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1. INTRODUCTION

1.1. Notations and Definitions

Ž .All graphs are simple, that is, they have no loops or multiple edges. ¨ G is the
Ž . Ž . Ž . Ž . wnumber of vertices in G order , e G is the number of edges in G size . deg ¨ or

Ž .x Ž . Ž . wdeg ¨ is the degree of vertex ¨ within the graph G , and deg ¨ , Y orG
Ž .x Ž . Ž .deg ¨ , Y is the number of neighbors of ¨ in Y. d G and D G are theG

Ž . w Ž .xminimum degree and the maximum degree of G. N x or N x is the set ofG
Ž .neighbors of the vertex x, and e X, Y is the number of edges between X and Y.

A bipartite graph G with color-classes A and B and edges E will sometimes be
Ž .written as Gs A, B, E . For disjoint X, Y, we define the density,

e X , YŽ .
d X , Y s .Ž .

< < < <X ? Y

Ž .The density of a bipartite graph Gs A, B, E is the number,

< <E
d G sd A , B s .Ž . Ž .

< < < <A ? B

Ž .For two disjoint subsets A, B of V G , the bipartite graph with vertex set AjB
which has all the edges of G with one endpoint in A and the other in B is called

Ž .the pair A, B .
Ž .A pair A, B is «-regular if for every X;A and Y;B satisfying

< < < < < < < <X )« A and Y )« B ,

we have

< <d X , Y yd A , B -« .Ž . Ž .

Ž . Ž .A pair A, B is « , d -superregular if it is «-regular and furthermore,

< <deg a Gd B for all agA ,Ž .
and

< <deg b Gd A for all bgB.Ž .

H is embeddable into G if G has a subgraph isomorphic to H, that is, if there is a
Ž . Ž . Ž . � 4 Ž .one-to-one map injection w : V H ªV G such that x, y gE H implies

� Ž . Ž .4 Ž .w x , w y gE G .
As the model of computation we choose the weakest possible version of a

PRAM, in which concurrent reads or writes of the same location are not allowed
Ž w x .EREW, see 21 for a discussion of the various PRAM models. When researchers
investigate the parallel complexity of a problem, the main question is whether a
polyalgorithmic running time is achievable on a PRAM containing a polynomial
number of processors. If the answer is positive then the problem and the corre-

w x Ž wsponding algorithm are said to belong to class NC introduced in 34 see also 10,
x. ŽŽ . i. i40 . When the running time is O log n , the algorithm is in NC .
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1.2. An Algorithmic Version of the Blow-Up Lemma

In recent years the interaction between combinatorics and the theory of algorithms
is getting stronger and stronger. It is therefore not surprising that there has been a
significant interest in converting existing proofs into efficient algorithms. Many

w xexamples of this type can be found in 1, 32, 33 . Some of these are general
methods, so algorithmic versions of these methods immediately imply efficient
algorithms for several problems. One example is the Lovasz local lemma whose´

w xalgorithmic aspects were studied in 2, 7 . Another example is the regularity lemma
w x38 . The basic content of this lemma could be described by saying that every graph
can, in some sense, be well approximated by random graphs. Some random graphs
of a given edge density are much easier to treat than all graphs of the same
edge-density, the regularity lemma helps uf to carry over results that are trivial for
random graphs to the class of all graphs with a given number of edges. The lemma
has numerous applications in various areas including combinatorial number theory
w x w x w13, 39 , computational complexity 19 and extremal graph theory 5, 6, 8, 9, 11, 12,

x 1 w x14, 15, 16, 35, 37 . Recently an NC -algorithmic version was given in 3 .
During the past couple of years we have developed a new method in graph

Ž w x.theory based on the regularity lemma see 29 . We usually apply this method to
find certain spanning subgraphs in dense graphs. Typical examples are spanning

Ž w x.trees Bolobas-conjecture, see 23 , Hamiltonian cycles or powers of Hamiltonian´
Ž w x.cycles Posa-Seymour conjecture, see 25, 26 or H-factors for a fixed graph H´

Ž w x.Alon]Yuster conjecture, see 28 . The other main general tool in the method,
Žw x.beside the regularity lemma, is the so-called blow-up lemma 24 . This lemma

helps to find bounded degree spanning subgraphs in «-regular graphs. The rough
idea of the original proof of this lemma was the following: we use a randomized
greedy algorithm to embed most of the vertices of the bounded degree graph, and
then finish the embedding by a Konig]Hall argument. Given the recent algorithmic¨
version of the regularity lemma, the obvious question arises whether there is an
algorithmic version also for the blow-up lemma. In this paper we give an affirma-
tive answer to this question.

