (s) ⊆ P

jk
β and Qik

γ (s) ⊆ P ik
γ

for all s = 1, . . . , r . Put

t ( �Q) :=
∣∣∣∣∣

r⋃
s=1

T
(
Q(s)

)∣∣∣∣∣.
The density of �Q with respect to H is defined to be

dH( �Q) :=
{ |E(H) ∩ ⋃r

s=1 T (Q(s))|/t ( �Q) if t ( �Q) > 0,

0 otherwise.

Note that in Definition 5.4 the sets T (Q(s)) of triangles need not necessarily be disjoint.

Definition 5.5 ((δ∗, r)-regularity of triads with respect to H). Given an integer r and a con-
stant δ∗ > 0, we say that a triad P is (δ∗, r)-regular with respect to H if for every r-tuple
�Q = (Q(1), . . . ,Q(r)) of subtriads of P with

t ( �Q) � δ∗ · t (P )

we have∣∣dH(P ) − dH( �Q)
∣∣ < δ∗.

Definition 5.6 ((�, t, ε1, ε2)-partition). Let V be a set. An (�, t, ε1, ε2)-partition P of V is a

partition into V0,V1, . . . , Vt together with families (P
ij
α )

�ij

α=0 (1 � i < j � t) of edge-disjoint
bipartite graphs such that



D. Kühn, D. Osthus / Journal of Combinatorial Theory, Series B 96 (2006) 767–821 779
(i) |V1| = · · · = |Vt | = �|V |/t� =: m∗;
(ii) �ij � � for all pairs 1 � i < j � t ;

(iii)
⋃�ij

α=0 P
ij
α is the complete bipartite graph with vertex classes Vi and Vj (for all pairs 1 �

i < j � t);
(iv) all but at most ε1

(
t
2

)
m2∗ edges of the complete t-partite graph K(V1, . . . , Vt ) with vertex

classes V1, . . . , Vt lie in some ε2-regular graph P
ij
α ;

(v) for all but at most ε1
(
t
2

)
pairs Vi,Vj (1 � i < j � t) we have e(P

ij

0 ) � ε1m
2∗ and∣∣d

P
ij
α

(Vi,Vj ) − 1/�
∣∣ � ε2

for all α = 1, . . . , �ij .

Definition 5.7 ((δ∗, r)-regular (�, t, ε1, ε2)-partition). Suppose that H is a 3-uniform hypergraph
and that V0,V1, . . . , Vt is an (�, t, ε1, ε2)-partition of the vertex set V (H) of H. Set m∗ := |V1| =
· · · = |Vt |. Recall that a triad is a 3-partite graph of the form P = P

ij
α ∪ P

jk
β ∪ P ik

γ . We say that
the partition V0,V1, . . . , Vt is (δ∗, r)-regular if∑

irregular

t (P ) < δ∗|H|3,

where
∑

irregular denotes the sum over all triads P which are not (δ∗, r)-regular with respect to H.

We can now state the Regularity Lemma for 3-uniform hypergraphs which was proved by
Frankl and Rödl [5].

Lemma 5.8 (Regularity Lemma for 3-uniform hypergraphs). For all δ∗ and ε1 with 0 < ε1 � 2δ4∗ ,
for all t0, �0 ∈ N and for all integer-valued functions r = r(t, �) and all decreasing functions
ε2(�) with 0 < ε2(�) � 1/�, there exist integers T0,L0 and N0 such that the vertex set of
any 3-uniform hypergraph H of order |H| � N0 admits a (δ∗, r(t, �))-regular (�, t, ε1, ε2(�))-
partition for some t and � satisfying t0 � t � T0 and �0 � � � L0.

The elements V1, . . . , Vt of the (�, t, ε1, ε2(�))-partition given by Lemma 5.8 are called clus-
ters. V0 is the exceptional set. As we shall see later on, the main difficulty when working with
the above lemma arises from the fact that the density of the regular triads (which is roughly 1/�)
is very small compared to δ∗, the parameter which measures the hypergraph regularity of the
partition guaranteed by the lemma.

5.3. Definition of the reduced hypergraph

When we apply the Regularity Lemma to a graph G, we often consider the so-called reduced
graph, whose vertices are the clusters Vi and whose edges correspond to those pairs of clusters
which induce an ε-regular bipartite graph of sufficient density. Analogously, we will now define
a 3-uniform reduced hypergraph. But before we can do this, we need some more definitions.

Also, throughout the rest of the paper we fix positive constants satisfying the following hier-
archy:

max{ε1,1/t0,1/�0} � δ∗ � ε3 � ξ � η1 � η � α∗ � σ, (1)

where �0, t0 ∈ N and we choose these constants successively from right to left. Here η � α∗ �
σ means for example that there are decreasing functions f and g such that the proofs work
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whenever η � f (α∗) and α∗ � g(σ ). Next, for all � � �0 and all t � t0 we define functions
r(t, �) and ε2(�) satisfying the following properties:

1/δ∗ � � � r(t, �), (2)

ε2(�) � min{ε1,1/�}. (3)

The results and observations in this section are then valid for any choice of constants ε1, ε2 =
ε2(�), ε3, ξ, δ∗, α∗, r = r(�, t), t0, �0 satisfying the above and for any hypergraph H to which we
apply the Regularity Lemma (Lemma 5.8) with these ε1, ε2 = ε2(�), δ∗, r = r(�, t), t0, �0. We
then let � and t be as defined in Lemma 5.8.

We also define the following constants:

ε′ := 4ε
1/4
2 , d := 1/�, δ := √

δ∗
(which first occur in Section 7.1),

δ0 := δ1/4, δ1 := 24δ0/δ
1/5

(which first occur in Section 7.2) and

ε := 50
√

ε′, ν := 105
√

ξ

(which first occur in Section 11.1). Together with (1)–(3) this implies that

ε′ � d � δ � ξ � η1 � η � α∗. (4)

Definition 5.9 (good pair ViVj ). We call a pair ViVj (1 � i < j � t) of clusters good if it satisfies
the following two properties:

• e(P
ij

0 ) � ε1m
2∗ and |d

P
ij
α

(Vi,Vj ) − 1/�| � ε2 for all α = 1, . . . , �ij . (This means that ViVj

does not belong to the at most ε1
(
t
2

)
exceptional pairs described in Definition 5.6(v).)

• At most ε3�/6 of the bipartite graphs P
ij
α (1 � α � �ij ) are not (1/�,

√
ε2 )-regular.

Let us now estimate the number of bad (i.e. not good) pairs. It is easy to see that if ViVj satis-

fies the first condition in Definition 5.9, then every ε2-regular P
ij
α is (1/�,

√
ε2 )-regular. Thus for

each bad pair which satisfies the first condition in Definition 5.9, at least ε3�/6 of the bipartite
graphs P

ij
α are not ε2-regular. So for each bad pair ViVj which satisfies the first condition in

Definition 5.9 there are at least (ε3�/6)(1/� − ε2)m
2∗ � ε3m

2∗/8 edges running between Vi and

Vj which are not contained in some ε2-regular bipartite graph P
ij
α . But by Definition 5.6(iv) at

most ε1
(
t
2

)
m2∗ edges of K(V1, . . . , Vt ) are not contained in ε2-regular graphs P

ij
α . Thus there are

at most

ε1
(
t
2

)
m2∗

ε3m2∗/8
� 4ε1t

2

ε3

such bad pairs ViVj . Together with Definition 5.6(v) this immediately implies the following
proposition.

Proposition 5.10. At most 5ε1t
2/ε3 pairs ViVj of clusters are bad.

Definition 5.11 (good triple ViVjVk). We call a triple ViVjVk (1 � i < j < k � t) of clusters
good if both of the following hold:
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• each of the pairs ViVj , VjVk and ViVk is good,
• at most ε3�

3 of the triads belonging to ViVjVk are not (δ∗, r)-regular with respect to H.

The next proposition states that only a small fraction of the triples ViVjVk are bad (i.e. not
good).

Proposition 5.12. At most 6δ∗t3/ε3 triples ViVjVk of clusters are bad.

Proof. Proposition 5.10 implies that at most 5ε1t
3/ε3 triples violate the first condition in De-

finition 5.11. Thus it remains to consider the number of all those triples that satisfy the first
condition of Definition 5.11 but violate the second condition. Let ViVjVk be such a triple (if it

exists). Then by Definition 5.9, at least ε3�
3 − 3 · ε3�

3/6 = ε3�
3/2 of the triads P

ij
α ∪ P

jk
β ∪ P ik

γ

have the property that they are not (δ∗, r)-regular with respect to H but each of their bipartite
subgraphs P

ij
α , P

jk
β and P ik

γ is (1/�,
√

ε2 )-regular. Proposition 5.3 now implies that all these

triads together contain at least (1 − ε
1/4
2 )(1 − √

ε2 )3�−3m3∗ · ε3�
3/2 � ε3m

3∗/4 triangles of the
complete 3-partite graph K(Vi,Vj ,Vk) ⊆ K(V1, . . . , Vt ). On the other hand, by Definition 5.7,
at most δ∗|H|3 triangles of the complete t-partite graph K(V1, . . . , Vt ) do not lie in triads which
are (δ∗, r)-regular with respect to H. This shows that at most

δ∗|H|3
ε3m3∗/4

� 5δ∗t3

ε3

triples ViVjVk satisfy the first condition in Definition 5.11 but violate the second condition. Thus
in total there are at most

5ε1t
3

ε3
+ 5δ∗t3

ε3
� 6δ∗t3

ε3

bad triples. �
Definition 5.13 (useful pair ViVj ). We call a pair ViVj of clusters useful if there are at most ε3t

clusters Vk such that ViVjVk is a bad triple.

Note that by definition, a useful pair is always good. Moreover, since each useless pair belongs
to at least ε3t bad triples and each bad triple is counted at most 3 times in this way, Proposi-
tion 5.12 immediately implies the following proposition.

Proposition 5.14. At most 18δ∗t2/ε2
3 pairs ViVj of clusters are useless.

Definition 5.15 (useful triad P ). We call a triad P useful if

(i) P is formed by (1/�,
√

ε2 )-regular bipartite graphs,
(ii) P is (δ∗, r)-regular with respect to H,

(iii) dH(P ) � α∗.

Definition 5.16 (useful triple ViVjVk). We call a triple ViVjVk of clusters useful if it is good and
if there is a useful triad P belonging to ViVjVk .

We are now ready to define the reduced hypergraph R.
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Definition 5.17 (reduced hypergraph). The vertices of the reduced hypergraph R are all the
clusters V1, . . . , Vt . The hyperedges of R are precisely the useful triples ViVjVk .

Thus, like H, also R is a 3-uniform hypergraph.
For each hyperedge ViVjVk of the reduced graph R we now fix a useful triad P belonging to

ViVjVk . We denote the bipartite graphs forming P by P ij , P jk and P ik .
Proposition 6.1 in Section 6 shows that the minimum degree of H is ‘almost inherited’ by

its reduced hypergraph R in the sense that only a small fraction of the vertex pairs in R have a
neighbourhood whose size is significantly smaller than δ(H)

|H| · |R|.

Definition 5.18 (link and colink graphs). Given a hyperedge ViVjVk of R and a vertex x ∈ Vi ,
we define the link graph Lx of x to be the bipartite graph whose vertex classes are NPij (x) ⊆ Vj

and NPik (x) ⊆ Vk and in which y ∈ NPij (x) and z ∈ NPik (x) are joined by an edge if and only if
xyz is a hyperedge in E(H) ∩ T (P ). Thus Lx is a subgraph of P jk . The link graphs of vertices
lying in Vj or Vk are defined analogously.

Given distinct vertices x, x′ ∈ Vi , we define the colink graph Lxx′ of x, x′ to be the bipartite
graph whose vertex classes are NPij (x)∩NPij (x′) ⊆ Vj and NPik (x)∩NPik (x′) ⊆ Vk and whose
edge set is E(Lx)∩E(Lx′). The colink graphs for pairs of vertices from Vj or from Vk are defined
analogously.

The following lemma shows that almost all link graphs and almost all colink graphs are very
regular and have the density one would expect. Part (i) of Lemma 5.19 was proved by Frankl and
Rödl [5] (see also Nagle and Rödl [19]), part (ii) is due to Dementieva et al. [4].

Lemma 5.19. For all α∗, ξ∗ > 0 there exists δ∗ > 0 such that for all positive integers �, there are
integers m0, r and a constant ε > 0 such that the following holds. Suppose that H is a 3-uniform
hypergraph and V1,V2,V3 are disjoint subsets of vertices of H such that |V1| = |V2| = |V3| =:
m∗ � m0. Moreover, suppose that P = P 12 ∪ P 23 ∪ P 13 is a 3-partite graph with vertex classes
V1,V2 and V3 which satisfies the following properties:

• P is formed by (1/�,
√

ε )-regular bipartite graphs;
• P is (δ∗, r)-regular with respect to H;
• dH(P ) =: α � α∗.

Then the following holds for each s = 1,2,3:

(i) for all but at most ξ∗m∗ vertices x ∈ Vs , the link graph Lx is (α/�, ξ∗)-regular;
(ii) for all but at most ξ∗m2∗ pairs of vertices x, x′ ∈ Vs , the colink graph Lxx′ is (α2/�, ξ∗)-

regular.

In [4] the authors stated their result with α = α∗, but their proof shows that the constants δ∗,
etc., guaranteed for α∗ and ξ∗ also work for any α � α∗. Lemma 5.19(ii) is the reason why we
needed to introduce the notion of (δ∗, r)-regularity of hypergraphs instead of just the simpler
notion of δ∗-regularity (which corresponds to (δ∗,1)-regularity), i.e. we only needed the (δ∗, r)-
regularity in order to ensure that (ii) holds.
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Remark 5.20. Definitions 5.15 and 5.17 together with inequalities (1)–(3) imply that we may
(and will) assume that each hyperedge ViVjVk of R satisfies (i) and (ii) of Lemma 5.19 where
ξ2 plays the role of ξ∗ and Vi,Vj ,Vk play the role of V1,V2,V3.

6. Finding an almost perfect cover of R

We define H8 to be the hypergraph on 8 vertices a1, a2, a3, b1, b2, b3, c1 and c2 whose
hyperedges are all the triples of the form aibicj (i = 1,2,3, j = 1,2).

Together the two propositions of this section will imply that the reduced hypergraph R of
the original hypergraph H given in Theorem 1.1 contains an almost perfect H8-packing (i.e. a
collection of disjoint copies of H8 which covers almost all vertices of R). The first proposition
asserts that the minimum degree of an arbitrary 3-uniform hypergraph H is ‘almost inherited’ by
its reduced hypergraph R in the sense that the neighbourhood of most vertex pairs in R is not
significantly smaller than δ(H)

|H| |R| (there may be a small proportion of vertex pairs whose neigh-
bourhood can be arbitrarily small—this is a difference to the graph case). The second proposition
shows that any hypergraph where most of the pairs of vertices are adjacent to at least a quarter of
the other vertices has an almost perfect H8-packing (so in particular this applies to the reduced
hypergraph R of our given hypergraph H).

Proposition 6.1. Let H be a 3-uniform hypergraph and let c � σ be positive constants such
that σ satisfies (1). Suppose that dH(x, y) � cn for all pairs of vertices x, y ∈ H. Let R be the
reduced hypergraph obtained by an application of Lemma 5.8 with constants satisfying (1)–(3).
Then dR(Vi,Vj ) � (c − σ)t for all useful pairs ViVj of clusters. In particular, all but at most
18δ∗t2/ε2

3 pairs ViVj of clusters satisfy dR(Vi,Vj ) � (c − σ)t .

Proof. Given a useful pair ViVj , let ZR be the set of all clusters Vk such that the triple ViVjVk

is not useful. Thus ZR := V (R) \ NR(Vi,Vj ). Let ZH ⊆ V (H) be the union of all clusters
belonging to ZR. We will prove the following claim.

There exist vertices x ∈ Vi and y ∈ Vj for which there are at most σn/2

vertices z ∈ ZH such that xyz ∈ H.
(∗)

Note that (∗) implies the proposition since it implies that

cn � dH(x, y) �
∣∣NH(x, y) ∩ (V0 ∪ Vi ∪ Vj )

∣∣ + ∣∣NH(x, y) ∩ ZH
∣∣ + dR(Vi,Vj ) · m∗

� 3n/t + σn/2 + dR(Vi,Vj ) · m∗
(1)

� σn + dR(Vi,Vj ) · m∗
and thus dR(Vi,Vj ) � (c − σ)n/m∗ � (c − σ)t .

Thus it remains to show (∗). Suppose that (∗) is not true and let h be the number of hyperedges
of H having one vertex in each of Vi , Vj and ZH. Thus

h � m2∗ · σn/2. (5)

Let h1 be the number of all those hyperedges xyz ∈ H with x ∈ Vi , y ∈ Vj , z ∈ Vk ∈ ZR for
which ViVjVk is a bad triple. Similarly, let h2 be the number those hyperedges xyz ∈ H with
x ∈ Vi , y ∈ Vj , z ∈ Vk ∈ ZR for which ViVjVk is a good triple but not useful. Thus h = h1 + h2.

Since ViVj is a useful pair, there are at most ε3t clusters Vk ∈ ZR for which ViVjVk is a bad
triple (Definition 5.13). Thus

h1 � ε3tm
3∗ � ε3m

2∗n. (6)



784 D. Kühn, D. Osthus / Journal of Combinatorial Theory, Series B 96 (2006) 767–821
We will now give an upper bound for h2. To do this, let Vk ∈ ZR be any cluster such that ViVjVk

is good but not useful. Since ViVjVk is good, almost all triads belonging to ViVjVk are (δ∗, r)-
regular with respect to H and are formed by (1/�,

√
ε2 )-regular bipartite graphs. Since ViVjVk

is not useful, this means that all these triads have only a very small density with respect to H and
thus they induce only a small number of hyperedges of H. Hence h2 cannot be too large.

More precisely, we can argue as follows. Since ViVjVk is good, at most 3ε1m
3∗ hyperedges

of H lie in a triad including one of P
ij

0 , P
jk

0 or P ik
0 . Thus let us now count the number of

hyperedges of H which lie in some triad P of ViVjVk which does not include one of P
ij

0 , P
jk

0
or P ik

0 . Note that, since each of the pairs ViVj , VjVk , ViVk is good, each such P is formed by
bipartite graphs of density at most 1/� + ε2. Moreover, at most 3 · ε3�/6 = ε3�/2 of the bipartite
graphs P

ij
α , P

jk
β , P ik

γ are not (1/�,
√

ε2 )-regular (cf. Definition 5.9). Thus altogether there are at

most (1/� + ε2)m
2∗ · ε3�/2 edges in bipartite graphs that are not (1/�,

√
ε2 )-regular. Since each

such edge lies in at most m∗ triangles, this gives room for at most ε3m
3∗ hyperedges of H.

All the remaining hyperedges of H having one vertex in each of Vi , Vj and Vk lie in some
triad P which is formed by (1/�,

√
ε2 )-regular graphs. If such a triad P is also (δ∗, r)-regular

with respect to H then, by Proposition 5.3, P contains at most

dH(P ) · t (P ) � dH(P )
(
1 + ε

1/4
2

)4
m3∗/�3 � dH(P ) · 2m3∗

�3
� 2α∗m3∗

�3

hyperedges of H. (Here dH(P ) � α∗ since P cannot be useful.) Thus at most �3 · 2α∗m3∗/�3 =
2α∗m3∗ hyperedges of H lie in such triads P .