Ž .Theorem 1 An algorithmic version of the blow-up lemma . Gï en a graph R of
order r and positï e parameters d , D, there exists an «)0 such that the following
holds. Let N be an arbitrary positï e integer, ns rN and let us replace the ¨ertices of R

Ž .with pairwise disjoint N-sets V , V , . . . , V blowing up . We construct two graphs on1 2 r
Ž .the same ¨ertex-set VsDV . The graph R N is obtained by replacing all edges of Ri

with copies of the complete bipartite graph K , and a sparser graph G is constructedN, N
Ž .by replacing the edges of R with some « , d -superregular pairs. If a graph H with

Ž . Ž .D H FD is embeddable into R N then it is already embeddable into G. We can
Ž Ž .. Ž . Ž 2.376.construct a copy of H in G in O n=M n sequential time, where M n sO n is

the time needed to multiply two n by n matrices with 0, 1 entries o¨er the integers.
Furthermore, the algorithm can be parallelized and implemented in NC5.

ŽRemark. For some very special cases of this theorem e.g., a Hamiltonian path in
. w xa superregular pair NC algorithms can be found in 36 . When using the blow-up

lemma, we typically also need the following strengthened version: Given c)0,
Ž . Ž .there are positive functions «s« d , D, r, c and asa d , D, r, c such that the
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blow-up lemma remains true if for every i there are certain vertices x to be
embedded into V whose images are a priori restricted to certain sets C ;Vi x i
provided that

< <i. Each C within a V is of size at least c V ,x i i
< <ii. The number of such restrictions within a V is not more than a V .i i

Our proof is going to be similar to our original probabilistic proof, but we have to
replace the probabilistic arguments with deterministic ones. In Section 2 we give a
deterministic sequential algorithm for the embedding problem without considering
implementation and time complexity issues. In Section 3 we show that the algo-
rithm is correct. Implementation is discussed in Section 4. Finally, Section 5
contains various algorithmic applications.

2. THE ALGORITHM

The main idea of the algorithm is the following. We embed the vertices of H
one-by-one by following a greedy algorithm, which works smoothly until there is
only a small proportion of H left, and then it may get stuck hopelessly. To avoid
that, we will set aside a positive proportion of the vertices of H as buffer vertices.
Most of these buffer vertices will be embedded only at the very end by using a
Konig]Hall argument.¨

2.1. Preprocessing

< Ž . < < Ž . < < <We will assume that V H s V G s D V sns rN. We can also assume, with-i i
Ž .out restricting generality, that NGN d , D, r , for Theorem 1 is trivial for small N0

Ž .since «-regularity with a small enough « implies GsR N . Finally, we will assume
for simplicity, that the density of every superregular pair in G is exactly d . This is
not a significant restriction, otherwise we just have to put everywhere the actual
density instead of d .

We will use the following parameters,

«g« X g«Y g«Z gd Z gd Y gd X gd ,

where agb means that a is small enough compared to b. For simplicity we
assume that any of these parameters multiplied with N gives an integer. For easier
reading, we will mostly use the letter x for vertices of H, and the letter ¨ for

Ž .vertices of the host graph G. Given an embedding of H into R N , it defines an
assignment,

� 4c : V H ª V , V , . . . , V ,Ž . 1 2 r

and we want to find an embedding,

w : V H ªV G , w is one-to-one,Ž . Ž .
Ž . Ž . Ž . y1Ž .such that w x gc x for all xgV H . We will write X sc V for isi i

1, 2, . . . , r. Before we start the algorithm, we order the vertices of H into a
Ž .sequence Ss x , x , . . . , x which is more or less, but not exactly, the order in1 2 n
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which the vertices will be embedded. Let ms r d XN. For each i, choose a set B ofi
d XN vertices in X such that any two of these vertices are at a distance at least 3 ini

Ž .H. This is possible, for H is a bounded degree graph. These vertices b , . . . , b1 m
will be called the buffer vertices and they will be the last vertices in S.