Thus it remains to bound the number of hyperedges of H having one vertex in each of Vi ,
Vj and Vk which lie in some triad P which is not (δ∗, r)-regular with respect to H but which is
formed by (1/�,

√
ε2 )-regular graphs. Since ViVjVk is good, there are at most ε3�

3 such triads

and by Proposition 5.3 each contains at most (1 + ε
1/4
2 )4m3∗/�3 triangles. So this gives room for

at most 2ε3m
3∗ hyperedges of H. Thus we have shown that there are at most

3ε1m
3∗ + ε3m

3∗ + 2α∗m3∗ + 2ε3m
3∗ � 3α∗m3∗

hyperedges xyz ∈ H with x ∈ Vi , y ∈ Vj and z ∈ Vk . Summing over all clusters Vk ∈ ZR for
which ViVjVk is good but not useful implies that

h2 � 3α∗m3∗t � 3α∗m2∗n.

Together with (5) and (6) this gives

σm2∗n/2 � h = h1 + h2 � ε3m
2∗n + 3α∗m2∗n,

a contradiction since σ � α∗ � ε3 by (1). �
Proposition 6.2. For every positive ν′ there exists an integer n0 = n0(ν

′) such that every
3-uniform hypergraph G of order n � n0 for which dG(x, y) � n/4 for all but at most ν′n2 pairs
of vertices x, y ∈ G contains an H8-packing which covers all but at most 4

√
ν′n vertices of G.

Proof. Set ν := 4
√

ν′. Let M be an H8-packing in G of maximum size. Denote the copies of H8
in M by H1, H2, . . . . Let X be the set of uncovered vertices. Suppose that |X| � νn. We will
prove the following claim.

There is a set F of νn/20 disjoint pairs of vertices in X such that,

firstly, each of these pairs has at most νn/8 of its neighbours in X and,

secondly, each of these pairs xy satisfies d (x, y) � n/4.
(∗∗)
G
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Before we prove (∗∗), let us show how it implies the proposition. So let F be as in (∗∗). We say
that Hi ∈M is good for a pair xy ∈ F if xy forms a hyperedge with at least three vertices of Hi .
Let nxy be the number of Hi which are good for xy. Then

n/4 − νn/8 � dG(x, y) − νn/8 � 2
(|M| − nxy

) + 8nxy � 2
(
(1 − ν)n/8 − nxy

) + 8nxy.

Thus nxy � νn/48 =: n∗. Now we double-count all those triples (Hi,Hj , xy) for which i < j ,
xy ∈ F and for which both Hi and Hj are good for xy. On the one hand, the number of such

triples is at least |F |(n∗
2

)
� ν3n3/105. On the other hand, let aij be the number of pairs xy ∈ F

such that both Hi and Hj are good for xy. Put a := maxi<j aij . Then the number of triples
(Hi,Hj , xy) as above is (crudely) at most an2. By combining these inequalities, we have a �
ν3n/105. So it follows that there are Hi , Hj and ν3n/105 pairs in F such that both Hi and Hj

are good for all these pairs. This in turn implies, by taking n large, that there must be vertices v1,
v2 and v3 in Hi , vertices w1, w2 and w3 in Hj and pairs x1y1, . . . , x9y9 ∈ F such that vk as well
as wk forms a hyperedge with each xk′yk′ (k = 1,2,3, k′ = 1, . . . ,9).

This enables us to find an H8-packing M′ which is larger than the original M as follows:
First remove Hi and Hj from M. Then form three vertex disjoint copies of H8, where the kth
copy contains the vertices vk and wk as well as three of the pairs xk′yk′ . These copies are disjoint
from the current H8-packing. Thus they can be added to form a new H8-packing M′ which
contains one more copy of H8, a contradiction.

Thus it remains to prove (∗∗). Choose a partition of X into X1 and X2 uniformly at random
from all partitions with |X1| = 7|X2| (by removing up to 7 vertices from X if necessary we may
assume that |X| is divisible by 8). By Lemma 4.1 we may assume that∣∣NG(x, y) ∩ X2

∣∣ �
∣∣NG(x, y) ∩ X

∣∣/10 (7)

for all those pairs x, y of vertices of G for which dG(x, y) � n/4. Now greedily choose disjoint
pairs x1y1, . . . , xsys in X1 such that dG(xi, yi) � n/4 for all i. It is easy to see that we can choose
s := |X2| � νn/10 such pairs, as altogether there are at most ν′n2 pairs whose degree is smaller.
Clearly, (∗∗) holds if at least half of the pairs xiyi have at most νn/8 of their neighbours in X.
(In this case we can take F to be the set of these pairs.) So suppose that at least half of the pairs
xiyi have at least νn/8 of their neighbours in X. Define an auxiliary bipartite graph B as follows.
The vertex classes of B are X2 and the set A of all pairs x1y1, . . . , xsys . A pair xiyi is joined
to x ∈ X2 by an edge in B if xiyix forms a hyperedge of G. Note that the vertex classes of B

are of equal size. Also, our assumption and inequality (7) together imply that at least half the
vertices in A have at least νn/80 � ν|X2|/80 neighbours in X2. If n is sufficiently large this in
turn implies that B contains a complete bipartite graph K2,3 where the vertex class of size two
is contained in X2 (see e.g. [2, Chapter VI, Lemma 2.1]). But this K2,3 corresponds to a copy of
H8 in G that is disjoint from M, which contradicts the assumption that M is of maximum size
and thus proves (∗∗). �
7. Almost covering H by triples and tidying them up

We are now in a position to begin with the proof of Theorem 1.1 itself. So from now on H
denotes the hypergraph given in Theorem 1.1 and throughout we will assume that its order n

is sufficiently large. Set constants as in Section 5.3. As described in that section we apply the
Regularity Lemma (Lemma 5.8) to H in order to obtain a reduced graph R.
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7.1. Almost covering H by triples

In this subsection, we will choose a cover of almost all vertices of H by boundedly many
disjoint triples Tk = (Xk,Yk,Zk) of vertex sets such that |Xk| = |Yk| = |Zk|/2 for every k. To
each Tk there will be assigned a triad Pk such that Pk is highly regular and sufficiently dense
with respect to H and such that the 3 bipartite graphs forming Pk are highly regular too. Roughly
speaking, our aim later on is to find a loose Hamilton path in each of these triples and to glue all
these paths together into a loose Hamilton cycle of H. However, before we can do this, we need
to ‘tidy up’ the Tk by deleting a few carefully chosen vertices in Section 7.2. The triples Tk are
obtained as follows. Recall from Section 5.3 that

ε′ := 4ε
1/4
2 , d := 1/� and δ := √

δ∗.
Apply Proposition 6.1 with c = 1/4 + σ and then Proposition 6.2 to the reduced graph R to
obtain an H8-packing M which covers all but at most 20

√
δ∗t/ε3 vertices of R. Consider any

element H′ ∈ M. Denote the clusters of H which correspond to the vertices of H′ by Ai , Bi

and Cj in such a way that the hyperedges of H′ have the form AiBiCj , where 1 � i � 3 and
1 � j � 2. For each hyperedge AiBiCj of H′ let P(AiBiCj ) denote the useful triad which we
fixed for AiBiCj after Definition 5.17. Recall that by Definition 5.15(i), this triad is formed by
(d,

√
ε2 )-regular bipartite graphs. Proposition 5.2 implies that by removing 4

√
ε2|H| = 4

√
ε2n

vertices from the clusters and adding these vertices to the exceptional set V0 we may assume that
each P(AiBiCj ) is even formed by (d, ε′/4)-superregular bipartite graphs. Moreover, by putting
at most 2t further vertices into V0 if necessary, we may assume that the number of vertices in
each of the clusters is divisible by three (and it is the same for all the clusters). We denote this
number by m. We also put all those vertices of H into V0 which do not lie in a cluster which
is contained in an element of M. The Hypergraph Regularity Lemma 5.8 implied that we had
|V0| � t originally, so now we have

|V0| � t + 20
√

δ∗n/ε3 + 4
√

ε2n + 2t
(1)

� ξn. (8)

Now partition both C1 and C2 randomly into three sets of equal size and call the resulting sets
Y1, . . . , Y6. Next partition each of the Ai randomly into two parts Xi and Zi+3 and partition Bi

randomly into two parts Xi+3 and Zi such that

2m/3 = |Zi | = 2|Xi | = 2|Yi |
for all i with 1 � i � 6.

Altogether this gives us six triples Tk = (Xk,Yk,Zk) of vertex sets. Note that for each Tk

there is a (unique) hyperedge AiBiCj ∈ E(R) which corresponds to this triple, i.e. such that
either Xk ⊆ Ai , Yk ⊆ Cj and Zk ⊆ Bi or else Xk ⊆ Bi , Yk ⊆ Cj and Zk ⊆ Ai . Let Pk denote the
subtriad of P(AiBiCj ) induced by Xk ∪ Yk ∪ Zk . We proceed similarly for every element of the
H8-packing M to obtain

N := 6|M| � |R| (9)

such triples Tk = (Xk,Yk,Zk).
In Section 8, the following simple fact will be helpful when incorporating the exceptional

set V0.

Proposition 7.1. For every pair of vertices v,w ∈ V (H) there are at least σN/8 indices k for
which |NH(v,w) ∩ Zk| � σ |Zk|/8.



D. Kühn, D. Osthus / Journal of Combinatorial Theory, Series B 96 (2006) 767–821 787
Proof. Recall that m∗ denotes the size of the original clusters of R. Let N ′ denote the number of
elements H′ in the H8-packing M which contain at least 3 original clusters whose intersection
with NH(v,w) is least σm∗/6. Then

n/4 + σn �
∣∣NH(v,w)

∣∣ � 8m∗N ′ + |M|(2m∗ + 6σm∗/6).

Since n � 8|M|m∗ this implies that N ′ � 7σ |M|/8.
Consider any H′ ∈ M which contains at least 3 (original) clusters whose intersection with

NH(v,w) has size at least σm∗/6. As at the beginning of this section, denote the clusters of H′
which correspond to the vertices of H′ by Ai , Bi and Cj , where 1 � i � 3 and 1 � j � 2. Then
either the intersection of NH(v,w) with some Ai has size at least σm∗/6 or the intersection of
NH(v,w) with some Bi has size at least σm∗/6. But both Ai and Bi contain some set of the
form Zk . Lemma 4.1 (applied with A being the set of neighbourhoods of vertex pairs in H)
implies that we may assume that for the pair v,w the intersection of NH(v,w) with this Zk

has size at least σ |Zk|/8. Thus we have found at least N ′ � 3σ |M|/4 = σN/8 sets Zk , each
containing at least σ |Zk|/8 neighbours of the pair v,w, as required. �
7.2. Tidying up the triples

In the remainder of this section we will consider any (sub-)triad Pk together with its vertex
sets Xk , Yk and Zk . For simplicity, we will call this triad P and its vertex sets X, Y and Z. We
denote the bipartite subgraphs forming P by PXY , PYZ and PXZ . Recall that T (P ) denotes the
set of triangles in P .

Definition 7.2 (HP ). We write HP for the 3-partite subhypergraph of H whose vertex set is
X ∪ Y ∪ Z and whose set of hyperedges is E(H) ∩ T (P ).

The main aim of this section is to find sets X′ ⊆ X, Y ′ ⊆ Y and Z′ ⊆ Z and a subgraph
P rich

X′Y ′ of PXY with vertex classes X′ and Y ′ satisfying the following (see Proposition 7.16): For
all z ∈ Z′ the link graph in P rich

X′Y ′ (which consists of those edges of P rich
X′Y ′ forming a hyperedge

with z) is regular (the exact parameters are defined below) and all edges of P rich
X′Y ′ are rich in the

sense that they form hyperedges with a significant proportion of the vertices in Z′. This will be
essential in the final section where we define a bipartite auxiliary graph H ∗ whose vertex classes
consist of a random subset of Z′ (together with a few other vertices) and a cycle R∗ in P rich

X′Y ′ and
which has an edge between a vertex in Z′ and an edge of the cycle R∗ if together they form a
hyperedge of HP . The above properties will be used to show that this auxiliary graph has large
minimum degree and that it contains a perfect matching.

The main technical difficulty in proving Proposition 7.16 is that when deleting all those edges
between X and Y which are not rich (we will call them poor) we also have to delete some
vertices in X and Y to ensure that the subgraph of PXY thus obtained is again superregular.
But the deletion of these vertices may destroy the regularity of the link graphs of some further
vertices in Z. (Roughly, these link graphs will be the ones which we call impure later on.) When
we delete the latter vertices in Z some of the rich edges in PXY may now turn into poor ones.
However, we can show that this does not turn into an iterative process if we choose Z′ carefully.

Recall that the (co-)link graphs were introduced in Definition 5.18. Given a vertex z ∈ Z, we
will still write Lz for the intersection of the original link graph of z with PXY . We will now
call this Lz the link graph of z. We denote by Xz ⊆ X and Yz ⊆ Y the vertex classes of Lz.
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Thus Xz = NPXZ
(z) and Yz = NPYZ

(z). The vertex classes of Lzz′ are denoted by Xzz′ and Yzz′ ,
respectively. We proceed similarly for the (co-)link graphs of vertices in Y and Z.

Definition 7.3 (typical link and colink graphs). The link graph Lz of z ∈ Z is typical if it is
(αd, ξ)-regular, (1 − ε′)d|X| � |Xz| � (1 + ε′)d|X| and (1 − ε′)d|Y | � |Yz| � (1 + ε′)d|Y |.
Given distinct z, z′ ∈ Z, we say that the colink graph Lzz′ is typical if it is (α2d, ξ)-regular,
(1−ε′)2d2|X| � |Xzz′ | � (1+ε′)2d2|X| and (1−ε′)2d2|Y | � |Yzz′ | � (1+ε′)2d2|Y |. We adopt
analogous definitions for link graphs and colink graphs of vertices in X and Y .

Using Remark 5.20, the fact that P is a subtriad of some (d, ε′/4)-superregular triad of the
form P(AiBiCj ), the definition of a superregular graph, Definition 5.5 and the fact that X, Y

and Z were obtained by considering random partitions (cf. Lemma 4.1), it is not hard to see that
we may assume that P satisfies the following properties:

(P1) Each of PXY , PYZ and PXZ is a (d, ε′)-superregular graph.
(P2) P is (δ, r)-regular with respect to H and dH(P ) =: α � α∗/2.
(P3) All but at most ξ |Z| vertices z ∈ Z have a typical link graph and the analogous statements

are true for X and Y .
(P4) All but at most ξ |Z|2 pairs of vertices z, z′ ∈ Z have a typical colink graph and the analo-

gous statements are true for X and Y .

Note that α in (P2) depends on the triple (X,Y,Z).

Definition 7.4 (poor edges of PXY ). An edge of PXY is poor if it lies in at most (1 − η3)αd2|Z|
hyperedges of HP . We let Fpoor denote the set of poor edges in PXY .

Recall that η was fixed in (4). We will now show that only a few edges can be poor. To do
this, we first need the following observation.

Proposition 7.5. Let F ⊆ E(PXY ) be a set of at least βd|X||Y | edges where 1 � β,d � ε′ � 0.
Then at least β(1 − β2)t (P ) triangles in P contain an edge from F .

Proof. We say that a vertex x ∈ X is regular if it is incident to at least ε′|Y | edges of F . By (P1)
we have |NPXZ

(x)| � (1 − ε′)d|Z| for every x ∈ X, which together with (P1) in turn implies that
every regular vertex lies in at least (1 − ε′)2d2dF (x)|Z| triangles containing an edge of F . Thus
every vertex x lies in at least (1 − ε′)2d2(dF (x) − ε′|Y |)|Z| triangles containing an edge of F .
Thus the number of triangles in P which contain an edge from F is at least (1−ε′)2d2(βd−ε′) ×
|X||Y ||Z|. Together with Proposition 5.3 this gives the desired bound. �
Proposition 7.6. The number of poor edges is less than 2δd|X||Y |.

Proof. Suppose that there are at least 2δd|X||Y | such edges. Consider the subgraph Q of P

which consists of PXZ , PYZ together with any P ′
XY ⊆ PXY consisting of 2δd|X||Y | of the poor

edges. Propositions 5.3 and 7.5 together imply that t (Q) � 2δ(1 − 4δ2)t (P ) � 2δ(1 − δ) ×
d3|X||Y ||Z|. The first inequality implies that we may make use of the δ-regularity of P with
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respect to H (cf. (P2)), which means that we have dH(Q) � dH(P ) − δ � α − δ. But on the
other hand, we have

dH(Q) = |E(H) ∩ T (Q)|
t (Q)

� |E(H) ∩ T (Q)|
2δ(1 − δ)d3|X||Y ||Z| .

Thus ∣∣E(H) ∩ T (Q)
∣∣ � 2δ(1 − δ)d3|X||Y ||Z|(α − δ) � (1 − δ − δ/α)2δαd3|X||Y ||Z|

(4)

�
(
1 − η3/2

)
e
(
P ′

XY

)
αd2|Z|.

So one of the edges of P ′
XY lies in at least (1 − η3/2)αd2|Z| hyperedges of H, a contradiction

to the definition of a poor edge. �
Definition 7.7 (poor link graph). We say that the link graph Lz of a vertex z ∈ Z is poor if at
least αξ3d3|X||Y | of its edges are poor.

The next two results show that firstly any typical link graph which is not poor remains suf-
ficiently regular if we delete the poor edges and secondly that only a few typical link graphs
are poor. Note that this is not unexpected in view of the fact that the number of edges of Lz is
typically about αd3|X||Y |.

Proposition 7.8. Suppose that the link graph Lz of a vertex z ∈ Z is typical and not poor. Then
the subgraph of Lz obtained by deleting the poor edges is (αd,2ξ)-regular.

Proof. Recall that Xz and Yz denote the vertex classes of Lz. Let L∗
z denote the subgraph ob-

tained from Lz by deleting the poor edges. Thus we have to show that L∗
z is (αd,2ξ)-regular. So

consider sets X∗
z ⊆ Xz and Y ∗

z ⊆ Yz with |X∗
z | � 2ξ |Xz| and |Y ∗

z | � 2ξ |Yz|. Since Lz is typical,
Lz is (αd, ξ)-regular, |Xz| � (1 − ε′)d|X| and |Yz| � (1 − ε′)d|Y |. Together with Definition 7.7
this implies that the number of edges in the subgraph of L∗

z induced by X∗
z and Y ∗

z is at least

αd(1 − ξ)
∣∣X∗

z

∣∣∣∣Y ∗
z

∣∣ − αξ3d3|X||Y | � αd(1 − ξ)
∣∣X∗

z

∣∣∣∣Y ∗
z

∣∣ − αξ3d3|X∗
z ||Y ∗

z |
(1 − ε′)2d2 · 4ξ2

� αd(1 − 2ξ)
∣∣X∗

z

∣∣∣∣Y ∗
z

∣∣,
and the result follows. �
Proposition 7.9. At most 2δ|Z|/ξ3 link graphs are poor.

Proof. By definition, every poor edge lies in at most αd2|Z| hyperedges of HP . In other words,
it lies in at most αd2|Z| link graphs. Thus the number of pairs (e,Lz) such that e is a poor edge in
Lz is at most αd2|Z||Fpoor|, where Fpoor was the set of poor edges. By Proposition 7.6, this is at
most 2δαd3|X||Y ||Z|. On the other hand, the number of pairs (e,Lz) as above is clearly at least
αξ3d3|X||Y |#poor, where #poor denotes the number of poor link graphs. Thus #poor � 2δ|Z|/ξ3,
as required. �

Recall from Section 5.3 that

δ0 := δ1/4.
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Proposition 7.10. The subgraph of PXY which is obtained by deleting the set Fpoor of poor edges
is (d, δ0)-regular. In particular, it can be made into a (d,4δ0)-superregular graph by deleting a
set X̃ ⊆ X of at most 3δ0|X| vertices in X and a set Ỹ ⊆ Y of at most 3δ0|Y | vertices in Y .

Proof. Consider sets U ⊆ X and W ⊆ Y with |U | � δ0|X| and |W | � δ0|Y |. Let P ′
XY be the

subgraph obtained from PXY by deleting all the poor edges. Since PXY is (d, ε′)-superregular
by (P1) and since Proposition 7.6 stated that |Fpoor| � 2δd|X||Y |, it follows that

eP ′
XY

(U,W) � (1 − ε′)d|U ||W | − 2δd|X||Y |
� (1 − ε′)d|U ||W | − 2δd|U ||W |/δ2

0 � (1 − δ0)d|U ||W |.
The corresponding upper bound eP ′

XY
(U,W) � (1 + δ0)|U ||W | follows immediately from the

superregularity of PXY . Thus P ′
XY is (d, δ0)-regular.

It remains to show that P ′
XY can be made (d,4δ0)-superregular by deleting a small fraction

of vertices. Note that since δ0 � d by (4) we cannot apply Proposition 5.2 to achieve this. Let
X∗ ⊆ X denote the set of all those vertices which in the graph P ′

XY have either less than (1 −
δ0)d|Y | neighbours in Y or more than (1 + δ0)d|Y | neighbours in Y . Define Y ∗ ⊆ Y similarly.
Since P ′

XY is (d, δ0)-regular we have |X∗| � 2δ0|X| and |Y ∗| � 2δ0|Y |. If |Y ∗| � ε′|Y |, then the
(d, ε′)-superregularity of PXY implies that all but at most ε′|X| vertices in X have at most

(1 + ε′)d
∣∣Y ∗∣∣ � 2δ0(1 + ε′)d|Y | � 5δ0d|Y |/2

neighbours in Y ∗. Since 5δ0d/2 � ε′, this also holds if |Y ∗| < ε′|Y |. Similarly, all but at most
ε′|Y | vertices in Y have at most 5δ0d|X|/2 neighbours in X∗. Now delete X∗, Y ∗ and these two
sets of at most ε′|X| (respectively � ε′|Y |) vertices. It is easy to check that the resulting subgraph
of PXY is (d,4δ0)-superregular. �

Recall from Section 5.3 that

δ1 := 24δ0/δ
1/5.

Definition 7.11 (impure link graph). Given a typical link graph Lz, we say that Lz is impure if
at least δ1|Xz| vertices in Lz are contained in the set X̃ defined in Proposition 7.10 or if at least
δ1|Yz| vertices in Lz are contained in the set Ỹ .

Proposition 7.12. At most δ1/5|Z| typical link graphs are impure.

Proof. We double count the number of tuples (x,Lz) such that x ∈ X̃ ∩ Xz and such that
Lz is typical. Since PXZ is (d, ε′)-superregular by (P1), each vertex x ∈ X̃ is contained in at
most 2d|Z| link graphs. Thus the number of tuples (x,Lz) as above is at most |X̃| · 2d|Z| �
6δ0d|X||Z|. On the other hand, let N denote the number of typical link graphs Lz for which the
vertex class Xz contains at least δ1|Xz| vertices of X̃. Note that |Xz| � (1 − ε′)d|X| since Lz

is typical and thus δ1|Xz| � δ1d|X|/2. So the number of tuples (x,Lz) is at least N · δ1d|X|/2.
Hence Nδ1d|X|/2 � 6δ0d|X||Z| and therefore N � 12δ0|Z|/δ1 = δ1/5|Z|/2. Argue similarly
for Yz to obtain the desired bound. �
Proposition 7.13. Suppose that z ∈ Z is a vertex such that the link graph Lz is typical, not
poor and not impure. Then the subgraph obtained from Lz by deleting all its poor edges and its
vertices in X̃ ∪ Ỹ is still (αd,3ξ)-regular and its vertex classes Xz \ X̃ and Yz \ Ỹ satisfy
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• (1 − 3δ1/2)d|X \ X̃| � |Xz \ X̃| � (1 + 3δ1/2)d|X \ X̃| and

• (1 − 3δ1/2)d|Y \ Ỹ | � |Yz \ Ỹ | � (1 + 3δ1/2)d|Y \ Ỹ |.

Proof. Recall that by Proposition 7.8, the subgraph obtained from Lz by deleting the poor edges
is (αd,2ξ)-regular. Since Lz is not impure, only a small fraction of the vertices in each of its ver-
tex classes lies in X̃ ∪ Ỹ , which immediately implies the (αd,3ξ)-regularity. The lower bounds
on |Xz \ X̃| and |Yz \ Ỹ | follow since Lz is typical and not impure. To see e.g. the upper bound
on |Xz \ X̃| note that

|Xz \ X̃| � (1 + ε′)d|X| � 1 + ε′

1 − 3δ0
d|X \ X̃| � (1 + 3δ1/2)d|X \ X̃|,

as required. (Apply Proposition 7.10 to verify the second inequality.) �
Now we delete all vertices z ∈ Z for which the link graph Lz is not typical or poor or impure.

We add all these vertices to the exceptional set V0. Let Z′ ⊆ Z be the subset of Z thus obtained.
Then Propositions 7.9 and 7.12 together with (P3) and (4) imply that

|Z \ Z′| � ξ |Z| + 2δ|Z|/ξ3 + δ1/5|Z| � 2ξ |Z|. (10)

Definition 7.14 (unhappy edges). Call an edge xy ∈ PXY unhappy if at least one of the following
is true:

(U1) xy is not poor but forms a hyperedge in HP with at most (1 − η2)αd2|Z| of the vertices
in Z′.

(U2) |NPXZ
(x) ∩ NPYZ

(y)| � (1 + ε′)2d2|Z| or |NPXZ
(x) ∩ NPYZ

(y)| � (1 − ε′)2d2|Z|.

Proposition 7.15. The following properties are satisfied:

(i) At most 4ε′|X||Y | edges are unhappy.
(ii) The set X ⊆ X of all those vertices which are incident to more than 3ε′|X| unhappy edges

has size at most ε′|X|. Similarly, the set Y ⊆ Y of all those vertices which are incident to
more than 3ε′|Y | unhappy edges has size at most ε′|Y |.

(iii) There exists sets X̂ ⊆ X and Ŷ ⊆ Y such that |X̂| � 2ε′|X|, |Ŷ | � 2ε′|Y | and such that the
subgraph PX′Y ′ of PXY induced by the sets X′ := X\(X̃∪X∪X̂) and Y ′ := Y \(Ỹ ∪Y ∪ Ŷ )

is (d,
√

ε′ )-superregular.

Proof. Suppose that an edge xy is unhappy because of (U1). Then by definition, in the graph
PXZ ∪ PYZ , x and y must have at least(

η2 − η3)αd2|Z| � η2αd2|Z|/2 (11)

common neighbours in Z \ Z′ =: Z∗. On the other hand, the regularity of PXZ implies that all
but at most ε′|X| vertices in X have at most 2d|Z∗| neighbours in Z∗. Let X∗ be the set of
these vertices in X. (Thus |X∗| � (1 − ε′)|X|.) Fix x ∈ X∗. Then as before, the regularity of PYZ

implies that all but at most ε′|Y | vertices in Y have at most 3d2|Z∗| neighbours in NPXZ
(x)∩Z∗.

Let Y ∗(x) denote the set of all these vertices in Y . Then no edge xy with y ∈ Y ∗(x) is unhappy
because of (U1) since such x and y have at most

3d2
∣∣Z∗∣∣ (10)

� 6ξd2|Z| (4)
<

η2αd2|Z|

2
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common neighbours in Z∗. Together with (11), this shows that each x ∈ X∗ is incident to at most
ε′|Y | edges which are unhappy because of (U1). So altogether, the total number of edges which
are unhappy because of (U1) is at most |X∗| · ε′|Y | + ε′|X||Y | � 2ε′|X||Y |.

Now consider (U2). The superregularity of PXZ and the regularity of PYZ together imply that
for all vertices x ∈ X there are at most 2ε′|Y | edges incident to x which satisfy (U2). Thus there
are at most 2ε′|X||Y | edges xy ∈ PXY which satisfy (U2). Altogether this shows that at most
4ε′|X||Y | edges are unhappy. Moreover, the proof also shows that at most ε′|X| vertices in X

are incident to more than 3ε′|Y | unhappy edges (indeed, this can only happen for the vertices
x /∈ X∗). A similar argument gives the analogous statement for Y . Thus we have proved (i)
and (ii).

To prove (iii), let us first define X̂ and Ŷ . Recall that X̃ and Ỹ were defined in Proposi-
tion 7.10. If |Ỹ ∪ Y | � ε′|Y |, we simply set X̂ = ∅. If this is not the case, then since PXY is
(d, ε′)-superregular, at most 2ε′|X| vertices in X have either less than (1 − ε′)d|Ỹ ∪ Y | neigh-
bours in Ỹ ∪ Y or else more than (1 + ε′)d|Ỹ ∪ Y | neighbours in Ỹ ∪ Y . Let X̂ denote the set of
all these at most 2ε′|X| vertices in X. Define Ŷ similarly. It is now easy to check that PX′Y ′ is
(d,

√
ε′ )-superregular. �

For later reference, we now summarise the properties of those graphs which we will need later
on.

Proposition 7.16. Let X′, Y ′ and Z′ be as defined above. Then the following holds.

(i) |X \ X′| � δ1|X|, |Y \ Y ′| � δ1|Y | and |Z \ Z′| � 2ξ |Z|.
(ii) PX′Y ′ is (d,

√
ε′ )-superregular.

(iii) For every vertex z ∈ Z′ the link graph Lz is typical.
(iv) Given a vertex z ∈ Z′, let Lrich

z denote the graph obtained from Lz[X′ ∪ Y ′] by deleting
all the poor and the unhappy edges. Let X′

z and Y ′
z denote the vertex classes of Lrich

z .
Then for every vertex z ∈ Z′ the graph Lrich

z is (αd,4ξ)-regular, (1 − 2δ1)d|X′| � |X′
z| �

(1 + 2δ1)d|X′| and (1 − 2δ1)d|Y ′| � |Y ′
z| � (1 + 2δ1)d|Y ′|.

(v) Given a vertex x ∈ X′, let L′
x := Lx[Y ′ ∪ Z′]. Let Y ′

x and Z′
x denote the vertex classes

of L′
x . Then for all but at most 2ξ |X′| vertices x ∈ X′ the graph L′

x is (αd,4ξ)-regular,
(1 − ε′)d|Y ′| � |Y ′

x | � (1 + ε′)d|Y ′| and (1 − ε′)d|Z′| � |Z′
x | � (1 + ε′)d|Z′|. The same is

true for all but at most 2ξ |Y ′| vertices y ∈ Y ′ and for all but at most 2ξ |Z′| vertices z ∈ Z′.
(vi) Given a pair of distinct vertices z, z′ ∈ Z′, put L′

zz′ := Lzz′ [X′ ∪ Y ′] and let X′
zz′ and Y ′

zz′
denote the vertex classes of L′

zz′ . Then for all but at most 2ξ |Z′|2 pairs of vertices

z, z′ ∈ Z′ the graph L′
zz′ is (α2d,4ξ)-regular, (1 − ε′)2d2|X′| � |X′

zz′ | � (1 + ε′)2d2|X′|
and (1 − ε′)2d2|Y ′| � |Y ′

zz′ | � (1 + ε′)2d2|Y ′|. The same is true for all but at most 2ξ |X′|2
pairs x, x′ ∈ X′ and for all but at most 2ξ |Y ′|2 pairs y, y′ ∈ Y ′.

(vii) The subgraph P rich
X′Y ′ obtained from PX′Y ′ by deleting all its poor and unhappy edges is

(d,5δ0)-superregular.

Proof. Propositions 7.10 and 7.15 together with inequality (10) imply (i). Property (ii) follows
from Proposition 7.15 and property (iii) follows immediately from the definition of Z′.

To prove (iv), let z ∈ Z′ and let L∗
z be the subgraph obtained from Lz by deleting all poor

edges and all vertices in X̃ ∪ Ỹ . By Proposition 7.13, L∗
z is (αd,3ξ)-regular and the sizes of its

vertex classes are as described there. But Lrich
z is obtained from L∗

z by deleting all the at most
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3ε′|X| vertices lying in X ∪ X̂, all the at most 3ε′|Y | vertices lying in Y ∪ Ŷ as well as all the
unhappy edges in L∗

z (cf. Proposition 7.15(ii) and (iii)). But since each vertex in X′
z ⊆ X \ X

is incident to at most 3ε′|X| unhappy edges and since the vertices in Y ′
z satisfy the analogous

property, it follows that Lrich
z is still (αd,4ξ)-regular and that the sizes of its vertex classes are

as desired in (iv).
Properties (v) and (vi) follow (with room to spare) from (P3) and (P4), respectively, by us-

ing (P1). Property (vii) follows from Proposition 7.10 since X′ was obtained from X \ X̃ by
deleting at most 3ε′|X| further vertices (and since the analogue holds for Y ′). �

Finally, we single out those vertices which will be particularly useful in Section 9 because of
their regularity properties.

Definition 7.17 (X�, Y � and Z�). Let X� ⊆ X′ be the set of all those vertices x ∈ X′ which satisfy
the following two properties.

• The link graph Lx of x is typical.
• L′

x is (αd,4ξ)-regular, (1 − ε′)d|Y ′| � |Y ′
x | � (1 + ε′)d|Y ′| and (1 − ε′)d|Z′| � |Z′

x | �
(1 + ε′)d|Z′|. (Thus x does not belong to the at most 2ξ |X′| vertices described in Proposi-
tion 7.16(v).)

Define Y � and Z� similarly.

Property (P3) and Proposition 7.16(v) together imply that |X′ \ X�| � 4ξ |X′|, |Y ′ \ Y �| �
4ξ |Y ′| and |Z′ \ Z�| � 4ξ |Z′|.

Definition 7.18 (useful vertices in X′ ∪Y ′ ∪Z′). We call a vertex x ∈ X� useful if (1−ε′)d|Y �| �
|NPXY

(x)∩ Y �| � (1 + ε′)d|Y �| and (1 − ε′)d|Z�| � |NPXZ
(x)∩ Z�| � (1 + ε′)d|Z�|. Similarly,

we define the useful vertices in Y � and in Z�.

Note that all but at most 5ξ |X′| (respectively 5ξ |Y ′|, 5ξ |Z′|) vertices in X′ (respectively Y ′,
Z′) are useful.

Recall that (X,Y,Z) was just one of the triples (Xk,Yk,Zk) obtained at the beginning of this
section. We proceed in the same way with each of these triples (Xk,Yk,Zk) to obtain subsets X′

k ,
Y ′

k and Z′
k .

8. Incorporating the exceptional vertices and choosing the bridges

8.1. Incorporating the exceptional vertices

Recall that when constructing the subsets X′
k ⊆ Xk , Y ′

k ⊆ Yk and Z′
k ⊆ Zk in Section 7, we

deleted at most 2ξn vertices of H (cf. Proposition 7.16(i)). All these vertices are also added to V0.
Thus

|V0|
(8)

� ξn + 2ξn = 3ξn.

Recall also that |Xk| = |Yk| = m/3 and |Zk| = 2m/3. Put

m1 := m/100. (12)
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Choose sets X′′
k ⊆ X′

k , Y ′′
k ⊆ Y ′

k and Z′′
k ⊆ Z′

k with |X′′
k | = |Y ′′

k | = m1 and |Z′′
k | = 2m1 among all

such sets uniformly at random. In the remainder of this section and in the next section we will
take care not to alter these sets X′′

k , Y ′′
k and Z′′

k . This will have the advantage that each of the
triples (X′′

k , Y ′′
k ,Z′′

k ) is sufficiently regular so that in Section 11 we can find a loose path which
contains all of the vertices in (X′′

k , Y ′′
k ,Z′′

k ) (and also a comparatively small number of vertices
which were ‘left over’ in Section 9).

Put X∗
k := X′

k \ X′′
k , Y ∗

k := Y ′
k \ Y ′′

k and Z∗
k := Z′

k \ Z′′
k . Remove at most 10ξm/3 = 5ξ |Zk|

more vertices from the Z∗
k to ensure that

(2 − 10ξ)(m/3 − m1) = ∣∣Z∗
k

∣∣ (13)

for each k. To see that Z∗
k is not smaller than this already, recall that |Zk \Z′

k| � 2ξ |Zk| by Propo-
sition 7.16(i). (The fact that |Z∗

k | is a little less than |X∗
k | + |Y ∗

k | will be useful in Lemma 9.1.)
Add all these vertices to the exceptional set V0. Thus

|V0| � 8ξn.

Next, we will find a loose path L which contains all the vertices of the exceptional set V0. Let
v1, . . . , vr be an enumeration of the vertices in V0. Let v0 and vr+1 be any two vertices in X∗

1 . We
claim that for all the pairs vivi+1 (0 � i � r) we can find distinct vertices wi such that vivi+1wi

is a hyperedge of H, such that wi is contained in one of the sets Z∗
k and such that none of the

Z∗
k contains more than

√
ξm of the vertices wi . It is easy to see that this is possible: Indeed,

by Proposition 7.1, for each pair vivi+1 there are at least σN/8 sets Zk such that vivi+1 forms
a hyperedge with at least σ |Zk|/8 vertices in Zk . (Recall that N denotes the number of triples
(Xk,Yk,Zk).) Now by Lemma 4.1 and Proposition 7.16(i), we may assume that this is almost
inherited by Z′

k \ Z′′
k , i.e. there are at least σN/8 sets Zk such that vivi+1 forms a hyperedge

with at least σ |Z′
k \ Z′′

k |/9 vertices in Z′
k \ Z′′

k . Together with the fact that Z∗
k was obtained by

deleting at most 5ξ |Zk| further vertices, this implies that there are at least σN/8 sets Z∗
k such

that vivi+1 forms a hyperedge with at least σ |Z∗
k |/10 vertices in Z∗

k . On the other hand, the total
number of vertices wi which we need is at most

|V0| � 8ξn � 12ξNm �
(√

ξm
)
(σN/8)/2. (14)

The second inequality follows since each triple (Xk,Yk,Zk) contains 4m/3 vertices and we
covered almost all vertices of H by such triples. Inequality (14) shows that we can choose the wi

greedily (as it shows that for all i there will always be one Z∗
k in which we have chosen less than√

ξm vertices so far and which still contains a vertex wi that forms a hyperedge together with vi

and vi+1). This proves the claim.
Thus we have a loose path L which joins two vertices in X∗

1 . We will remove all the vertices
of this path from the sets Z∗

k . (So we do not remove v0 and vr+1 from X∗
1 .) We still denote the

resulting sets by Z∗
k .

Definition 8.1 (still useful vertices in X′ ∪ Y ′). We call a useful vertex x ∈ X∗
k still useful if it

satisfies the following three conditions:

(a) the link graph L∗
x := Lx[Y ∗

k ∪ Z∗
k ] spanned by Y ∗

k and Z∗
k is still (αd,5ξ)-regular;

(b) the sizes of the vertex classes Y ∗
x ⊆ Y ∗

k and Z∗
x ⊆ Z∗

k of L∗
x satisfy (1 − ε′)d|Y ∗

k | � |Y ∗
x | �

(1 + ε′)d|Y ∗| and (1 − ε′)d|Z∗| � |Z∗
x | � (1 + ε′)d|Z∗|;
k k k



D. Kühn, D. Osthus / Journal of Combinatorial Theory, Series B 96 (2006) 767–821 795
(c) (1 − ε′)d|Y ∗
k ∩ Y

�
k | � |PXkYk

(x) ∩ Y ∗
k ∩ Y

�
k | � (1 + ε′)d|Y ∗

k ∩ Y
�
k | and (1 − ε′)d|Z∗

k ∩ Z
�
k| �

|PXkZk
(x) ∩ Z∗

k ∩ Z
�
k| � (1 + ε′)d|Z∗

k ∩ Z
�
k|.