Ž . Ž . Ž .S starts with the neighborhoods N b , N b , . . . , N b . The length of thisH 1 H 2 H m
m < Ž . <initial segment of S will be denoted by T . Thus T sÝ N b FDm. The rest0 0 is1 H i

Žof S is an arbitrary ordering of the leftover vertices of H. When certain images
are a priori restricted, as in the remark after the theorem, we also list the restricted

.vertices at the beginning of S right after the neighbors of the buffer vertices.

2.2. Sketch of the Algorithm

In Phase 1 of the algorithm we will embed the vertices in S one-by-one into G
Žuntil all nonbuffer vertices are embedded. For each x not embedded yet includ-j

.ing the buffer vertices we keep track of an ever shrinking host set H that x ist, x jj

confined to at time t, and we only make a final choice for the location of x fromj
H at time j. At time 0, H is the cluster that x is assigned to. For technicalt, x 0, x jj j

reasons we will also maintain another similar set, C , where we will ignore thet, x j

possibility that some vertices are occupied already. Z will denote the set oft
occupied vertices. Finally we will maintain a set Bad of exceptional pairs oft
vertices.

In Phase 2, we embed the leftover vertices by using a Konig]Hall type argument.¨

2.3. Embedding Algorithm

Ž . Ž . YAt time 0, set C sH sc x for all xgV H . Put T sd n.0, x 0, x 1

Phase 1. For tG1, repeat the following steps.

Ž .Step 1 Extending the embedding . We embed x . Consider the vertices int
Ž .H . We will pick one of these vertices as the image w x by using the selectionty1, x tt

Ž .algorithm described below in Section 2.4 .

Ž .Step 2 Updating . We set

Z sZ j w x ,� 4Ž .t ty1 t

Ž .and for each unembedded vertex y i.e., the set of vertices x , t- jFn , setj

� 4C lN w x if x , y gE H ,Ž . Ž .Ž .ty1, y G t t
C st , y ½ C otherwise,ty1, y

and

H sC RZ .t , y t , y t

We do not change the ordering at this step.
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Ž .Step 3 Exceptional vertices in G .

1. If t/T , then go to Step 4.0
Ž .2. If tsT , then we do the following. We find the set denoted by E of those0 i

exceptional vertices ¨ gV , 1F iF r for which ¨ is not covered yet in thei
embedding and

Y < <� 4b: bgB , ¨ gC -d B .i t , b i

We are going to change slightly the order of the remaining unembedded
vertices in S. We choose a set E of unembedded nonbuffer vertices xgHH

r < < Ž < < .of size Ý E more precisely E vertices from X for all 1F iF r withis1 i i i

H sH R w x : jF t sc x R w x : jF t .Ž . Ž . Ž .� 4 � 4t , x 0, x j j

Thus in particular, if xgX , then E ;H . For example, we may choose thei i t, x
vertices in E as vertices in H that are at a distance at least 3 from eachH
other and any of the vertices embedded so far. We are going to show later in
the proof of correctness that this is possible since H is a bounded degree

r < <graph and Ý E is very small. We bring the vertices in E forward,is1 i H
followed by the remaining unembedded vertices in the same relative order as

Ž .before. For simplicity we keep the notation x , x , . . . , x for the resulting1 2 n
order.

Ž .Step 4 Exceptional vertices in H .

1. If T does not divide t, then go to Step 5.1
2. If T divides t, then we do the following. We find all exceptional unembedded1

< < Ž X.2vertices ygH such that H F d n. Once again we slightly change thet, y

order of the remaining unembedded vertices in S. We bring these exceptional
Ž .vertices forward even if they are buffer vertices , followed by the nonexcep-

tional vertices in the same relative order as before. Again, for simplicity we
Ž .still use the notation x , x , . . . , x for the new order. Note that it will follow1 2 n

from the proof, that if tF2T , then we do not find any exceptional vertices in0
H, so we do not change the ordering at this step.

Step 5. If there are no more unembedded nonbuffer vertices left, then set Ts t
and go to Phase 2, otherwise set t¤ tq1 and go back to Step 1.

Phase 2. Find a system of distinct representatives of the sets H for allt, y
Ž .unembedded y i.e., the set of vertices x , T- jFn .j

2.4. Selection Algorithm

We distinguish two cases.
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Case 1. x fE .t H
Ž .We choose a vertex ¨ gH as the image w x for which the following holdty1, x tt

� 4 Ž .for all unembedded y with x , y gE H ,t

< < < <dy« H Fdeg ¨ , H F dq« H , 1Ž . Ž . Ž .Ž .ty1, y G ty1, y ty1, y

< < < <dy« C Fdeg ¨ , C F dq« C , 2Ž . Ž . Ž .Ž .ty1, y G ty1, y ty1, y

and

< < < <X X Xdy« C lC Fdeg ¨ , C lC F dq« C lC ,Ž . Ž .Ž .ty1, y ty1, y G ty1, y ty1, y ty1, y ty1, y

3Ž .

Ž X. X Ž X. Ž .for at least a 1y« proportion of the unembedded vertices y with c y sc y
� X4and y, y fBad . Then we get Bad by taking the union of Bad and the setty1 t ty1

� X4 Ž . Ž .of all of those pairs y, y for which 3 does not hold for ¨ sw x , C , andt ty1, y
C X . Thus note that we add at most D« X N new pairs to Bad .ty1, y t

Case 2. x gE .t H
Ž .If x gX , then we choose an arbitrary vertex of E as w x . Note that for allt i i t

Ž . Ž .ygN x , we have C sc y ,H t ty1, y

< <deg w x , C sdeg w x GdN) dy« C , 4Ž . Ž . Ž . Ž .Ž .Ž .G t ty1, y G t ty1, y

and

d
X< <deg w x , H Gdeg w x yT y E GdNy2 D r d N) N. 5Ž . Ž . Ž .Ž .Ž .G t ty1, y G t 0 H 2

< <Here we used superregularity and the fact that E gDm which will be shownH
later.

PROOF OF CORRECTNESS

The following claims state that our algorithm finds a good embedding of H into G.

Claim 1. Phase 1 always succeeds.

Claim 2. Phase 2 always succeeds.

Ž . ŽIf at time t, S is a set of unembedded vertices xgH with c x sV here andi
throughout the proof when we talk about time t, we mean after Phase 1 is executed

.for time t, so for example x is considered embedded at time t , then we define thet
bipartite graph U as follows. One color class is S, the other is V , and we have ant i
edge between a xgS and a ¨ gV whenever ¨ gC .i t, x

In the proofs of the above claims the following lemma will play a major role.
< <First we prove the lemma for tFT , from this we deduce that E is small, then0 H

we prove the lemma for T - tFT.0
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Lemma 2. We are gï en integers 1F iF r, 1F tFT , and a set S;X of unembed-0 i
< < Ž Z .2 < < Ž Z .2ded ¨ertices at time t with S G d X s d N. If we assume that Phase 1i

succeeded for all time tX with tX F t, then apart from an exceptional set F of size at most
«YN, for e¨ery ¨ertex ¨ gV we ha¨ei

d D
Y < < < <� 4deg ¨ s x : xgS, ¨ gC G 1y« d U S , G S .Ž . Ž . Ž .U t , x tt ž /2

Proof. In the proof of this lemma we will use the ‘‘defect form’’ of the
Ž .Cauchy]Schwarz inequality just as in the original proof of the regularity lemma :

if

m nm
X s X qD , mFn ,Ž .Ý Ýk knks1 ks1

then

2 2n n1 D n
2X G X q .Ý Ýk kž /n m nymŽ .ks1 ks1

< < YAssume indirectly that the statement in Lemma 2 is not true, that is, F )« N. We
< < Y Ž .take an F ;F with F s« N. Let us write n t, x for the number of neighbors0 0