The still useful vertices in Y ∗
k are defined similarly.

Note that (a) holds for all but at most 2ε′|Xk| useful vertices in X∗
k . Indeed, recall that for

every useful vertex x the link graph L′
x = Lx[Y ′

k ∪Z′
k] is (αd,4ξ)-regular. Moreover, the (d, ε′)-

superregularity of the bipartite graphs forming the triad Pk implies that for all but at most 2ε′|Xk|
vertices x the sizes of the vertex classes of L∗

x are at least 9/10 of those of L′
x . This implies that

(a) holds for all but at most 2ε′|Xk| useful vertices in X∗
k . Similarly it follows that both (b) and

(c) are true for all but at most 8ε′|Xk| vertices in X∗
k . Thus the number of useful vertices in X∗

k

which are not still useful is at most 10ε′|Xk| � 11ε′|X∗
k |. Similarly, the number of those useful

vertices in Y ∗
k which are not still useful is at most 11ε′|Y ∗

k |.
8.2. Choosing the bridges

Recall that N denotes the number of triples (Xk,Yk,Zk). Write (XN+1, YN+1,ZN+1) :=
(X1, Y1,Z1). For all 2 � k � N we will glue the triples (Xk,Yk,Zk) and (Xk+1, Yk+1,Zk+1) to-
gether by choosing a single hyperedge connecting them. This is done as follows. We first choose
vertices xk ∈ X∗

k and yk+1 ∈ Y ∗
k+1 such that both xk and yk+1 are still useful. For all these pairs

xk, yk+1 we then choose distinct vertices ak such that akxkyk+1 is a hyperedge of H and such
that each ak lies in some Z∗

i . (This can be done by Proposition 7.1 since so far, we have removed
at most

√
ξm vertices from each Z∗

k .) We will call the hyperedge akxkyk+1 the kth bridge.
To connect the triples (X1, Y1,Z1) and (X2, Y2,Z2) we proceed a little differently in order to

incorporate the loose path L which contains the exceptional vertices: Recall that v0, vr+1 ∈ X∗
1

are endvertices of L. Choose vertices x1 ∈ X∗
1 and y2 ∈ Y ∗

2 which are still useful. In the case when
|H| is even we choose vertices a0 and a1 such that both a1x1v0 and a0vr+1y2 are hyperedges
of H. (Each of a0 and a1 will again lie in some Z∗

i and these two vertices will be distinct from all
the other ak .) We will call the loose path which starts with the hyperedge a1x1v0, continues with
L and ends with the hyperedge a0vr+1y2 the first bridge. Let us now consider the case when |H|
is odd. In this case, we make the first bridge even longer (it will contain 2 hyperedges which have
exactly two vertices in common). We first choose a hyperedge a1x1v0 as before. Next we pick
a hyperedge vr+1b0b1 containing vr+1. Then we pick any hyperedge b0b1b2 containing both b0
and b1. Now we pick any vertex b3 such that b2b3y2 is a hyperedge of H. All these vertices b0,
b1, b2, b3 are chosen in such a way that they lie in some Z∗

i . Moreover, a1 and all the bi are
chosen to be disjoint from each other as well as disjoint from L and all the bridges. We will call
the loose path which starts with the hyperedge a1x1v0, continues with L, vr+1b0b1, b0b1b2 and
ends with b2b3y2 the first bridge.

We remove all the vertices ai from the sets Z∗
k (as well as all the bi if |H| is odd). We still

denote the resulting sets by Z∗
k . Moreover, we remove v0 and vr+1 from X∗

1 and still denote the
resulting set by X∗

1 .
The aim now is to find for each k a loose path Pk such that Pk contains all the vertices

in X∗
k ∪ Y ∗

k ∪ Z∗
k as well as all the vertices in X′′

k ∪ Y ′′
k ∪ Z′′

k and such that the bridge vertices xk

and yk are endvertices of Pk . Then all these paths would form a loose Hamilton cycle together
with all the bridges. But clearly, a necessary condition for this is that X∗

k ∪Y ∗
k ∪Z∗

k ∪X′′
k ∪Y ′′

k ∪Z′′
k

has an odd number of vertices. Since 2|X′′
k | = 2|Y ′′

k | = |Z′′
k | and thus |X′′

k ∪ Y ′′
k ∪ Z′′

k | is even, we
need that

W ∗
k := X∗

k ∪ Y ∗
k ∪ Z∗

k
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Fig. 4. Extending the first bridge by incorporating the vertices wi ∈ W in order to make the leftover sets W∗
k

even.

contains an odd number of vertices. We will now alter the sets W ∗
k a little (and make the first

bridge a little longer) to achieve this. We will call every vertex in W ∗
k apart from xk and yk

a nonbridge vertex. For every set W ∗
k which has an even number of vertices we remove one

nonbridge vertex from Z∗
k . Let W denote the set consisting of all these removed vertices. Let

us next show that |W | is even. We first consider the case when |H| is even. Then for each k

for which |W ∗
k | was even, the set obtained from W ∗

k by adding all the vertices in the kth bridge
except for yk+1 has an odd number of vertices whereas the latter set has an even number of
vertices if |W ∗

k | was odd. Hence |W | is even if |H| is even. A similar argument works if |H| is
odd since in this case the first bridge contains 2 consecutive hyperedges which have 2 vertices
in common. Using Proposition 7.1 and the fact that |X∗

1 | is sufficiently large and almost all
of its vertices are still useful, it is easy to see that for each w ∈ W there are two still useful
nonbridge vertices s(w), s′(w) ∈ X∗

1 such that for some k we have that both |NH(w, s(w)) ∩
Z∗

k | � σ |Z∗
k |/10 and |NH(w, s′(w))∩Z∗

k | � σ |Z∗
k |/10 and such that all the pairs s(w), s′(w) are

disjoint for distinct vertices w ∈ W . Thus we can find two nonbridge vertices a(w), a′(w) ∈ Z∗
k

such that both ws(w)a(w) and ws′(w)a′(w) are hyperedges of H and such that all the pairs
a(w), a′(w) are disjoint for distinct vertices w ∈ W . Let P(w) denote the loose path consisting
of the two hyperedges ws(w)a(w) and ws′(w)a′(w).

Let w1, . . . ,w|W | be any enumeration of the vertices in W . Lemma 8.2 below implies that
we can glue s′(wi) to s(wi+1) using a loose path P∗(wi+1) of length 5 such that all vertices of
P∗(wi+1) lie in X∗

1 ∪ Y ∗
1 ∪ Z∗

1 = W ∗
1 (see Fig. 4). Moreover, in a similar way we will glue the

bridge vertex x1 to s(w1) by a loose path P∗(w1). Since Lemma 8.2 guarantees us many more
paths than there are vertices in W , each of these paths P∗(wi) can be chosen to be disjoint from
the others and from all the vertices of the form a(w), a′(w). Since each P∗(wi) has length 5
(i.e. it consists of 5 hyperedges), it uses 11 vertices of W1. As |W | is even, the number of vertices
in the union of all the P∗(wi) is even. Now enlarge the first bridge by adding all the P∗(wi)

and all the P(wi) to obtain a new first bridge ending in s′(w|W |). We write x1 for this new
endvertex s′(w|W |). Thus the 2 endvertices x1 and y1 of the (modified) first bridge are both still
useful. We delete all the vertices of this first bridge—apart from x1 and y1—from the sets W ∗

k .
Note that, for each k, the subset of W ∗

k obtained in this way has an odd number of vertices. We
still denote these subsets by W ∗

k and the sets obtained from X∗
k , Y ∗

k , Z∗
k by X∗

k , Y ∗
k , Z∗

k . Since
altogether we only removed a bounded number of vertices from the sets X∗

k and Y ∗
k and at most

2
√

ξ |Z∗
k | � 4

√
ξm/3 vertices from each Z∗

k , Propositions 7.16(i) and inequality (13) together
imply that (with room to spare in the error terms)

m/3 − m1 − 2δ1m �
∣∣X∗

k

∣∣ � m/3 − m1,

m/3 − m1 − 2δ1m �
∣∣Y ∗

k

∣∣ � m/3 − m1,
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(
2 − 15

√
ξ

)
(m/3 − m1) �

∣∣Z∗
k

∣∣ � (2 − 10ξ)(m/3 − m1). (15)

The following lemma is an analogue of the fact that in an ε-regular bipartite graph most pairs of
vertices in one of the vertex classes are joined by many paths of length 2.

Lemma 8.2. Any two distinct vertices x, x′ ∈ X∗
1 which are still useful can be connected by a

loose path of length 5 whose other vertices lie in X∗
1 ∪ Y ∗

1 ∪ Z∗
1 . In fact, there are even 103|R|

such paths which meet only in x and x′.

Proof. For simplicity, we write X∗ for X∗
1 , Y ∗ for Y ∗

1 etc. Roughly speaking, the idea of the
proof is to show that a large fraction of the vertices in Y ∗ can play the role of an endpoint of a
loose path of length two starting in x. Similarly, a large fraction of the vertices in X∗ can play
the role of an endpoint of a loose path of length two starting in x′. The regularity of the triad
P1 with respect to H then implies that there are many hyperedges of H which connect two such
paths into a loose path of length 5. The precise argument is given below.

Recall that after the definition of those vertices in X∗ and Y ∗ which are still useful (Defin-
ition 8.1), we removed only a bounded number of further vertices from Z∗. (We removed the
vertices in the loose path L containing all the exceptional vertices before Definition 8.1.) Thus
for vertices v ∈ X∗, w ∈ Y ∗ which are still useful the properties of the link graphs L∗

v and L∗
w

are not changed significantly. In particular, both L∗
x and L∗

x′ are still (αd,6ξ)-regular. Thus in
the graph L∗

x at least |Z∗
x |/2 vertices in Z∗

x send at least αd|Y ∗
x |/2 edges to Y ∗

x . Let Z∗∗
x denote

the set of all these vertices in Z∗
x .

Recall that X∗ and Y ∗ were obtained from X′ and Y ′ by splitting off randomly chosen sets X′′
and Y ′′ and then deleting a bounded number of further vertices (to incorporate the exceptional
vertices and to construct the bridges). Hence by Propositions 7.16(iv) and Lemma 4.1 we may
assume that for each z ∈ Z∗∗

x the graph L∗
z := Lrich

z [X∗ ∪ Y ∗] is still (αd,5ξ)-regular and that its
vertex class Y ∗

z ⊆ Y ∗ satisfies

3d
∣∣Y ∗∣∣/4 �

∣∣Y ∗
z

∣∣ � 5d
∣∣Y ∗∣∣/4. (16)

Let Y ∗∗
z denote the set of all those vertices in Y ∗

z which in the graph L∗
z send at least αd|X∗

z |/2
edges to X∗

z . Then |Y ∗∗
z | � 2|Y ∗

z |/3 � d|Y ∗|/2. Put Y ∗∗ := ⋃
z∈Z∗∗

x
Y ∗∗

z . Thus all vertices in
y∗ ∈ Y ∗∗ can serve as endvertices of loose paths of length two that start in x.

We claim that |Y ∗∗| � |Y ∗|/32. Indeed, given a set z1, . . . , zi of vertices in Z∗∗
x with i � s,

where s := �1/(8d)�, at least half of the remaining vertices z ∈ Z∗∗
x satisfy

∣∣Y ∗∗
z ∩ Y ∗∗

zj

∣∣ � 2d
∣∣Y ∗∗

z

∣∣ � 2d
∣∣Y ∗

z

∣∣ (16)

� 3d2
∣∣Y ∗∣∣ (17)

for all j � i. (The first inequality follows since by (P1) the triad P1 is (d, ε′)-superregular.) As
long as i � s, define zi+1 to be such a vertex. Then

∣∣Y ∗∗∣∣ �
∣∣∣∣∣

s⋃
i=1

Y ∗∗
zi

∣∣∣∣∣ (17)

� s
(
d
∣∣Y ∗∣∣/2 − (s − 1)3d2

∣∣Y ∗∣∣/2
)
�

∣∣Y ∗∣∣/32.

Similarly to the above, we define Z∗∗
x′ to be the set of all those vertices z ∈ Z∗

x′ which send
at least αd|Y ∗

x′ |/2 edges to Y ∗
x′ . Moreover, given z ∈ Z∗∗

x′ , we let X∗∗
z denote the set of all those

vertices in X∗
z which in the graph L∗

z send at least αd|Y ∗
z |/2 edges to Y ∗

z . As before, |X∗∗
z | �

d|X∗|/2 and |X∗∗| � |X∗|/32 where X∗∗ := ⋃
z∈Z∗∗

x′ X∗∗
z . (Thus all vertices in x∗ ∈ X∗∗ can

serve as endvertices of loose paths of length two that start in x′.)
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Fig. 5. The loose path P which joins x to x′ .

Now recall from (P2) that the triad P1 whose vertex classes are X = X1, Y = Y1 and Z = Z1
is (δ,1)-regular with respect to H and dH(P1) = α � α∗/2. Moreover, |X∗∗| � |X|/80, |Y ∗∗| �
|Y |/80 and |Z∗| � |Z|/2 with room to spare. Let Q denote the subtriad of P1 induced by these
sets. Thus Proposition 5.3 implies that t (Q) � δ · t (P1). Together with the regularity of P1 with
respect to H this shows that dH(Q) � α − δ > α/2. Since the number t (Q) of triangles spanned
by Q is at least d3|X∗∗||Y ∗∗||Z∗|/2 (by Proposition 5.3 again) this implies that Q spans at
least αt(Q)/2 � αd3|X∗∗||Y ∗∗||Z∗|/4 hyperedges of H. This immediately implies that there
are vertices x∗ ∈ X∗∗ \ {x, x′} and y∗ ∈ Y ∗∗ so that the pair x∗y∗ lies in at least αd3|Z∗|/5 � 3
hyperedges of H.

These two vertices will lie in the middle hyperedge of our loose path between x and x′ (Fig. 5).
We now choose the remaining vertices of the path: choose any vertex z ∈ Z∗∗

x so that y∗ ∈ Y ∗∗
z

and choose any vertex z′ ∈ Z∗∗
x′ so that x∗ ∈ X∗∗

z′ . Now we choose a vertex z∗ so that x∗y∗z∗
forms a hyperedge of H. Since there are at least three of these, we can assume that z∗ �= z, z′.
We now choose two more vertices y and x1 which together with z give us a loose path of length
two between x and y∗. This can be done as follows. Take y to be any vertex in Y ∗

x \ {y∗} which
is a neighbour of z in L∗

x . (Such a vertex exists since z ∈ Z∗∗
x and thus z has at least αd|Y ∗

x |/2
neighbours in Y ∗

x .) Then xyz is a hyperedge of H. Take x1 to be any vertex in X∗
z \ {x, x′, x∗}

which is a neighbour of y∗ in L∗
z . (Again, there are many candidates for x1 since y∗ ∈ Y ∗∗

z .) Thus
x1y

∗z is also a hyperedge of H.
In the same way, we can also find two vertices y′, y′

1 �= y so that x′y′z′ and z′y′
1x

∗ are hyper-
edges of H. Altogether, this gives us a loose path of length 5 joining x and x′.

Remove the vertices of this path from H (except for x and x′). Since these are only boundedly
many vertices, the regularity of the triad and the link graphs is not significantly affected and so
we can we repeat the argument 103|R| times to obtain 103|R| disjoint loose paths of length 5, as
required. �
9. Finding the equalising paths and augmenting the bridges

In this section, we will find (for each k) our ‘equalising path Qk which contains almost all of
the vertices in each of X∗

k , Y ∗
k and Z∗

k .

Lemma 9.1. For each triple (Xk,Yk,Zk) the induced hypergraph HPk
contains a loose path Qk

with the following three properties:

• Qk starts with the bridge vertex xk and ends with some vertex x∗
k ∈ X∗

k for which the link
graph Lx was typical;

• Qk contains only vertices in X∗
k ∪ Y ∗

k ∪ Z∗
k and avoids the bridge vertex yk ;

• the sets X∗∗
k := X∗

k \ V (Qk), Y ∗∗
k := Y ∗

k \ (V (Qk) ∪ {yk}) and Z∗∗
k := Z∗

k \ V (Qk) satisfy∣∣X∗∗
k

∣∣ = ∣∣Y ∗∗
k

∣∣ = 2
√

ξm and
∣∣Z∗∗

k

∣∣ = 2
∣∣X∗∗

k

∣∣ + 1. (18)
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Fig. 6. An example illustrating the case |A| � |B|. The black bullets are vertices in A, the white bullets lie in B and the
squares in C. The Phase 4 is nonempty.

Since the sets X∗
k , Y ∗

k and Z∗
k satisfy (15), the following lemma implies that such a path

Qk could be found if instead of the subhypergraph of HPk
induced by X∗

k , Y ∗
k and Z∗

k we would
consider the complete 3-uniform hypergraph with these vertex sets. From successive applications
of Lemma 9.3 it will then follow that any such path Qk in the complete hypergraph can in fact
also be found in subhypergraph of HPk

induced by X∗
k , Y ∗

k and Z∗
k .

Lemma 9.2. Given 0 < δ1 � ξ � 1, suppose that G is the complete 3-uniform 3-partite hy-
pergraph with vertex classes A, B and C such that ||A| − |B|| � 10δ1|A|, (2 − 16

√
ξ )|A| �

|C| � (2 − 9ξ)|A| and such that |A∪B ∪C| is even and sufficiently large compared to 1/δ1. Let
a � |A|/2 be any natural number. Then G contains a loose path P whose first and last vertex lies
in A and such that |A \ V (P)| = |B \ V (P)| = a and |C \ V (P)| = 2a + 1.

Proof. Given a directed loose path P = e1 · · · er in G (where ei ∈ E(G)), we say that a hyperedge
ei (i � 2) is of type A if the unique vertex that is contained in both ei and ei−1 belongs to A. We
say that e1 is of type A if A contains one of the two vertices in e1 that do not lie in e2. Similarly
we define hyperedges of type B and type C.

We will first consider the case when |A| � |B|. In this case the path P is constructed in
5 consecutive ‘phases’ as follows (Fig. 6). The first phase consists of a single hyperedge of
type A. In the second phase we then continue by successively adding path segments consisting 2
hyperedges at a time: each segment consists of a hyperedge of type C followed by a hyperedge
of type B . We claim that eventually we will obtain leftover subsets A1,B1,C1 of A,B,C which
satisfy |A1| = |B1|. Indeed, each path segment contains two new vertices in A and one new
vertex in both B and C (here we do not count the first vertex in C as a new vertex as it already
lies in the previously constructed part of P). Thus after each such segment the difference between
the sizes of the remaining subsets of A and B is reduced by 1, which proves the claim. Moreover,
|A1| = |A|−1−2(|A|−|B|) = |B1| and |C1| = |C|−1−(|A|−|B|). Since |B| � (1−10δ1)|A|,
it follows that(

2 − 17
√

ξ
)∣∣A1

∣∣ �
∣∣C1

∣∣ � (2 − 8ξ)
∣∣A1

∣∣. (19)

In the third phase we successively add loose path segments of length 4, each of which consists of
a hyperedge of type C, followed by a hyperedge of type A, followed by a hyperedge of type C,
followed by a hyperedge of type B . We claim that in this way we can achieve that the number of
leftover vertices in C is either exactly one more than twice the number of leftover vertices in A

(and that the latter is still precisely as large as the number of leftover vertices in B) or exactly
one less than twice the number of leftover vertices in A. Indeed, define k by |C1| = 2|A1| − k.
So (19) implies that 8ξ |A1| � k � 17

√
ξ |A1|. But each of the segments in Phase 3 uses 3 new

vertices in A, 3 new vertices in B and only 2 new vertices in C (again, the first vertex from C

in such a path is not counted). Thus after extending the path P by one such segment, we obtain
leftover sets A2, B2 and C2 for which |A2| = |B2| and |C2| = 2|A2| − k + 4. Since |A ∪ B ∪ C|
is even and the current path P has an odd number of vertices, |A2 ∪ B2 ∪ C2| is odd. Thus k is
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odd. So after �(k + 1)/4� steps in Phase 3 we obtain leftover sets A3, B3 and C3 as claimed.
Moreover, note that |A3| = |A1| − 3�(k + 1)/4� � (1 − 13

√
ξ )|A| � a + 2.