Ž . Ž .in H of x embedded by time t. Then in U using the left side of 2 we gett

< < < <e U sd U S V s deg ¨ s deg xŽ . Ž . Ž . Ž .Ý Ýt t i U Ut t
¨gV xgSi

Ž .n t , x< <s C G dy« N. 6Ž . Ž .Ý Ýt , x
xgS xgS

We also have

XN x lN xŽ . Ž .Ý Ý U Ut t
XxgS x gS

< <Xs C lCÝ Ý t , x t , x
XxgS x gS

Ž . Ž X .n t , x qn t , x X2 3< < < <F dq« Nq S NqD S Nq2 D« NŽ .Ý Ý
XxgS x gS

Ž . Ž X .n t , x qn t , x X 3F dq« Nq4 D« N . 7Ž . Ž .Ý Ý
XxgS x gS

Ž X.The error terms come from the following x, x pairs. For each such pair we
< < X

Xestimate C lC FN. The first error term comes from the pairs where xsx .t, x t, x
Ž X. Ž . Ž X.The second error term comes from those pairs x, x for which N x lN x /H H

< < Ž . 2 < <B. The number of these pairs is at most S D Dy1 FD S . Finally we have the
� X4 Xpairs for which x, x gBad . The number of these pairs is at most 2 t D« NFt

X 2 Ž .2 D« N . For the good pairs we used the right side of 3 .
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Next we will use the Cauchy]Schwarz inequality with ms«YN and the variables
Ž . ŽX , ks1, . . . , N we are going to correspond to deg ¨ , ¨ gV and the first mk U it

.variables to degrees in F . Then we have0

< < YD s« deg ¨ y deg ¨Ž . Ž .Ý ÝU Ut t
¨gV ¨gFi 0

2Y Y Y Y< <G« deg ¨ y« 1y« d U S Ns « deg ¨ . 8Ž . Ž . Ž . Ž . Ž . Ž .Ý ÝU t Ut t
¨gV ¨gVi i

Ž . Ž .Then using 6 , 8 and the Cauchy]Schwarz inequality we get

XN x lN xŽ . Ž .Ý Ý U Ut t
XxgS x gS

2s deg ¨Ž .Ž .Ý Ut
¨gVi

21 3 2 2Y < <G deg ¨ q « d U N SŽ . Ž . Ž .Ý U ttž /N ¨gVi

21 Ž . 2Dn t , x 2Y < <G dy« N q « dy« N SŽ . Ž . Ž .Ýž /N xgS

Ž . Ž X . 3 2Dn t , x qn t , x 2Y < <G dy« Nq « dy« N S ,Ž . Ž . Ž .Ý Ý
XxgS x gS

Ž . < < Ž Z .2which is a contradiction with 7 , since S G d N,

3 2D 2Y Z X« dy« d c4 D« c4 D« ,Ž . Ž . Ž .
and

Ž . Ž X . Ž . Ž X .n t , x qn t , x n t , x qn t , x
dq« y dy« g4 D« . BŽ . Ž .Ž .

An easy consequence of Lemma 2 is the following lemma.

< < YLemma 3. In Step 3 we ha¨e E F« N for e¨ery 1F iF r.i

w < < < <Proof. Indeed applying Lemma 2 with tsT and SsB so we have S s B s0 i i
X Ž Z .2 xd N) d N we get

d D
Y Y< < < < < <1y« d U S G S )d S ,Ž . Ž .t 2

and E ;F. Bi

From this we can prove Lemma 2 for t)T with «Z instead of «Y.0

Lemma 4. We are gï en integers 1F iF r, T - tFT , and a set S;X of unembed-0 i
< < Ž Z .2 < < Ž Z .2ded ¨ertices at time t with S G d X s d N. If we assume that Phase 1i
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succeeded for all time tX with tX F t, then apart from an exceptional set F of size at most
«ZN, for e¨ery ¨ertex ¨ gV we ha¨ei

d D
Z < < < <� 4deg ¨ s x , xgS, ¨ gC G 1y« d U S G S .Ž . Ž . Ž .U t , x tt ž /2

Proof. We only have to pay attention to the neighbors of the elements of E ,H
otherwise the proof is the same as the proof of Lemma 2 with «Z instead of «Y. In
Ž .6 we have no change, since as we noted in the selection algorithm,

Ž .n t , x< <C G dy« NŽ .t , x

is also true for the neighbors of the elements of E .H
Ž . Ž X. XIn 7 we have more bad pairs, namely all pairs x, x where x or x is a

Y < < 2neighbor of an element of E . These give an additional error term of 2 D r « S N .H
However, the contradiction still holds, since

3 2D 2Z Z Y« dy« d c« . BŽ . Ž . Ž .

An easy consequence of Lemmas 2 and 4 is the following lemma.

Lemma 5. We are gï en integers 1F iF r, 1F tFT , a set S;X of unembeddedi
< < Z < < Z < < Z < < Z¨ertices at time t with S Gd X sd N and a set A;V with A Gd V sd N.i i i

If we assume that Phase 1 succeeded for all time tX with tX F t, then apart from an
X Ž Z .2exceptional set S of size at most d N, for e¨ery ¨ertex xgS we ha¨e

< <A
< < < <AlC G C . 9Ž .t , x t , x2 N

Proof. Assume indirectly that the statement is not true, i.e., there exists a set
X < X < Ž Z .2 X Ž .S ;S with S ) d N such that for every xgS 9 does not hold. Once again

Ž X .we consider the bipartite graph U sU S , V . We havet t i

< < < <A A
X< < < < < <deg ¨ s AlC - C s d U S N.Ž . Ž .Ý Ý ÝU t , x t , x tt

X X2 N 2 N¨gA xgS xgS

On the other hand, applying Lemmas 2 or 4 for SX we get

Z < X < < < Zdeg ¨ G 1y« d U S A y« NŽ . Ž . Ž . Ž .Ý U tt
¨gA

contradicting the previous inequality. B

Finally we have

Lemma 6. For e¨ery 1F tFT and for e¨ery ¨ertex y that is unembedded at time t, if
we assume that Phase 1 succeeded for all time tX with tX F t, then we ha¨e the following
at time t,

< < YH )d N. 10Ž .t , y
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Proof. We apply Lemma 5 with S the set of all unembedded vertices in V at timet i
Ž . Ž Z .2t, and A sV RZ all uncovered vertices . Then for all but at most d Nt i t
Ž . Ž .vertices xgS using 2 and 4 we gett

< < XA dt D 2X< < < < < <H s A lC G C G dy« Nc d N , 11Ž . Ž . Ž .t , x t t , x t , x2 N 4

< < Ž X .if A G d r2 N. We will show next that in fact for 1F tFT , we havet

d X

X Y< < < <A G A G d yd N G N ,Ž .t T ž /2

Ž .so 11 always holds. Assume indirectly that this is not the case, i.e., there exists a
1FT X -T for which,

< < X Y < < X Y
X XA G d yd N but A - d yd N.Ž . Ž .T T q1

< XFrom the above at any given time t for which T t and 1F tFT , in Step 4 we find1
Ž Z .2at most d N exceptional vertices in V . Hence, altogether we find at mosti

1 2Z Yd Ngd N ,Ž .Yd

exceptional vertices in V up to time T X. However, this implies that at time T X wei
Ž X Y .still have many more than d yd N unembedded buffer vertices in V , which ini

< < Ž X Y .Xturn implies that A c d yd N, a contradiction. Thus we haveT q1

< < X Y X YA G d yd N , TF rNy r d Nq r d N ,Ž .T

Ž . Ž X Y .at time T or in the second phase we have at least d yd N unembedded buffer
Ž Z .2vertices in each V , and furthermore, for every 1F tFT for all but at most d Ni

vertices xgS we havet

2X< <H ) d N.Ž .t , x

w Ž . xLet us pick an arbitrary 1F tFT and an unembedded y at time with c y sV .i
Ž . Y Ž .We have to show that 10 holds. Let k d nskT F t- kq1 T for some 0FkF1 1

TrT . We distinguish two cases:1

Ž Z .2Case 1. y was not among the at most d N exceptional vertices of V found ini
Step 4 at time kT . Then1

Dd 2X Y< <H G d y rd N.Ž .t , y ž /ž /2

< < Ž X.2Indeed, at time kT we had H G d N. Until time t, H could have been1 kT , y t, y1

Ž . w Ž . Ž .xcut by G dr2 -fraction using 1 and 5 up to at most D times, and precisely
tykT FT s r d YN new vertices were covered.1 1
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Ž Z .2Case 2. y was among the most d N exceptional vertices of V found in Step 4i
at time kT . Then1

Dd 2 2X Y Z< <H G d y rd y r d N ,Ž . Ž .t , y ž /ž /2

Ž . Ž .since at time ky1 T note that in this case we must have kG2 , y was not
exceptional, and because the exceptional vertices were brought forward we have

Ž Z .2 < < YtFkT q r d N. Thus in both cases we have H )d N. B1 t, y

Finally we show that the selection algorithm always succeeds in selecting an
Ž .image w x .t

Lemma 7. For e¨ery 1F tFT , if we assume that Phase 1 succeeded for all time tX

with tX - t, then Phase 1 succeeds for time t.