If 2|A3| − 1 = |C3|, then in the fourth phase we add 3 more hyperedges: one of type C,
followed by one of type A, followed by one of type B . Thus we have 2 new vertices in each of A,
B and C. So after this fourth phase we obtain leftover sets A4, B4 and C4 for which |A4| = |B4|
and |C4| = 2|A4| + 1. If already 2|A3| + 1 = |C3|, then the fourth phase is empty.

Finally, in the fifth phase we enlarge the path by alternately adding hyperedges of type A

and B (ending with an hyperedge of type B) until we obtain a path P which misses the desired
number of vertices in A, B and C.

The case when |A| � |B| is similar. We start again with a hyperedge of type A. But then we
continue alternatingly with hyperedges of type C and type A (ending with a hyperedge of type A)
until the subsets A1,B1,C1 of A,B,C thus obtained satisfy |A1| = |B1|. Now we proceed pre-
cisely as before. �
Lemma 9.3. Suppose that X� ⊆ X∗ ∩ X�, Y � ⊆ Y ∗ ∩ Y �, Z� ⊆ Z∗ ∩ Z� are sets of size at
least

√
ξm. Moreover, suppose that x� ∈ X∗ satisfies |NPXY

(x�) ∩ Y �| � (1 − 2ε′)d|Y �| and
|NPXZ

(x�) ∩ Z�| � (1 − 2ε′)d|Z�|. Then there are vertices y� ∈ Y � and z� ∈ Z� such that
x�y�z� forms a hyperedge of H and such that

(i) |NPXY
(y�) ∩ X�| � (1 − ε′)d|X�| and |NPYZ

(y�) ∩ Z�| � (1 − ε′)d|Z�|,
(ii) |NPXZ

(z�) ∩ X�| � (1 − ε′)d|X�| and |NPYZ
(z�) ∩ Y �| � (1 − ε′)d|Y �|.

The analogous statement where we are given a vertex y� ∈ Y � and seek vertices x� and z� (or
where we are given a vertex z�) also holds.

Proof. Let Y �
x� := NPXY

(x�) ∩ Y � and Z�
x� := NPXZ

(x�) ∩ Z�. We first prove that Lx� [Y � ∪
Z�] =: L�

x� is still (αd,2
√

ξ )-regular. Indeed, since x� ∈ X�, the link graph Lx� is typical
(cf. Definition 7.17) and thus by Definition 7.3 in particular (αd, ξ)-regular. So we only need
to show that 2

√
ξ |Y �

x� | � ξ |Yx� | and that the analogue holds for Z�
x� . But this is true since

∣∣Y �
x�

∣∣ � (1 − 2ε′)d
∣∣Y �∣∣ � (1 − 2ε′)

√
ξdm � (1 − 2ε′)

√
ξ

1 + ε′ |Yx� | � √
ξ |Yx� |/2.

Here we used that |Yx� | � (1 + ε′)d|Y | < (1 + ε′)dm since Lx� is typical (cf. Definition 7.3).
A similar argument works for Z�

x� . This proves the claim.
Since by (P1) each of PXY , PYZ and PXZ is (d, ε′)-superregular, at most 2ε′|Y | � |Y �

x� |/2
vertices in Y � violate (i) and at most 2ε′|Z| � |Z�

x� |/2 vertices in Z� violate (ii). The (αd,2
√

ξ )-
regularity of L�

x� implies that it contains an edge y�z� missing these vertices. But y� and z� are
as required in the lemma.

The proof for the analogous statements when we are given a vertex y� or z� is identical. �
Proof of Lemma 9.1. Put

a := 2
√

ξm = 6
√

ξ |X|.
Thus our desired loose path Qk should contain all but a vertices in each of X∗

k and Y ∗
k \ {yk}

and all but 2a + 1 vertices in Z∗
k . An application of Lemma 9.2 with a = 2

√
ξm as above,

A := X∗
k , B := Y ∗

k \ {yk} and C := Z∗
k guarantees the existence of some loose path as desired

in the complete 3-partite 3-uniform hypergraph with vertex classes A, B and C (and not yet
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in the subhypergraph of HPk
induced by these sets). Indeed, we can apply Lemma 9.2 since

by (15) the sizes of A, B and C satisfy the assumptions of this lemma. Moreover, we have made
|X∗

k ∪ Y ∗
k ∪ Z∗

k | odd in Section 8.2 and so |A ∪ B ∪ C| is even. Clearly, we may assume that xk

is an endvertex of the path P guaranteed by Lemma 9.2.
Our aim now is to show that there exists a loose path Qk in HPk

which meets the sets X∗
k ,

Y ∗
k \ {yk} and Z∗

k in the same way as the path P meets the sets A, B and C (in the sense that
if e.g. the 14th and the 15th hyperedge of P meet in some vertex in A = X∗

k , then so do the
14th and the 15th hyperedge of Qk). Moreover, the path Qk will use only vertices in X�

k :=
X∗

k ∩ X
�
k , Y �

k := (Y ∗
k ∩ Y

�
k ) \ {yk} and Z�

k := Z∗
k ∩ Z

�
k . Thus it will also satisfy the first condition

of Lemma 9.1. The hyperedges of Qk will be chosen successively—the existence of the next
hyperedge will be guaranteed by Lemma 9.3 at each step. Indeed, let us first show that we can
apply Lemma 9.3 with x� := xk to find the first hyperedge of Qk . Since xk was chosen to be
still useful, it follows from the definition of the still useful vertices (Definition 8.1(c)) and the
fact that we only removed a bounded number of vertices from Y ∗

k and Z∗
k after defining the still

useful vertices that we have∣∣NPXkYk
(xk) ∩ Y �

k

∣∣ � (1 − 2ε′)d
∣∣Y �

k

∣∣ and
∣∣NPXkZk

(xk) ∩ Z�
k

∣∣ � (1 − 2ε′)d
∣∣Z�

k

∣∣.
Thus x� = xk satisfies the assumptions of Lemma 9.3 and so we can apply this lemma to find the
first hyperedge of our path Qk .

Let us now show that Lemma 9.3 can in fact be applied in each step. The sets X�, Y � and
Z� in Lemma 9.3 will be those subsets of X�

k , Y �
k and Z�

k which avoid the path segment of Qk

constructed so far (except for the vertex to which we want to attach the next hyperedge). We have
to guarantee that each of these 3 sets has size at least

√
ξm. But this holds for the first two of

these sets: on the one hand, the path segment of Qk constructed so far avoids at least a = 2
√

ξm

vertices in each of X∗
k and Y ∗

k . On the other hand, |X∗
k \ X

�
k|, |Y ∗

k \ Y
�
k | �

√
ξm. (Indeed, to see

this, note that after Definition 7.17 we showed that |X′
k \ X

�
k| � 4ξ |X′

k| � 4ξm.) So let us now
show that the subset of Z� which avoids the path segment of Qk constructed so far also has
size at least

√
ξm. Again, this holds since on the one hand, this path segment avoids at least

2a = 4
√

ξm vertices in Z∗
k , while on the other hand, |Z∗

k \ Z
�
k| � |Z′

k \ Z
�
k| � 4ξ |Z′

k| � 4ξm. It
is easily seen that by Lemma 9.3(i) and (ii) also the vertex in the current Qk to which the next
hyperedge is to be attached satisfies the assumptions of Lemma 9.3. Thus we can find our path
Qk by applying Lemma 9.3 successively. �

After we have found Qk , we will extend the kth bridge joining the triple (Xk,Yk,Zk) to the
triple (Xk+1, Yk+1,Zk+1) by adding Qk . Thus the kth bridge has a new starting point x∗

k ∈ X∗
k

and still ends with yk+1 ∈ Y ∗
k+1. We set y∗

k+1 := yk+1.

10. Perfect matchings in superregular graphs

10.1. Random perfect matchings

In this subsection, we collect several results about (random) perfect matchings in bipartite
superregular graphs which are all proven in [16]. The main result is Theorem 10.3. Given a
superregular graph G and a subgraph H of G, it gives precise bounds on the likely number of
edges of H which are contained in a random perfect matching M of G.
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The next lemma implies that if we are given a (super-)regular graph G and a ‘bad’ subgraph
F of G which is comparatively sparse, then a random perfect matching of G will probably only
contain a few bad edges.

Lemma 10.1. For all positive constants ε and d with d � 1 and ε � 1/6 there exists an integer
n0 = n0(ε, d) such that the following holds. Let G be a (d, ε)-superregular graph whose vertex
classes A and B satisfy |A| = |B| =: n � n0. Let M be a perfect matching chosen uniformly
at random from the set of all perfect matchings of G. Let F be a subgraph of G such that all
but at most Δ′n vertices in F have degree at most Δ′dn in F , where 1/2 � Δ′ � 18ε. Then the
probability that M contains at least 9Δ′n edges of F is at most e−εn. Moreover, the assertion
also holds if we assume that G is dn-regular (where dn is an integer).

The following lemma shows that a randomly chosen 2-factor in a (super-)regular graph G

will typically only contain few cycles. A similar observation was also used in Frieze and Kriv-
elevich [6].

Lemma 10.2. For all positive constants ε < 1/64 and d � 1 there exists an integer n0 = n0(ε, d)

such that the following holds. Let G be a (d, ε)-superregular graph whose vertex classes A and B

satisfy |A| = |B| =: n � n0. Let M1 be any perfect matching in G. Let M2 be a perfect matching
chosen uniformly at random from the set of all perfect matchings in G − M1. Let R = M1 ∪ M2

be the resulting 2-factor. Then the probability that R contains more than n/(logn)1/5 cycles is
at most e−n. Moreover, the statement also holds if we assume that G is dn-regular (where dn is
an integer) and that G and M1 are disjoint.

We now come to the main result of this section. We will apply this later on with the link graphs
of the vertices in Z′′

k ∪Z∗∗
k playing the role of H (and similarly for the colink graphs). The special

case of Theorem 10.3 where H is a sufficiently large induced subgraph of G is already due to
Rödl and Ruciński [20].

Theorem 10.3. For all positive constants d, ν0, η � 1 there is a positive ε = ε(d, ν0, η) and
an integer N0 = N0(d, ν0, η) such that the following holds for all n � N0 and all ν � ν0. Let
G = (A,B) be a (d, ε)-superregular bipartite graph whose vertex classes both have size n and
let H be a subgraph of G with e(H) = νe(G). Choose a perfect matching M uniformly at random
in G. Then with probability at least 1 − e−εn we have

(1 − η)νn �
∣∣M ∩ E(H)

∣∣ � (1 + η)νn.

The intuition behind this result is the following: If the inclusion of the edges of G into the
random perfect matching M would be mutually independent and equally likely, then the proba-
bility that a given edge e is contained in M would be close to n/e(G). Thus the expected value
of |M ∩ E(H)| would be close to ne(H)/e(G) = νn. The above result would thus immediately
follow by an application of some large deviation bound on the tail of the binomial distribution.
Note that Lemma 10.1 does not follow from Theorem 10.3 (not even the first part follows, as the
graph F there can be much sparser than the graph H in Theorem 10.3).
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10.2. Perfect matchings in subgraphs of superregular graphs

Recall that a k-factor in a graph G is a spanning subgraph of G in which every vertex has
degree k. The following lemma (or more precisely Corollary 10.5 following it) guarantees the
existence of a k-factor in a graph G which in turn is a spanning subgraph of high minimum degree
of a superregular graph G′. We will apply Corollary 10.5 twice in the proof of Lemma 11.4. As
we will see later on, working with the k-factor has the advantage that while we may not be able
to apply Lemmas 10.1 and 10.2 to the graph G under consideration directly, we can apply them
(or more precisely the ‘moreover’ parts) to this k-factor.

Lemma 10.4. Let d, ε be constants such that 0 < ε < 1/3 and 2ε � d � 1. Let G′ be a (d, ε)-
regular bipartite graph with vertex classes A and B , where |A| = |B| = m. Let G be a spanning
subgraph of G′ with minimum degree δ(G) � 2dm/3. Then G has a perfect matching.

Proof. Consider any set I ⊆ A. We will show that |NG(I)| � |I |. Then G contains a perfect
matching by Hall’s theorem. Clearly, we may assume that |I |, |NG(I)| � δ(G) � εm. Also, the
number eG(I,NG(I)) of edges in G between I and NG(I) satisfies

eG

(
I,NG(I)

)
� δ(G)|I | � 2

3
dm|I |.

On the other hand, the (d, ε)-regularity of G′ implies that

eG

(
I,NG(I)

)
� (1 + ε)d|I |∣∣NG(I)

∣∣ <
4

3
d|I |∣∣NG(I)

∣∣.
Combining these inequalities shows that |NG(I)| > m/2. Thus we may now assume that |I | >

m/2. Put Ĩ := B \ NG(I). Clearly, we may assume that Ĩ �= ∅. Thus |NG(Ĩ )| � δ(G) � εm and
so we may assume that |I | � (1 − ε)m. This in turn shows that we may assume that |Ĩ | � εm.
Thus the above double counting argument applied to Ĩ instead of I shows that |NG(Ĩ )| > m/2.
But this is a contradiction, as NG(Ĩ ) ⊆ A \ I . �

The following corollary follows immediately by repeated applications of Lemma 10.4.

Corollary 10.5. Let d, ε be constants such that 0 < ε < 1/3 and 2ε � d � 1. Let G′ be a
(d, ε)-regular bipartite graph with vertex classes A and B , where |A| = |B| = m. Let G be a
spanning subgraph of G′ with minimum degree δ(G) � θdm where θ � 2/3. Then G contains a
�(θ − 2/3)dm�-factor.

11. Finding a loose Hamilton path in the remainder of each triple

Our aim now is to find for each k a loose path Q∗
k which contains all the vertices in

Wk := X∗∗
k ∪ Y ∗∗

k ∪ Z∗∗
k ∪ X′′

k ∪ Y ′′
k ∪ Z′′

k ,

starts in x∗
k , ends in yk = y∗

k and avoids all vertices outside Wk except for x∗
k and y∗

k . (Recall
that x∗

k was an endpoint of the kth bridge and yk = y∗
k was an endpoint of the (k − 1)th bridge.

Moreover, recall that the sets X∗∗
k , Y ∗∗

k and Z∗∗
k were the ‘leftover vertices’ defined in Lemma 9.1

and that the sets X′′
k , Y ′′

k and Z′′
k were the random sets set aside in Section 8.1.) The union of all

these paths Qk and all the bridges will form the desired loose Hamilton cycle in H.
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So let us consider any k. In what follows, we will write W for Wk , Q∗ for Q∗
k , X∗∗ for X∗∗

k ,
etc. The existence of Q∗ will be proved in two steps. In Section 11.1 we first find a Hamilton
path R∗ in Grich := P rich

X′Y ′ [X∗∗ ∪ X′′ ∪ Y ∗∗ ∪ Y ′′] which starts in some neighbour x′′ of y∗ in X′′
and ends in some neighbour y′′ of x∗ in Y ′′. In Section 11.2 we then show that we have chosen
R∗ in such a way that x∗R∗y∗ can be extended to the desired loose path Q∗ as follows: there
will be a bijection between Z′′ ∪ Z∗∗ and the edges of x∗R∗y∗ such that if z ∈ Z′′ ∪ Z∗∗ is
sent to xy ∈ x∗R∗y∗ then xyz is a hyperedge of H. For this to work we need that |Z∗∗ ∪ Z′′| =
e(x∗R∗y∗) = 2|X∗∗ ∪ X′′| + 1. But this holds since we adjusted the sizes of the triples by our
‘equalising path’ in Lemma 9.1.

To show the existence of the desired bijection we will consider an auxiliary bipartite graph H ∗
whose first vertex class consists of the set of edges of R∗ and whose other vertex class consists
of Z∗∗ ∪ Z′′. We put an edge between xy ∈ R∗ and z if xyz forms a hyperedge of HP . We then
show that H ∗ contains a perfect matching using Hall’s theorem.

11.1. Finding the Hamilton path R∗

Recall from Section 5.3 that

ε = 50
√

ε′, ν = 105
√

ξ . (20)

Put n̄ := |X∗∗ ∪ X′′|. Then by (18) and (12)

|X′′| + 2
√

ξm = n̄ � |X′′| = m1 = m/100. (21)

Choose random subsets Xr and Y r of X′′ and Y ′′, respectively, such that∣∣Xr
∣∣ = ∣∣Y r

∣∣ = ν|X′′| = ν|Y ′′| � νn̄. (22)

Recall that PX′Y ′ is (d,
√

ε′ )-superregular by Proposition 7.16(ii). Moreover, in Section 8.1 we
obtained X′′ from a random partition of X′ where |X′′| = m/100 � 3|X′|/100. Together with
Lemma 4.1 this implies that we may assume that PX′Y ′ [X′′ ∪Y ′′] is (d,40

√
ε′ )-superregular. By

a similar argument we may assume that

G0 := PX′Y ′
[(

X′′ \ Xr
) ∪ (

Y ′′ \ Y r
)]

is (d,50
√

ε′ )-superregular, i.e. (d, ε)-superregular. Moreover, we have that∣∣Xr
∣∣ = ∣∣Y r

∣∣ = νm

100
= 103

√
ξm � 3 × 103

√
ξ |X′|. (23)

The Hamilton path R∗ will be found in several steps. In Lemma 11.3 we choose two disjoint
random perfect matchings M1 and M2 in G0. The resulting 2-factor M1 ∪ M2 will consist of
only a few cycles. We then delete the poor and unhappy edges from this 2-factor and at most
one edge from each cycle to obtain a small number of paths. We call the collection of these
paths P . In Lemma 11.4 we will extend these paths into a 2-factor of the larger graph P rich

X′Y ′ [X∗∗∪
X′′ ∪ Y ∗∗ ∪ Y ′′]. This 2-factor is then transformed into the desired Hamilton path R∗ by altering
only a few edges. Theorem 10.3 implies that M1 ∪ M2 contains a significant number of vertices
of the link graph Lrich

z for all z ∈ Z′′ ∪ Z∗∗ and thus this is also true for R∗. In other words,
the auxiliary bipartite graph H ∗ has high minimum degree (see Lemma 11.10), which is one
of the properties we need in order to ensure that H ∗ contains a perfect matching. We cannot
apply Theorem 10.3 directly to the graph P rich

X′Y ′ [X∗∗ ∪ X′′ ∪ Y ∗∗ ∪ Y ′′] as this is not sufficiently
regular, which is the reason why we find a 2-factor in G0 first and then use this to find a 2-factor
of P rich′ ′ [X∗∗ ∪ X′′ ∪ Y ∗∗ ∪ Y ′′].
X Y
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Definition 11.1 (Ne and Fe). Given an edge e = xy ∈ PX′Y ′ , we write Ne := NPXZ
(x) ∩

NPYZ
(y) ∩ Z′′. Furthermore, we denote by Fe the set of all those edges e′ = x′y′ ∈ PX′Y ′ which

are disjoint from e and satisfy |Ne ∩ Ne′ | � (1 + 6ξ)d4|Z′′|.