Proof. We only have to consider Case 1 in the selection algorithm. We choose a
Ž . Ž . Ž . Ž .vertex ¨ gH as the image w x which satisfies 1 , 2 , and 3 . We have byty1, x tt

Lemma 6,

< < YH Gd N.ty1, x t

Ž .By «-regularity we have at most 2« N vertices in H which do not satisfy 1ty1, x t
Ž . Ž .and similarly for 2 . For 3 we define an auxiliary bipartite graph B as follows.

One color class W is the vertices in H and the other class W is the sets1 ty1, x 2t
� X4 � 4 Ž . Ž X. Ž . � X4XC lC for all pairs y, y where x , y gE H , c y sc y , and y, yty1, y ty1, y t

Ž .fBad . We put an edge between a ¨ gW and a SgW if inequality 3 is notty1 1 2
satisfied for ¨ and S. Let us assume indirectly that we have more than « XN vertices

Ž . X < <¨ gW with deg ¨ )« W . Then there must exist a SgW with1 B 2 2

deg S ) « X Nc« N.Ž . Ž .B

However, this is a contradiction with «-regularity since

2D< <S G dy« Nc« N.Ž .

Here we used the fact that the pair corresponding to S is not in Bad . Thusty1
altogether we have at most 4« Nq« XNgd YN vertices in H that we cannotty1, x t

choose and thus the selection algorithm always succeeds in selecting an image
Ž .w x , proving Claim 1. Bt

Proof of Claim 2. We want to show that we can find a system of distinct
representatives of the sets H , T- jFn, where the sets H belong to a givenT , x T , xj j

cluster V . To simplify notation, let us denote by Y the set of remaining vertices ini
Ž .V , and by X the set of remaining unembedded buffer vertices assigned to V . Ifi i

xsx gX then write H for its possible location set H at time T. Also writej x T , x j



ALGORITHMIC VERSION OF THE BLOW-UP LEMMA 309

< < < <Ms X s Y . The Konig]Hall condition for the existence of a system of distinct¨
representatives obviously follows from the following three conditions,

< < ZH )d M for all xgX , 12Ž .x

Z Z< <H G 1yd M for all subsets S;X , S Gd M , 13Ž . Ž .D x
xgS

Z< <H sM for all subsets S;X , S G 1yd M . 14Ž . Ž .D x
xgS

Ž . Ž .Equation 12 is an immediate consequence of Lemma 6, 13 is a consequence of
Ž .Lemma 2. Finally to prove 14 , we have to show that every vertex in Y;Vi

Z < <belongs to at least d X location sets H . However, this is trivial from thex
construction of the embedding algorithm, in Step 3 of Phase 1 we took care of
the small number of exceptional vertices for which this is not true. This finishes the
proof of Claim 2 and the proof of correctness. B

4. IMPLEMENTATION

The sequential implementation is immediate. In Phase 1 we have Fn iterations,
Ž Ž ..and it is not hard to see that one iteration can be implemented in O M n time.

Ž 5r2 . Ž Ž ..Phase 2 can be implemented in O rN sO nM n time by applying an algo-
Ž w x.rithm for finding a maximum matching in a bipartite graph see e.g., 20, 30 .