The following proposition will enable us to choose our Hamilton path R∗ so that for all of its
edges e, R∗ does not contain too many edges from Fe. This will be one of the properties we need
to ensure that the auxiliary graph H ∗ contains a perfect matching.

Proposition 11.2. Suppose that x ∈ X′ and y ∈ Y ′ are such that the edge e := xy is not unhappy.
Then all but at most ε2|X| vertices x′ ∈ X′ are incident to at most ε2|X| edges in Fe.

Proof. Since e = xy is not unhappy, we know that∣∣NPXZ
(x) ∩ NPYZ

(y) ∩ Z′∣∣ � (1 + ε′)2d2|Z| � (1 + 3ξ)d2|Z′|
(use Definition 7.14 and the fact that |Z| � |Z′|/(1 − 2ξ) by Proposition 7.16(i)). Since Z′′
was obtained by considering a random subset of Z′, Lemma 4.1 shows that we may assume that
|Ne| � (1+4ξ)d2|Z′′|. But since PXZ is (d, ε′)-superregular by (P1), this implies that there are at
most ε′|X| � ε2|X| vertices x′ ∈ X′ for which |Ne ∩NPXZ

(x′)| � (1 + 5ξ)d3|Z′′|. We claim that
any vertex x′ ∈ X′ with |Ne ∩NPXZ

(x′)| � (1 + 5ξ)d3|Z′′| is incident to at most ε′|Y | = ε′|X| �
ε2|X| edges in Fe. This is true since by (P1) the graph PYZ is (d, ε′)-superregular and thus there
are at most ε′|Y | vertices y′ ∈ Y ′ for which |Ne ∩ NPXZ

(x′) ∩ NPYZ
(y′)| � (1 + 6ξ)d4|Z′′|. �

We now apply the following lemma to obtain two perfect matchings M1 and M2 in the
graph G0. Recall from Definition 7.2 that HP denotes the subhypergraph of H whose vertex set
is X∪Y ∪Z and whose hyperedges are those hyperedges of H which are triangles of the triad P .

Lemma 11.3. G0 contains two edge-disjoint perfect matchings M1 and M2 such that each of
them satisfies the following properties:

(i) For every vertex z ∈ Z′′ ∪ Z∗∗ the matching Mi meets the link graph Lrich
z in at least

(1 − η1)αd2n̄ edges.
(ii) For at most

√
ξ n̄2 pairs z, z′ ∈ Z′′ ∪Z∗∗ there are more than (1 + η1)α

2d4n̄ edges xy ∈ Mi

for which both xyz and xyz′ are hyperedges of HP .
(iii) For every vertex z ∈ Z′′ ∪ Z∗∗ there are at most εn̄ other vertices z′ ∈ Z′′ ∪ Z∗∗ such that

Mi contains more than (1 + η1)d
4n̄ edges xy for which both xyz and xyz′ are hyperedges

of HP .
(iv) |Mi ∩ Fe| � 170εn̄ for every edge e ∈ PX′Y ′ which is not unhappy.
(v) Mi contains at most ξ n̄ edges which are poor or unhappy.

(vi) The 2-factor M1 ∪ M2 contains at most n̄/(log n̄)1/5 cycles.

Proof. Let M1 be a perfect matching in G0 which is chosen uniformly at random. Let M2 be a
perfect matching in G0 − M1 chosen uniformly at random. We will show that with high proba-
bility M1 and M2 have the desired properties.

Let us first show that the probability that (i) fails for M1 is exponentially small in |M1|. Recall
that X′′ was a random subset of X′ of size m/100 � 3|X′|/100 and that Xr was a random subset
of X′′ of size ν|X′′|. Moreover, recall that by Proposition 7.16(iv) the graph Lrich

z is (αd,4ξ)-
regular and the sizes of its vertex classes are as described there. Together with Lemma 4.1 this
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implies that we may assume that Lrich
z ∩ G0 = Lrich

z [(X′′ \ Xr) ∪ (Y ′′ \ Y r)] is still (αd,150ξ)-
regular and that both its vertex classes

X′′
z := NPXZ

(z) ∩ (
X′′ \ Xr

)
and Y ′′

z := NPYZ
(z) ∩ (

Y ′′ \ Y r
)

satisfy

(1 − 3δ1)d
∣∣X′′ \ Xr

∣∣ �
∣∣X′′

z

∣∣ � (1 + 3δ1)d
∣∣X′′ \ Xr

∣∣ (24)

and

(1 − 3δ1)d
∣∣Y ′′ \ Y r

∣∣ �
∣∣Y ′′

z

∣∣ � (1 + 3δ1)d
∣∣Y ′′ \ Y r

∣∣. (25)

Thus Theorem 10.3 applied with G := G0, H := Lrich
z ∩ G0 and η3

1 playing the role of η (and so
with ν close to αd2) gives that for every vertex z ∈ Z′′ ∪ Z∗∗ the probability that M1 meets less
than (1 − η2

1)αd2|M1| edges of Lrich
z is at most e−ε|M1|. Since

n̄ = |M1| +
∣∣X∗∗∣∣ + ∣∣Xr

∣∣ (18),(22)

� |M1| + 2
√

ξm + νn̄
(20)

� |M1| + 106
√

ξ n̄

(4)

� |M1| + η1n̄/2, (26)

we have (1 − η2
1)αd2|M1| � (1 − η1)αd2n̄. Thus the probability that (i) fails for M1 is at most

|Z|e−ε|M1| � e−ε|M1|/2.
Similarly, Proposition 7.16(vi), Lemma 4.1 and Theorem 10.3 (applied with H := L′

zz′ ∩ G0

and so with ν close to α2d4) together imply that we may assume that for all but at most 2ξ |Z′|2 �√
ξ n̄2 pairs z, z′ ∈ Z′′ ∪Z∗∗ the probability that M1 meets L′

zz′ in more than (1+η1)α
2d4n̄ edges

is at most e−ε|M1|. This means that with probability at most |Z|2e−ε|M1| � e−ε|M1|/2 condition (ii)
fails for M1.

Let us now show that with exponentially small probability (iii) fails for M1. Fix any z ∈
Z′′ ∪ Z∗∗. Since by (P1) both PXZ and PYZ are (d, ε′)-superregular, (24) and (25) together
imply that there are at most 4ε′|Z| � εn̄ vertices z′ ∈ Z′′ ∪ Z∗∗ for which either (1 − ε′)d|X′′

z | �
|X′′

z ∩X′′
z′ | � (1+ε′)d|X′′

z | does not hold or for which (1−ε′)d|Y ′′
z | � |Y ′′

z ∩Y ′′
z′ | � (1+ε′)d|Y ′′

z |
does not hold. Let Z ⊆ Z′′ ∪ Z∗∗ denote the set of all the other vertices in Z′′ ∪ Z∗∗. Then for
each vertex z′ ∈ Z the subgraph Hzz′ of G0 induced by X′′

z ∩ X′′
z′ and Y ′′

z ∩ Y ′′
z′ is still (d,

√
ε )-

regular (this holds since G0 is (d, ε)-superregular). It suffices to show that for each z′ ∈ Z the
probability that M1 contains at least (1+η1)d

4n̄ edges xy ∈ M1 for which both xyz and xyz′ are
hyperedges of HP is at most e−ε|M1|. But this holds since Theorem 10.3 applied with G := G0
and H := Hzz′ implies that the probability that M1 meets Hzz′ in more than (1+η1)d

4|M1| edges
is at most e−ε|M1|. But (1 + η1)d

4|M1| � (1 + η1)d
4n̄.

Proposition 11.2 and Lemma 10.1 together imply that (iv) fails for M1 with probability at
most n̄2e−ε|M1| � e−ε|M1|/2. (Apply Lemma 10.1 with Δ′ := 18ε, G := G0 and with the graph
consisting of the edges in Fe playing the role of F .)

Let us now consider (v). Proposition 7.6 states that the number of poor edges is at most
2δd|X||Y |. Thus all but at most 2

√
δ|X| � δ1/3|X′′ \ Xr | vertices in X′′ are incident to at

most
√

δd|Y | � δ1/3d|Y ′′ \ Y r | poor edges. Similarly, by Proposition 7.15(i) all but at most
4
√

ε′|X| � (ε′)1/3|X′′ \ Xr | vertices in X are incident to at most
√

ε′|Y | � (ε′)1/3|Y ′′ \ Y r | un-
happy edges. Altogether this implies that at most 2δ1/3|X′′ \Xr | vertices in |X′′ \Xr | send more
that 2δ1/3d|Y ′′ \ Y r | edges to Y ′′ \ Y r which are either poor or unhappy. Thus we can apply
Lemma 10.1 (where the role of F is played by the subgraph of G0 consisting of the poor and
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unhappy edges) to conclude that (v) fails for M1 with probability at most e−ε|M1|. (Recall that
δ � ξ by (4).)

Combining everything we proved so far shows that the probability that one of (i)–(v) fails for
M1 is at most 5e−ε|M1|/2 < 1. Thus there is an outcome for M1 which satisfies (i)–(v). Fix any
such M1 and consider a matching M2 chosen uniformly at random in G0 − M1. Since deleting
M1 hardly changes the graph G0, it follows similarly as before that each of (i)–(v) fails for M2
with exponentially small probability. Moreover, Lemma 10.2 implies that the probability that (vi)
fails is also exponentially small. Thus there exists an outcome for M2 which satisfies (i)–(vi). �

We now consider the 2-factor M1 ∪ M2. Delete all the poor and all the unhappy edges con-
tained in M1 ∪M2. Now delete one edge from each remaining cycle in M1 ∪M2. Lemma 11.3(v)
and (vi) together imply that we deleted at most 2ξ n̄ + n̄/(log n̄)1/5 � 3ξ n̄ edges from M1 ∪ M2.
Let P be the set of all the paths in M1 ∪ M2 obtained in this way together with all the trivial
paths consisting of the vertices in X∗∗ ∪ Y ∗∗. Note that

|P| � ∣∣X∗∗∣∣ + ∣∣Y ∗∗∣∣ + 3ξ n̄
(18)

� 5
√

ξm. (27)

The following lemma shows that we can add a set E′ of edges to the paths in P to obtain a
2-factor K with vertex set X′′ ∪ X∗∗ ∪ Y ′′ ∪ Y ∗∗ which consists of few cycles. (Our desired
Hamilton path R∗ will be obtained from K by changing a few of its edges.) Moreover, no edge
in E′ will be poor or unhappy and E′ ∩ Fe will be small for each edge e ∈ PX′Y ′ which is not
unhappy.

Lemma 11.4. There exists a set E′ ⊆ E(PX′Y ′) of edges which satisfies the following properties:

(i) Together with the edges in E′ the paths in P form a 2-factor K in PX′Y ′ [X′′ ∪ X∗∗ ∪ Y ′′ ∪
Y ∗∗]. Thus the vertex classes of K are X′′ ∪ X∗∗ and Y ′′ ∪ Y ∗∗.

(ii) K consists of at most n̄/(log n̄)1/5 cycles.
(iii) E′ avoids all the poor and all the unhappy edges.
(iv) |E′ ∩ Fe| � εn̄ for every edge e ∈ PX′Y ′ which is not unhappy.
(v) |E′| � 4νn̄.

The proof of the lemma consists of 2 steps: First we find a set MPr of independent edges
which form a set of paths of odd length (called P ′) together with P . The set of vertices lying in
some path from P ′ will be X′′ ∪ X∗∗ ∪ Y ′′ ∪ Y ∗∗. In the second step we find a perfect matching
M ′ between the sets S′ ⊆ X′′ ∪X∗∗ and T ′ ⊆ Y ′′ ∪Y ∗∗ of endvertices of the paths from P ′. Both
matchings MPr and M ′ will be chosen randomly. We will then set E′ := MPr ∪ M ′.

Proof. Let S be the set of all those endvertices of the paths from P which lie in X∗∗ ∪ (X′′ \Xr).
Similarly, let T be the set of endvertices of the paths from P in Y ∗∗ ∪ (Y ′′ \ Y r). Fix a set S̃ ⊆ S

which contains all the vertices in S that are trivial paths in P as well as one endvertex of every
nontrivial path in P which starts and ends in S (and which therefore has an even number of
edges). Define T̃ ⊆ T similarly. It is easy to see that |S̃| = |T̃ |. Also, note that

|S̃| � |P| (27)

� 5
√

ξm. (28)

Recall that P rich
X′Y ′ was defined in Proposition 7.16(vii) to be the subgraph obtained from PX′Y ′

by deleting all the poor and unhappy edges. We proved that P rich′ ′ is (d,5δ0)-superregular. For

X Y
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Fig. 7. The vertex class S′ of the matching M ′ and the class Xr ∪ S̃ of the matching MPr . The ‘square’ vertices are
endpoints of paths of positive even length in P and are not contained in S′ . The edges which are indicated all lie in paths
from P .

convenience, let P r := P rich
X′Y ′ [Xr ∪ S̃ ∪Y r ∪ T̃ ]. Let us first show that the minimum degree of P r

is large. Recall that both Xr and Y r were obtained by considering a random partition of X′′ and
Y ′′ and that in turn X′′ and Y ′′ were obtained by considering a random partition of X′ and Y ′.
Thus Lemma 4.1 implies that we may assume that the minimum degree of P r satisfies

δ
(
P r

)
�

(
1 − √

δ0
)
d
∣∣Xr

∣∣ = (
1 − √

δ0
)
d
∣∣Xr ∪ S̃

∣∣ · |Xr |
|Xr ∪ S̃|

(23),(28)

�
(
1 − √

δ0
)
d
∣∣Xr ∪ S̃

∣∣ · 103√ξm

103
√

ξm + 5
√

ξm

� 9

10
d
∣∣Xr ∪ S̃

∣∣.
The reason we set aside the random sets Xr and Y r at the beginning of this section is precisely
that we can guarantee that the graph P r (as well as the graph P ′ defined later on) has large
minimum degree. This would not necessarily be true if Xr = Y r = ∅.

Since PX′Y ′ is (d,
√

ε′ )-superregular by Proposition 7.16(ii) and |Y r ∪ T̃ | = |Xr ∪ S̃| � |Xr | �
103√ξ |X′| by (23), its subgraph PX′Y ′ [Xr ∪ S̃ ∪ Y r ∪ T̃ ] is still (d,

√
ε′/(103√ξ ))-regular and

thus (d,
√

ε )-regular (use that
√

ε′/(103√ξ ) � √
ε ). Since P r is a subgraph of PX′Y ′ [Xr ∪ S̃ ∪

Y r ∪ T̃ ] we may apply Corollary 10.5 to obtain a d|Xr ∪ S̃|/5-factor in P r . Denote it by Gr .
For each edge e ∈ PX′Y ′ which is not unhappy, we now apply Lemma 10.1 with Δ′ := 18ε and

where Gr plays the role of G and the subgraph of Gr consisting of the edges in Fe ∩E(Gr) plays
the role of F . (Recall that Fe was introduced in Definition 11.1.) Together with Proposition 11.2
this guarantees a perfect matching MPr in P r such that

|MPr ∩ Fe| � 170ε|MPr | � εn̄/2 (29)

for every edge e ∈ PX′Y ′ which is not unhappy. Indeed, the last inequality follows from the fact
that

|MPr | = ∣∣Xr
∣∣ + |S̃| (22),(28)

� νn̄ + 5
√

ξm
(20), (21)

� 2νn̄. (30)

We add all the edges in MPr to the paths in P and denote by P ′ the set of paths thus obtained.
Hence all the paths in P ′ have odd length. In particular, none of the paths is trivial. Let S′ ⊆
X′′ ∪ X∗∗ and T ′ ⊆ Y ′′ ∪ Y ∗∗ be the sets of endvertices of the paths in P ′ (Fig. 7). Note that
Xr ⊆ S′, Y r ⊆ T ′ and∣∣S′ \ Xr

∣∣ = ∣∣T ′ \ Y r
∣∣ � |P| (27)

� 5
√

ξm. (31)
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(Indeed, S′ \ Xr is obtained from S by deleting those vertices in S̃ which are endpoints of paths
in P having positive even length.) Next we will construct an auxiliary matching M ′

1 between S′
and T ′ as follows. Label the paths in P ′ from 1 to |P ′|. This induces a labelling of the vertices
in S′ from 1 to |P ′|. Since all the paths in P ′ have (positive) odd length, every label occurs
precisely once in S′. Similarly, we have a labelling of T ′. This gives us a perfect matching M ′

1
between S′ and T ′ (we match the vertices with the same label). Thus each edge in M ′

1 joins the
two endvertices of some path in M ′

1 and vice versa.
Our aim now is to find a perfect matching M ′ between S′ and T ′ which avoids both the paths

in P ′ and the matching M ′
1 and which is such that the 2-factor obtained by adding the edges

in M ′ to the paths in P ′ has the properties required in the lemma. (The set E′ in the lemma
will then be MPr ∪ M ′.) The matching M ′ will be chosen at random inside a regular spanning
subgraph of P ′ := P rich

X′Y ′ [S′ ∪T ′]− (M ′
1 ∪E(

⋃
P ′)). To find this regular spanning subgraph, we

will apply Corollary 10.5 again. Thus we first need to show that P ′ contains a spanning regular
subgraph whose degree is sufficiently large. But this follows similarly as the analogous assertion
for P r which we proved at the beginning of the proof of Lemma 11.4. Indeed, together with (31)
a similar argument as there shows that P ′ contains a spanning d|S′|/5-factor P ′′.

Let M ′ be a perfect matching in P ′′ chosen uniformly at random. Let K denote the 2-factor
obtained from P ′ by adding the edges in M ′ and put E′ := MPr ∪M ′. Then K satisfies (i) and E′
satisfies (iii). The latter holds since both MPr and M ′ consist of edges in P rich

X′Y ′ and thus contain
neither poor nor unhappy edges by the definition of P rich

X′Y ′ (cf. Proposition 7.16(vii)). Also (v) is
satisfied since

|E′| = |MPr | + |M ′| = |MPr | + |S′| (31)

� |MPr | + ∣∣Xr
∣∣ + 5

√
ξm

(22),(30)

� 2νn̄ + νn̄ + 5
√

ξm
(20),(21)

� 4νn̄.

Moreover, if we apply Lemma 10.1 in the same way as in the proof of (29), we see that (iv) holds
with probability at least 3/4.

We now wish to prove that with large probability M ′ is such that (ii) holds. Lemma 10.2 with
G := P ′′ applied to M ′

1 and the random perfect matching M ′ shows that with probability at least
3/4 they form a 2-factor in the graph P ′′ ∪ M1 which has most |S′|/(log |S′|)1/5 � n̄/(log n̄)1/5

cycles. Since for each path in P ′ there is an edge in M ′
1 which joins the two endvertices of that

path, this immediately implies that with probability at least 3/4 the graph K = (
⋃

P ′) ∪ M ′
contains at most n̄/(log n̄)1/5 cycles. Thus altogether this shows that the probability that M ′ (and
thus K and E′) has the desired properties is greater than zero. �

Recall that

Grich := P rich
X′Y ′

[
X′′ ∪ X∗∗ ∪ Y ′′ ∪ Y ∗∗].