For the parallel implementation, our main tool is the NC4 algorithm for the
maximal independent set problem. A subset I of the vertices of a graph G is
independent if there are no edges between any two vertices in I. An independent
set I is maximal if it is not a proper subset of any other independent set. Karp and

Žw x. 4Wigderson 22 were the first to give an NC -algorithm for this problem. Better
w xalgorithms were later described in 4, 17, 18, 31 . We call this the maximal

Ž .independent set MIS algorithm.
For the parallelization of Phase 1, we show that if a is a small enough constant

X ? X @and n is the number of remaining unembedded vertices, then we can embed a n
vertices in parallel. First we pick these vertices by running the MIS algorithm on
the following auxiliary graph. The vertices are the vertices of H, and we put an
edge between two vertices, if either they are at a distance less than 3, or both
vertices are embedded already. If in the maximal independent set that we find, we

Ž .have a vertex that is embedded already we can have only one such vertex , then we
? X @remove this vertex from the independent set. We keep a n vertices from the

Žremaining vertices. Since H is a bounded degree graph, if a is sufficiently small
? X @ .then the size of e¨ery maximal independent set is much larger than a n . These

vertices are brought forward in the order in the embedding algorithm and we
embed these vertices in parallel. For each such vertex we determine the set of
vertices where it could be embedded by the embedding algorithm. Once again

Žrunning the MIS algorithm on the appropriately defined auxiliary graph we put an
edge between two vertices in two different sets if they correspond to the same

.vertex , we can choose a distinct representative from these sets. Finally we embed
each vertex to its representative. We iterate this procedure until the number of
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Ž .5remaining unembedded vertices is F log n , and then we embed these vertices
Ž Ž .4. ŽŽ .5.sequentially. Thus Phase 1 can be implemented in O log n log n sO log n

parallel time.
For Phase 2 it remains to show, that if the bipartite graph U is defined as abovet

Žbetween X and Y i.e., there is an edge between xgX and ¨ gY if and only if
. 4¨ gH , then we can construct a perfect matching in U in NC . For this purposex t

we obtain a maximal matching by running MIS on the linegraph of U . Thent
Ž . Ž . < Ž . <obviously for the remaining unmatched vertices, say Z X and Z Y , Z X s

< Ž . < Ž . Ž . Ž . < Ž . < ZZ Y , and Z X jZ Y is an independent set. From 13 Z X Fd N follows.
Ž . Ž .Furthermore, Lemmas 5 and 6 imply that, if we take xgZ X , ¨ gZ Y , then

Ž Z .there are many cd N internally vertex-disjoint alternating paths of length 5
between x and ¨ . We define again an auxiliary graph in the following way. We pair

Ž . Ž . Ž Z .up the vertices in Z X and Z Y , and for each pair we have a set of cd N
vertices corresponding to the internally vertex-disjoint alternating paths of length 5
between the two vertices in the pair. We put an edge between two alternating paths

Žif they share a common vertex so e.g., the alternating paths corresponding to one
.pair form a clique . Since the number of alternating paths for each pair is much

more than the number of pairs, it is easy to see that every maximal independent set
contains an alternating path for each pair. Thus running again MIS on the auxiliary
graph, we can find vertex-disjoint alternating paths of length 5 between the pairs in
Ž . Ž .Z X jZ Y . Changing the matching edges to nonmatching edges on these paths

we get a perfect matching.

5. APPLICATIONS

In most applications of our method, the only nonconstructive parts are the
regularity lemma and the blow-up lemma. Therefore, the existence proofs together
with the NC1 version of the regularity lemma and Theorem 1, provide several
immediate algorithmic applications. Let us mention here two applications. Addi-
tional applications and the details of the proofs will appear in a forthcoming paper.

Ž w x w x.Theorem 8 Existential version in 23 , NC-version in 36 . Let D and 0-d-1r2
be gï en. Then there exists an n with the following properties. If nGn , T is a tree of0 0
order n and maximum degree D, and G is a graph of order n and minimum degree at

ŽŽ . .least 1r2 qd n, then T is a subgraph of G. Furthermore, a copy of T in G can be
Ž Ž .. 5found in O nM n sequential time as well as in NC .

Ž w x w x .Theorem 9 Existential version in 26 for ks3 and in 27 in general . For any
Ž .positï e integer k there exists an n sn k such that if G has order nGn and0 0 0

Ž . Ž .minimal degree d G Gkr kq1 n, then G contains the kth power of a Hamiltonian
cycle. Furthermore, a copy of the kth power of a Hamiltonian cycle can be found in
Ž Ž .. 5O nM n sequential time as in NC .
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