So K is a 2-factor of Grich as K avoids all the poor and unhappy edges. Since X′′ and Y ′′ were
obtained by a considering a random partition of X′ and Y ′, Lemma 4.1 and 7.16(vii) together
imply that we may assume that for every vertex of Grich, the number of neighbours is at least
(1 − 6δ0)d|X′′|, which is at least 99dn̄/100 by (21). In particular,

δ
(
Grich) � 99dn̄/100. (32)

Our aim now is to transform the 2-factor K guaranteed by Lemma 11.4 into a cycle on the same
set of vertices which meets neither poor nor unhappy edges. Moreover, it will be important that
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this can be done by changing at most O(n̄/(log n̄)1/5 edges. This would be quite simple if we
knew that Grich is (d, ε)-regular, say. Unfortunately, we cannot guarantee this and so we will
proceed as follows. Choose any cycle of K , delete an edge on this cycle and let R denote the
path thus obtained. If one of the endvertices of R, x say, has a Grich-neighbour, z say, on some
other cycle C in K , then we extend R by adding the edge xz as well as C and by deleting one
of the two edges on C incident to z. Note that, since all the cycles in K have even length, the
extension of R obtained in this way has odd length, just as R does.

We continue in this fashion until we have obtained a path R whose endvertices x ∈ X′′ ∪ X∗∗
and y ∈ Y ′′ ∪ Y ∗∗ have all their Grich-neighbours on R. We view R as being directed from
x to y. Every vertex in R except x has a unique predecessor in R. Let S−

x denote the set of
predecessors of the Grich-neighbours of x on R and let S+

y denote the set of successors of the

Grich-neighbours of y on R. If one of the vertices in S−
x ∪ S+

y has a Grich-neighbour on some
cycle C of K − R, then it is easy to verify that we may extend R further by incorporating the
vertices of C. Thus we may assume that NGrich(S−

x ),NGrich(S+
y ) ⊆ V (R). The following lemma

implies that |NGrich(S−
x )| � n̄/2. (To see this, use that S−

x lies in the vertex class X′′ ∪X∗∗ of Grich

and |S−
x | � δ(Grich) � 99dn̄/100. Take I to be the entire other vertex class of Grich.) Thus

|R| � n̄.

Lemma 11.5. Suppose that A and I are subsets of V (Grich) which lie in different vertex classes
of Grich. Furthermore, suppose that |A| � dn̄/105 and |I | � n̄/105. Then |NGrich(A)∩I | � |I |/2.

Proof. It suffices to consider the case when A ⊆ X′′ ∪ X∗∗ and I ⊆ Y ′′ ∪ Y ∗∗. The argument
for the other case is analogous. Recall that by Proposition 7.16(ii) the graph PX′Y ′ is (d,

√
ε′ )-

superregular and thus (d, ε)-superregular by (20). Hence in the graph PX′Y ′ , we know that for
all but at most 2ε|X′| � √

ε|A| vertices a ∈ A the number of neighbours of a in I lies between
(1 − ε)d|I | and (1 + ε)d|I |. Of course, some of these neighbours may not be neighbours of a

in Grich. However, since by Proposition 7.16(vii) the graph P rich
X′Y ′ is (d,5δ0)-superregular and

PX′Y ′ is (d, ε)-superregular, every vertex in A is incident to at most (5δ0 + ε)d|Y ′| edges in
E(PX′Y ′) \ E(P rich

X′Y ′). Note that (5δ0 + ε)d|Y ′| �
√

δ0d|I | by (21). Thus for all but at most√
ε|A| vertices in A the number of Grich-neighbours in I is at least (1 − 2

√
δ0 )d|I |. Hence the

number erich(A, I) of edges between A and I in Grich satisfies

erich(A, I) �
(
1 − √

ε
)|A|(1 − 2

√
δ0

)
d|I |.

On the other hand, the (d, ε)-regularity of PX′Y ′ implies that

erich(A, I) � |A|∣∣NGrich(A) ∩ I
∣∣(1 + ε)d.

Combining the above two inequalities gives the desired result. �
The next lemma implies that either our path R can be made into a cycle on the same vertex

set by changing at most 9 edges or else R can be enlarged further by adding another cycle from
the 2-factor K and changing at most 6 edges.

Lemma 11.6. Suppose that R is a path of odd length in Grich such that all the Grich-neighbours
of its endvertices x and y lie on R, such that K − V (R) consists of cycles and such that |R| � n̄.
Then one of the following holds:
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(i) Grich contains a cycle C whose vertex set is V (R) and for which |E(R) � E(C)| � 9.
(ii) Grich contains a path R′ of odd length which is obtained from the union of R with some cycle

C ∈ K − V (R) by adding at most 3 edges in E(Grich) \ (E(R) ∪ E(C)), deleting one edge
on C and deleting at most 2 edges on R. In particular, K − V (R) consists of cycles.

Proof. Let J be a minimal initial segment of the path R when directed from x to y such that
|J ∩NGrich(x)| � |NGrich(x)|/2 or |J ∩NGrich(y)| � |NGrich(y)|/2. Denote by J the segment of R

which consists of all vertices not in J .
We first consider the case when |J | � |J | and |J ∩NGrich(x)| � |NGrich(x)|/2. The minimality

of J implies that |J ∩ NGrich(y)| � �|NGrich(y)|/2�. Let I be a minimal initial segment of J such
that |I ∩ NGrich(x)| � |NGrich(x)|/4 or |I | � |J |/2. Let I denote the segment of J which consists
of all the vertices not in I .

Let us first assume that |I | � |J |/2 and thus |I | � |R|/4 � n̄/4. Then the minimality of I

implies that |I ∩ NGrich(x)| � �|NGrich(x)|/4�. Let I−
x denote the set of all those vertices in I

which are predecessors of vertices in NGrich(x). Similarly, let Let J+
y denote the set of all those

vertices in J which are successors of vertices in NGrich(y). We may assume that all the Grich-
neighbours of the vertices in I−

x ∪ J+
y lie on R since otherwise we could modify R to obtain a

path R′ as in (ii). (Indeed, if for example a vertex v ∈ I−
x has a Grich-neighbour w on the cycle

D ⊆ K − V (R), then we take for R′ the path obtained from R ∪ D by adding the edge vw and
the edge between x and the successor v+ of v on R as well as by deleting the edge vv+ and one
of the edges on D incident with w.)

Partition I into two segments I1 and I2 whose size is as equal as possible such that I1 is an
initial segment of I . Lemma 11.5 now implies that∣∣NGrich

(
I−

x

) ∩ I1
∣∣ � n̄/100

and ∣∣NGrich

(
J+

y

) ∩ I2
∣∣ � n̄/100.

Indeed, to see for example the first inequality, apply Lemma 11.5 with I−
x playing the role of A

and I1 ∩ (Y ′′ ∪ Y ∗∗) playing the role of I . This can be done since |I−
x | � |NGrich(x) ∩ I | − 1 �

|NGrich(x)|/8 � δ(Grich)/8 � dn̄/10 by (32) and∣∣I1 ∩ (
Y ′′ ∪ Y ∗∗)∣∣ �

⌊|I1|/2
⌋

� |I |/8 � n̄/50.

Since n̄/102
(21)

� m/104 � 3|X′|/104 and since P rich
X′Y ′ is (d,5δ0)-regular, it follows that P rich

X′Y ′
contains an edge vw such that v is the predecessor of some vertex v′ ∈ NGrich(I−

x ) ∩ I1 on R and
w is the successor of some vertex w′ ∈ NGrich(J+

y ) ∩ I2. Then vw ∈ Grich and it is easy to see
that the path R can be modified to obtain a cycle C as in (i) (Fig. 8).

The proofs of all the remaining cases are similar. For instance in the case when
|J ∩ NGrich(y)| � |NGrich(y)|/2 and |J | � |J |, we now consider the successors of the Grich-
neighbours of x in J instead of the predecessors. Again, we can assume that all these successors
have all their Grich-neighbours on R since otherwise R could be modified into a path R′ satisfy-
ing (ii). But now, this path R′ would also contain a new edge incident to y (apart from 2 other
new edges, see Fig. 9).

Different types for the cycle C that can be obtained from a modification of R are shown in
Fig. 10. All remaining types can be obtained by exchanging x and y in Figs. 8 and 10. (For ex-
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Fig. 8. Modifying the path R to obtain a cycle C in the first case of the proof of Lemma 11.6.

Fig. 9. The path R′ in the case when |J ∩ N
Grich (y)| � |N

Grich (y)|/2 and |J | � |J |.

Fig. 10. Different types of cycles C which can be obtained by a modification of R.

ample, the first situation in Fig. 10 corresponds to the case when |J ∩NGrich(x)| � |NGrich(x)|/2,
|J | � |J | and |I | < |J |/2.) �

We apply Lemma 11.6 repeatedly until we are in case (i) of the lemma. Thus we have obtained
a cycle C in Grich whose length is at least |R| � n̄ and for which K − V (C) is a union of cycles.
The following lemma implies that if C is not yet a Hamilton cycle in Grich, then some cycle D

in K − V (C) must send an edge to C.
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Lemma 11.7. Suppose that C is a cycle of length at least n̄ in Grich such that K − V (C) is
nonempty and consists of cycles. Then Grich contains an edge between C and some cycle in K −
V (C).

Proof. Suppose not and put U := V (Grich) \ V (C) = V (K) \ V (C). Then |U | � δ(Grich) �
99dn̄/100 by (32). But U contains the same number of vertices in each vertex class of Grich;
and the same is true for C. Thus Lemma 11.5 applied with A := U ∩ (X′′ ∪ X∗∗) and I :=
C ∩ (Y ′′ ∪ Y ∗∗) implies the existence of an edge in Grich between U and C, a contradiction. �

If our cycle C is not yet a Hamilton cycle, we apply Lemma 11.7 to find an edge in Grich

between C and some cycle D in K \ V (C). We then consider any path obtained from C ∪ D

by adding this edge and deleting two suitable edges. We again call this path R. We then apply
Lemma 11.6 repeatedly until we obtain a new cycle. If this cycle is not yet a Hamilton cycle
in Grich we apply Lemma 11.7 again and continue. Continuing in this way we eventually obtain
a Hamilton cycle of Grich, which we again denote by C.

We will now modify C slightly to obtain a Hamilton path R∗ in Grich which will be as de-
scribed at the beginning of Section 11. To do this, we need the following lemma. It will enable
us to transform the Hamilton cycle C into a Hamilton path R∗ which ‘attaches’ to the bridge
vertices x∗ and y∗ (see Lemma 11.9(i)).

Lemma 11.8. Let C be a Hamilton cycle in Grich and let U,W ⊆ V (Grich) be two sets of size at
least dn̄/100 which are contained in different vertex classes of Grich. Then Grich has a Hamilton
path R which starts in U , ends in W and contains only 3 edges outside C.

Proof. Without loss of generality we may assume that U ⊆ Y ′′ ∪ Y ∗∗ and W ⊆ X′′ ∪ X∗∗. It
is easy to find disjoint sets U1 ⊆ U , W1 ⊆ W , I ⊆ Y ′′ ∪ Y ∗∗ and J ⊆ X′′ ∪ X∗∗ such that
|U1|, |W1| � dn̄/400 and |I |, |J | � n̄/16 and such that, for a suitable orientation

−→
C of C, the

vertices in U1, W1, I and J occur on
−→
C in the following order: first the vertices in U1, then the

vertices in W1, then the vertices in J and then those in I .
Let U ′

1 (respectively W ′
1) be the set of all successors of vertices in U1 (respectively W1) on

−→
C .

Lemma 11.5 implies that

∣∣NGrich

(
U ′

1

) ∩ I
∣∣ � |I |/2 � n̄/100

(21)

� m/104 � 3|Y ′|/104

and similarly that∣∣NGrich

(
W ′

1

) ∩ J
∣∣ � 3|X′|/104.

Together with the fact that P rich
X′Y ′ is (d,5δ0)-regular, this implies that P rich

X′Y ′ contains an edge u′′w′′
such that u′′ is the successor of some vertex u′ ∈ NGrich(U ′

1)∩I and w′′ is the predecessor of some
vertex w′ ∈ NGrich(W ′

1) ∩ J . In particular, u′′w′′ ∈ Grich. Let u+ (respectively w+) be a Grich-
neighbour of u′ (respectively w′) in U ′

1 (respectively W ′
1). Let u and w be the predecessors of u+

and w+. Then P := u
←−
Cu′′w′′←−Cw+w′−→Cu′u+−→

Cw is a Hamilton path as required (Fig. 11). �
Recall that the bridge vertices x∗ and y∗ are (still) useful and that the link graph L′

x∗ was
defined in Lemma 7.16(v). Put Y ′′

x∗ := Y ′′ ∩ V (L′
x∗) = Y ′′ ∩ NPXY

(x∗), Z′′
x∗ := Z′′ ∩ V (L′

x∗) =
Z′′ ∩ NPXZ

(x∗) and let L′′
x∗ be the subgraph of L′

x∗ induced by Y ′′
x∗ and Z′′

x∗ . Define X′′
y∗ , Z′′

y∗
and L′′

y∗ similarly. Since x∗ is a useful vertex, the graph L′
x∗ is (αd,4ξ)-regular and its vertex
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Fig. 11. Modifying the Hamilton cycle C to obtain R∗ .

class Y ′
x∗ satisfies |Y ′

x∗ | � (1 − ε′)d|Y ′| (cf. Definitions 7.17 and 7.18). Since Y ′′ was obtained
by considering a random subset of Y ′ of size m/100 � 3|Y ′|/100 and since Z′′ was obtained by
considering a random subset of Z′ of size 2m/100 � 3|Z′|/100, Lemma 4.1 implies that we may
assume that L′′

x∗ is still (αd,150ξ)-regular and |Y ′′
x∗ | � (1 − ε)d|Y ′′|. Similarly, we may assume

that L′′
y∗ is (αd,150ξ)-regular and |X′′

y∗ | � (1 − ε)d|X′′|.
Let Y(x∗) be the set of all those vertices in Y ′′

x∗ which have at least αd|Z′′
x∗ |/2 neighbours

in Z′′
x∗ . Define X(y∗) ⊆ X′′

y∗ similarly. Since both L′′
x∗ and L′′

y∗ are (αd,150ξ)-regular we have∣∣Y (
x∗)∣∣ � (1 − 150ξ)

∣∣Y ′′
x∗

∣∣ � (1 − 150ξ)(1 − ε)d|Y ′′| � dn̄/2

and ∣∣X(
y∗)∣∣ � (1 − 150ξ)

∣∣X′′
y∗

∣∣ � (1 − 150ξ)(1 − ε)d|X′′| � dn̄/2.

Lemma 11.8 now implies that our Hamilton cycle C of Grich can be modified into a Hamilton
path R∗ of Grich which starts in some vertex y′′ ∈ Y(x∗), ends in some vertex x′′ ∈ X(y∗) and
contains only 3 edges outside C. By definition of Y(x∗) and X(y∗) we can find vertices z∗

x ∈ Z′′
x∗

and z∗
y ∈ Z′′

y∗ such that z∗
x �= z∗

y , y′′z∗
x ∈ L′′

x∗ and x′′z∗
y ∈ L′′

y∗ . But this means that both x∗y′′z∗
x

and y∗x′′z∗
y are hyperedges of HP ⊆ H. For later reference, we summarise the properties of R∗

in the following lemma.

Lemma 11.9. The path R∗ has the following properties:

(i) R∗ is a Hamilton path in Grich. Thus the vertex set of R∗ is X′′ ∪ X∗∗ ∪ Y ′′ ∪ Y ∗∗. The
endvertices of R∗ are x′′ ∈ X′′ and y′′ ∈ Y ′′. There are two distinct vertices z∗

x, z
∗
y ∈ Z′′

such that both x∗y′′z∗
x and y∗x′′z∗

y are hyperedges of H.
(ii) R∗ avoids all the poor and all the unhappy edges.

(iii) |E(R∗) \ (M1 ∪ M2)| � 106√ξ n̄.
(iv) All but at most 20n̄/(log n̄)1/5 edges in (M1 ∪ M2) \ E(R∗) are poor or unhappy.
(v) |E(R∗) ∩ Fe| � 350εn̄ for every edge e ∈ Fe which is not unhappy.

Proof. Properties (i) and (ii) are clear from the construction of R∗. To check (iii), recall that
R∗ was obtained from the union M1 ∪ M2 of the random matchings M1 and M2 as follows. We
first deleted some edges from M1 ∪ M2 to obtain the set of paths P . As noted in the paragraph
before (27), in this step we deleted at most 2ξ n̄ edges which are poor or unhappy and at most
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n̄/(log n̄)1/5 further edges. We then applied Lemma 11.4 to add a set E′ of at most 4νn̄ = 4 ×
105√ξ n̄ edges to obtain a 2-factor K with at most n̄/(log n̄)1/5 cycles. Finally, we changed at
most 19n̄/(log n̄)1/5 edges of K to obtain R∗ (with room to spare in the constant). So altogether
R∗ contains at most 106√ξ n̄ edges not in M1 ∪ M2, as required in (iii). Moreover, the above
argument shows that (iv) holds too. To verify (v), use that E(R∗) is obtained from a subset
of M1 ∪ M2 ∪ E′ by adding at most 19n̄/(log n̄)1/5 edges. Thus (v) follows immediately from
Lemmas 11.3(iv) and 11.4(iv). �
11.2. Finding the loose path Q∗

The aim of this section is to show that there exists a loose path Q∗ as described at the begin-
ning of Section 11. We denote by Z′′′ the subset obtained from Z′′ ∪Z∗∗ by deleting the vertices
z∗
x and z∗

y guaranteed in Lemma 11.9(i). We consider the following bipartite auxiliary graph H ∗.
The vertex classes of H ∗ are Z′′′ and M := E(R∗). Two vertices z ∈ Z′′′ and xy ∈ M are joined
by an edge in H ∗ if xyz ∈HP . (Recall that HP was defined in Definition 7.2.) Put

n∗ := 2n̄ − 1.

Note that

|Z′′′| = |M| = n∗
since the definition of X′′, Y ′′,Z′′ in Section 8.1 together with Lemma 9.1 imply that∣∣Z′′ ∪ Z∗∗∣∣ = 2

∣∣X′′ ∪ X∗∗∣∣ + 1 = 2
∣∣Y ′′ ∪ Y ∗∗∣∣ + 1 = ∣∣E(

R∗)∣∣ + 2 = |M| + 2.

To prove the existence of the desired loose path Q∗, it suffices to show that H ∗ has a perfect
matching. To show the latter, we will check that H ∗ satisfies Hall’s condition. The intuition is
that H ∗ satisfies Hall’s condition because it looks like a random graph (and thus for instance
most pairs of vertices do not have many neighbours in common). We put

M ′ := (M1 ∪ M2) ∩ M and Z′′ := Z′′ ∩ Z′′′ = Z′′ \ {
z∗
x, z

∗
y

}
.

(Recall that M1 and M2 were matchings as in Lemma 11.3.)

Lemma 11.10. The bipartite graph H ∗ = (Z′′′,M) satisfies the following properties.

(i) For every vertex v ∈ M we have |NH ∗(v) ∩ Z′′| � (1 − η)αd2n∗. Similarly, for every vertex
z ∈ Z′′′ we have |NH ∗(v) ∩ M ′| � (1 − η)αd2n∗. In particular, the minimum degree of H ∗
is at least (1 − η)αd2n∗.

(ii) All but at most
√

ξn2∗ pairs z, z′ ∈ Z′′′ satisfy |NH ∗(z)∩NH ∗(z′)∩M ′| � (1 + η)α2d4|M ′|.
(iii) For every z ∈ Z′′′ there are at most 2εn∗ other vertices z′ ∈ Z′′′ for which |NH ∗(z) ∩

NH ∗(z′) ∩ M ′| � (1 + η)d4|M ′|.
(iv) For every v ∈ M there are at most 200εn∗ other vertices v′ ∈ M for which |NH ∗(v) ∩

NH ∗(v′) ∩ Z′′| � (1 + η)d4|Z′′|.
(v) |M| � |M ′| + 106√ξn∗.

Proof. To prove (i), recall that by Lemma 11.9(ii) no edge of R∗ is poor or unhappy. Thus, by
Definition 7.14, for every edge xy of R∗ there are at least (1 − η2)αd2|Z| vertices z ∈ Z′ such
that xyz is a hyperedge of HP . Since Z′′ was obtained by considering a random partition of Z′,
together with Lemma 4.1 this shows that we may assume that there are least (1 − η3/2)αd2|Z′′|
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vertices z ∈ Z′′ such that xyz is a hyperedge of HP . Since |Z′′| = |Z′′| − 2, this implies in that
H ∗ all the vertices in M = E(R∗) have at least (1 − η3/2)αd2|Z′′| − 2 neighbours in Z′′. But
(1 − η3/2)αd2|Z′′| − 2 � (1 − η)αd2n∗ since |Z∗∗| = 4

√
ξm + 1 by Lemma 9.1 and thus

n∗ = |Z′′′| = |Z′′| + ∣∣Z∗∗∣∣ − 2 � |Z′′| + 4
√

ξm = (
1 + 200

√
ξ

)|Z′′|
(use that |Z′′| = m/50 and ξ � η by (4)).

Now consider any vertex z ∈ Z′′′. By Lemma 11.3(i), M1 ∪ M2 ⊇ M ′ meets the link graph
Lrich

z in at least 2(1 − η1)αd2n̄ edges. Recall that by definition, Lrich
z does not contain poor

or unhappy edges. Thus Lemma 11.9(iv) implies that all but at most 20n̄/(log n̄)1/5 edges
in E(Lrich

z ) ∩ (M1 ∪ M2) belong to M ′ ⊆ M = E(R∗). But every edge in E(Lrich
z ) ∩ M ′ cor-

responds to a neighbour of z in H ∗. Thus in H ∗ the vertex z has at least 2(1 − η1)αd2n̄ −
20n̄/(log n̄)1/5 � (1 − η)αd2n∗ neighbours in M ′. (Recall that η1 � η by (4).) This completes
the proof of (i).

Properties (ii) and (iii) immediately follow from Lemma 11.3(ii) and (iii), respectively. To
check (iv), recall that every vertex v ∈ M stands for an edge e ∈ PX′Y ′ which is not unhappy.
Lemma 11.9(v) implies that the set M meets Fe in at most 350εn̄ � 200εn∗ edges. But if e′ :=
v′ ∈ M is such that |NH ∗(v)∩NH ∗(v′)∩Z′′| � (1 +η)d4|Z′′| then either e′ is one of the at most
2 edges in E(R∗) = M incident to e or else e′ ∈ Fe by Definition 11.1 and the fact that ξ � η

by (4). Finally, (v) follows immediately from Lemma 11.9(iii). �
Proposition 11.11. Let I ⊆ M be a set of size at least (1 − η)αd2n∗. Then |NH ∗(I )| � α2n∗/4.
Similarly, if Ĩ ⊆ Z′′′ is a set of size at least (1 − η)αd2n∗ then |NH ∗(Ĩ )| � α2n∗/4.

Proof. Put t := �α/(2d2)�. Lemma 11.10(iv) implies that I contains a set J of size t such that∣∣NH ∗(v) ∩ NH ∗(v′) ∩ Z′′∣∣ � (1 + η)d4|Z′′| � (1 + η)d4n∗
for all v �= v′ in J . (Indeed, t · 200εn∗ � |I | since ε � d � α∗ by (4) and since α � α∗/2 by
(P2) in Section 7.2. Thus, using Lemma 11.10(iv), we can find such a set J greedily.) Together
with Lemma 11.10(i) this shows that

∣∣NH ∗(I )
∣∣ �

∣∣NH ∗(J ) ∩ Z′′∣∣ � t · (1 − η)αd2n∗ −
(

t

2

)
(1 + η)d4n∗

= td2n∗
(

(1 − η)α − t − 1

2
(1 + η)d2

)

� α

2
n∗

(
(1 − η)α − α

4
(1 + η)

)
� α2n∗

4
,

as required. The proof for Ĩ is similar except that we now apply Lemma 11.10(iii) instead of (iv).�
Proposition 11.12. Let I ⊆ M be a set of size at least α2n∗/4 such that |NH ∗(I )| � (1 − 8η)n∗.
Then |NH ∗(I )| � |I |.

Proof. Set I ′ := I ∩ M ′. Since |M| � |M ′| + 106√ξn∗ by Lemma 11.10(v), we have

|I ′| � |I | − 106
√

ξn∗ � |I | − 106
√

ξ · 4|I |/α2 �
(
1 − 107

√
ξ/α2)|I | (4)

� (1 − η)|I |. (33)
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For the last inequality recall also that α � α∗/2 by (P2). Put N := NH ∗(I ′). We now double
count the paths of length two in H ∗ whose endvertices lie in N and whose midpoint lies in I ′.
Let f denote the number of these paths. Lemma 11.10(i) implies that

f �
∑
v∈I ′

(|NH ∗(v)|
2

)
� |I ′|

(
(1 − η)αd2n∗

2

)
� (1 − 2η)α2d4n2∗|I ′|/2.

On the other hand, using Lemma 11.10(ii) and (iii) we get

f �
∑

z,z′∈N

∣∣NH ∗(z) ∩ NH ∗(z′) ∩ M ′∣∣
� (1 + η)α2d4|M ′|

(|N |
2

)
+ √

ξn2∗(1 + η)d4|M ′| + 2εn2∗|M ′|

� (1 + 2η)α2d4|M ′| |N |2
2

� (1 + 2η)α2d4n∗
(1 − 8η)n∗|N |

2
.

(Indeed, to verify the 3rd line use that ε � d � ξ � η � α∗ by (4), α∗/2 � α by (P2) and
|N | � α2n∗/4 by Proposition 11.11. The last line follows since we assumed that |NH ∗(I )| �
(1 − 8η)n∗.) The lower and upper bound for f together imply that

|I | (33)

� 1

1 − η
|I ′| � (1 + 2η)(1 − 8η)

(1 − 3η)
|N | � |N | � ∣∣NH ∗(I )

∣∣
as required. �

We now can combine Lemma 11.10(i) with Propositions 11.11 and 11.12 to conclude that H ∗
has a perfect matching. As mentioned already at the beginning of Section 11.2, this implies the
existence of our desired loose path Q∗ and thus completes the proof of Theorem 1.1.

Lemma 11.13. The graph H ∗ contains a perfect matching.

Proof. We show that H ∗ satisfies Hall’s condition. Thus consider any I ⊆ M . We have to show
that |NH ∗(I )| � |I |. Clearly, this holds if |I | � δ(H ∗) or |I | > n∗ − δ(H ∗). Together with
Lemma 11.10(i) this shows that we may assume that (1 − η)αd2n∗ � |I | � (1 − (1 − η)αd2)n∗.
But then Proposition 11.11 applied to I and to Ĩ := Z′′′ \ NH ∗(I ) shows that Hall’s condi-
tion holds if |I | � α2n∗/4 or |I | > (1 − α2/4)n∗. Thus we may assume that |I | � α2n∗/4 and
|NH ∗(I )| � (1 − α2/4)n∗ � (1 − 8η)n∗ (to see the latter inequality use that η � α∗ by (4) and
α∗/2 � α by (P2)). But now Proposition 11.12 implies that Hall’s condition also holds in this
case. �
12. Perfect packings

12.1. Proof of Theorem 1.3

In this subsection, we briefly describe the modifications to the proof of Theorem 1.1 that need
to be made in order to obtain Theorem 1.3. For convenience, given a copy of C4, we say that the
base pair of this copy consists of those two vertices which lie in both of its hyperedges.
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The first point in the proof of Theorem 1.3 where we need to proceed differently than in the
proof of Theorem 1.1 is Section 8 where we incorporated the set V0 of exceptional vertices and
chose the bridges which connect the triples (X′

k, Y
′
k,Z

′
k). Instead of choosing a loose path L

which contains all the vertices in V0 we now proceed as follows: First we make |V0| even by
including an arbitrary additional vertex if necessary. Then we divide the vertices in V0 arbitrarily
into pairs vi,wi . Now we can argue as in the paragraph preceding (14) to find (for each i) two
hyperedges viwiz and viwiz

′ of H such that the vertices z and z′ lie in some Z∗
k and such that

none of the sets Z∗
k is used too often in this step. For each i, these two hyperedges form a copy

of C4. We delete all the vertices contained in these copies from the triples (X′
k, Y

′
k,Z

′
k).

Our aim now is to find a perfect C4-packing in the remainder of each triple. (Together with
all the C4’s chosen before, this would form a perfect C4-packing in H.) For this, a necessary
condition is that the number of vertices in each triple is divisible by 4. So we remove at most 3
vertices from each triple to achieve this and let W denote the set of vertices which we removed
in this step. So W contains a bounded number of vertices and |W | is divisible by four. As with
V0, we now divide the vertices of W arbitrarily into pairs vi,wi . Since the minimum degree
of H is at least n/4 and since at most 3n/100 + 2|V0| + 3|R| vertices of H do not lie in some
triple (X∗

k , Y
∗
k ,Z∗

k ), for all i we can find an index k = k(i) so that the set U(i) := X∗
k ∪ Y ∗

k ∪ Z∗
k

has the property that viwi forms a hyperedge with at least |U(i)|/10 of its vertices, say (here
X∗

k , Y ∗
k and Z∗

k are as defined in Section 8). Thus for all i there is a copy of C4 whose base
pair is viwi and which contains two further vertices U(i). Clearly, we may assume that all these
copies are disjoint from each other (though some of the U(i) may well be identical). Remove
these copies. (So we have now removed all vertices in W .) For each pair U(i), U(i + 1) where
i is odd, we will now find two copies of C4 whose base pairs both contain one vertex in each
of U(i) and U(i + 1) and where the remaining 4 vertices all lie in the same triple. Since the
total number of pairs vi,wi is even (and thus the total number of the U(i) is even when counted
with multiplicities), it follows that after removing the vertices in all these copies of C4, in each
cluster the number of vertices will then be divisible by 4, as desired. To find these copies of C4,
for each odd i we consider five pairs aij bij of vertices where aij ∈ U(i) and bij ∈ U(i + 1) for
all j with 1 � j � 5. Similarly as above, it follows that there must be indices j, j ′ and k such that
a linear number of vertices in X∗

k ∪Y ∗
k ∪Z∗

k form a hyperedge of H with both aij bij and aij ′bij ′ .
So for each odd i we can find 2 copies of C4 as described above (the base pairs are aij bij and
aij ′bij ′ ).

Instead of Lemma 9.1, which guaranteed the existence of an ‘equalising path Qk which
contains almost all of the vertices in each of X∗

k , Y ∗
k and Z∗

k we now need the following
result:

Lemma 12.1. For each triple (Xk,Yk,Zk) the induced hypergraph HPk
contains a C4-packing

Qk with the following two properties:

• Qk contains only vertices in X∗
k ∪ Y ∗

k ∪ Z∗
k ;

• the sets X∗∗
k := X∗

k \ V (Qk), Y ∗∗
k := Y ∗

k \ V (Qk) and Z∗∗
k := Z∗

k \ V (Qk) satisfy∣∣X∗∗
k

∣∣ = ∣∣Y ∗∗
k

∣∣ = 2
√

ξm and
∣∣Z∗∗

k

∣∣ = 2
∣∣X∗∗

k

∣∣. (34)

We will only argue that one can find Qk in the complete 3-partite 3-uniform hypergraph
spanned by X∗

k , Y ∗
k and Z∗

k . The existence of Qk in HPk
then follows using easily using a greedy

argument based on the regularity of Pk (similarly to Lemma 9.3).
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To find Qk in the complete hypergraph, we proceed in a step by step fashion as in the proof of
Lemma 9.2. For simplicity, let A := X∗

k , B := Y ∗
k and C := Z∗

k . There are 3 phases (instead of 5
in Lemma 9.2). If |A| > |B|, then in the first phase, we take out copies of C4 whose base pairs
consist of one vertex in B and one in C. In this way, we eventually achieve that the leftover sets
A1 ⊆ A, B1 ⊆ B and C1 ⊆ C satisfy |A1| = |B1|. If |A| < |B|, each base pair in the first phase
will consist of one vertex in A and one in C. In the second phase, we successively take out pairs
of copies of C4 where the base pair of the first copy has its vertices in A and C and in the second
copy the base pair has its vertices in B and C (each such pair of copies of C4 is called a segment).
Let c := |C1|, a := |A1|, b := |B1| and define s by c = 2a − s. Note that s is nonnegative since
we know (as in the proof of Lemma 9.2) that the size of A and B is almost the same and that C

is a little less than twice as large as A. We claim that s is divisible by four. Indeed, to prove the
claim, note that a + b + c is divisible by four by the argument preceding Lemma 12.1 above. If
we also have that a+b = 2a is divisible by four, then clearly c and thus also s is divisible by four.
If this is not the case, then a +b = 2a is still divisible by 2, i.e. a +b = 4i +2 for some integer i.
But since a + b + c is divisible by four, this means that c = 4j + 2 for some integer j , which
in turn implies that s = 2a − c = 4i − 4j , as claimed. Now let a′, b′ c′ be the sizes of the three
sets after removing one segment as described above. Then c′ = c − 2, a′ = a − 3 and b′ = a′.
So c′ = c − 2 = 2a − s − 2 = 2(a′ + 3) − s − 2 = 2a′ − (s − 4). Since s is divisible by four,
this means that eventually the second phase must terminate with leftover sets A2 ⊆ A1, B2 ⊆ B1

and C2 ⊆ C1 whose sizes satisfy 2|A2| = 2|B2| = |C2|. In the third phase we successively take
out copies of C4 whose base pairs consist of one vertex in A and one in B until the sizes of the
leftover sets thus obtained satisfy the assertion of the lemma.

Now let Wk denote the set of leftover vertices in each triple as in the beginning of Section 11.
In what follows, we will usually write X′′ instead of X′′

k again (and similarly for the other sets).
Instead of finding a Hamilton path R∗ in the graph Grich = P rich

X′Y ′ [X∗∗ ∪ X′′ ∪ Y ∗∗ ∪ Y ′′] which
satisfies the properties described in Lemma 11.9, we proceed as follows: first we obtain a perfect
matching M1 of G0 as guaranteed by Lemma 11.3. Similarly as in the proof of Lemma 11.4
we modify M1 into a perfect matching R∗ of the graph Grich which has the following proper-
ties:

Lemma 12.2. Grich contains a perfect matching R∗ with the following properties:

(i) R∗ avoids all the poor and all the unhappy edges.
(ii) |E(R∗) \ M1| � 106√ξ n̄.

(iii) All of the edges in M1 \ E(R∗) are poor or unhappy.
(iv) |E(R∗) ∩ Fe| � 350εn̄ for every edge e ∈ Fe which is not unhappy.

Thus Lemma 12.2 is an analogue of Lemma 11.9. Finally, we consider a random partition
of the vertices Z′′ ∪ Z∗∗ into two parts Z′′′

1 and Z′′′
2 of equal size (note that |Z′′ ∪ Z∗∗| is even

by (34) and the definition of Z′′ in Section 8.1). Also, for i = 1,2 we define a bipartite auxiliary
graph H ∗

i whose vertex sets are Z′′′
i and M := E(R∗) and where two vertices in H ∗

i are joined
by an edge if the corresponding three vertices in H form a hyperedge in HP . Note that |M| =
|Z′′′

i |. If we set n∗ := |M|, M ′ := M1 ∩ M and replace H ∗ by H ∗
i , then our construction implies

that Lemma 11.10 remains valid (and thus also Lemmas 11.11–11.13). Hence both H ∗
1 and H ∗

2
contain a perfect matching. Clearly, the union of these perfect matchings corresponds to a perfect
C4-packing in the subhypergraph of HPk

induced by the vertices in Wk .
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12.2. Deriving Theorem 1.2 from Theorem 1.1

In this subsection, we use the large deviation bound in Section 4 (Lemma 4.2) to deduce
Theorem 1.2 from Theorem 1.1. The idea is to randomly split the vertex set of the given hyper-
graph H into disjoint sets of k vertices each. Then for any i, the probability that the hypergraph
Hi induced by the ith set of k vertices does not satisfy the requirements of Theorem 1.1 is expo-
nentially small in k. However, in order to prove that with positive probability all of the Hi satisfy
the requirements of Theorem 1.1 we have to proceed more carefully: we will obtain the Hi by a
sequence of successive binary partitions.

Proposition 12.3. There exists an integer n1 such that the following holds for all n � n1 and
for all positive constants λ and γ with 1/3 � λ � 2/3 and 0 < γ < 1. Suppose we are given
a hypergraph G with n vertices whose minimum degree is at least n/4 + γ n − n5/8 and where
λn ∈ N. Then there is a partition of the vertex set of G into sets U and W such that |U | = λn =: u,
|W | = (1 − λ)n =: w, and such that the induced subhypergraph G[U ] has minimum degree at
least u/4 + γ u − u5/8 whereas G[W ] has minimum degree at least w/4 + γw − w5/8.

Proof. Consider a partition of the vertices of G into two sets U and W with |U | = u chosen
uniformly at random from the set of all such partitions. Let ε := (1 − λ3/8)/u3/8. Consider a
fixed pair x, y of vertices of G and define the random variable X := |NG(x, y) ∩ U |. Note that
εEX � εu = (1 − λ3/8)u5/8 and so

EX � λ
(
n/4 + γ n − n5/8) = u/4 + γ u − λ3/8u5/8 � u/4 + γ u − u5/8 + εEX.

Then by Lemma 4.2 (and using the fact that EX � u/5),

P
[
X � u/4 + γ u − u5/8] � P

[
X � (1 − ε)EX

]
� 2 exp

{
−1

3

(1 − λ3/8)2

u3/4

u

5

}
� n−3.

The last inequality follows since we assumed n (and thus u) to be sufficiently large. Since the
same result also holds with U replaced by W , it follows that the probability that there exists a
pair of vertices x, y in G with |NG(x, y) ∩ U | < u/4 + γ u − u5/8 or |NG(x, y) ∩ W | < w/4 +
γw − w5/8 is strictly less than one. Hence the desired partition exists. �
Proof of Theorem 1.2. Let σ = γ /2. Set k0 = max{n0(σ ), n1, (2/γ )8/3}, where n0 is the func-
tion defined in Theorem 1.1 and where n1 is as defined as in Proposition 12.3. Suppose that
k � k0 and that k divides n. Consider a hypergraph H with n vertices and with minimum degree
at least n/4 + γ n. For simplicity, first assume that n = 2�k, where � is an integer. By applying
Proposition 12.3 with λ = 1/2 first to H and then successively to the induced subhypergraphs
obtained from it, we eventually obtain subhypergraphs H1, . . . ,H2� where each of them has
exactly k vertices and has minimum degree at least k/4 + γ k − k5/8 � k/4 + γ k/2. Thus by
Theorem 1.1, each of the Hi contains a loose Hamilton cycle, as required.

If n cannot be written in the form 2�k, then we apply the same argument as above, but now we
choose the sizes of the partition classes according to the binary expansion of n/k (e.g. if n = 5k,
we first split the vertices into parts of size 2k and 3k, respectively). Note that we can always do
this such that the ratio of the sizes of the parts lies between 1/3 and 2/3 (and thus Lemma 12.3
can be applied). �
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