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all integers r, k ≥ 2 there exists a constant n0 = n0(r, k ) such that if n ≥ n0
and the edges of the complete graph Kn are colored with r colors then
the vertex set of Kn can be partitioned into at most 100r log r + 2rk vertex
disjoint connected monochromatic k-regular subgraphs and vertices. This
is close to best possible. C© 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 127–145, 2013

Contract grant sponsor: NSF; Contract grant Number: DMS-0968699.

Journal of Graph Theory
C© 2012 Wiley Periodicals, Inc.

127



128 JOURNAL OF GRAPH THEORY

Keywords: vertex partitions; regulatory lemma

1. INTRODUCTION

1.1. Vertex Partitions

For any r, k ≥ 2, let f (r, k) denote the minimum number of connected monochromatic
k-regular subgraphs and vertices which suffice to partition the vertices of any complete
graph whose edges are r-colored. Throughout this article, single vertices and the empty
set are considered to be degenerate k-regular subgraphs. It is not obvious that f (r, k) is
a well-defined function. That is, it is not obvious that there is always a partition whose
cardinality is independent of the order of the complete graph. Gyárfás in [6] conjectured
the existence of f (r, 2), and indeed Erdős, Gyárfás, and Pyber in [5] proved that there
exists a constant c such that f (r, 2) ≤ cr2 log r (throughout this article log denotes natural
logarithm). In [5], they conjectured that actually f (r, 2) = r.

Conjecture 1 (Erdős, Gyárfás, and Pyber [5]). In every r-coloring of the edges of a
complete graph, its vertex set can be partitioned into r monochromatic cycles.

For general r, the O(r2 log r) bound of Erdős, Gyárfás, and Pyber [5] has been improved
to O(r log r) by Gyárfás, Ruszinkó, Sárközy, and Szemerédi [7]. The case r = 2 was
conjectured earlier by Lehel and was settled by Łuczak, Rödl and Szemerédi [16] for
large n using the Regularity Lemma. Later, Allen [1] gave a proof without the Regularity
Lemma and recently Bessy and Thomassé [2] found an elementary argument that works
for every n. However, Conjecture 1 remains open for r ≥ 3.

The generalization of this problem for k-regular graphs (for k = 2 we get cycles)
was initiated by Pyber, Rödl, and Szemerédi in [17]. They showed that cycles and
k-regular graphs for k > 2 are fundamentally different because of the corresponding
Turán-type results. By the Erdős-Gallai [4] theorem, every graph of order n with more
than p(n − 1)/2 edges contains a cycle of length at least p + 1. However, the main result
of [17] shows that to find any three-regular subgraph, let alone a large one, one needs
more than cn log log n edges. Furthermore, in [17] (Corollary of Theorem 3 in [17]), the
authors also proved that in any r-coloring of the edges of the complete graph Kn, there
is a monochromatic k-regular subgraph for any 1 ≤ k ≤ crn, where cr is a (very small)
constant depending only on r. (Note that in the above corollary, the authors claim this
only for some k ≥ crn, but the stronger statement is implicit in the proof.)

Sárközy and Selkow in [18] gave the following exponential bound for f (r, k).

Theorem 1. There exists a constant c such that f (r, k) ≤ rc(r log r+k), i.e. for any r, k ≥ 2
and for any r-coloring of the edges of a complete graph, its vertices can be partitioned
into at most rc(r log r+k) vertex disjoint connected monochromatic k-regular subgraphs and
vertices.

The main goal of this article is to give a significant improvement on this result for
large n.

Theorem 2. For all integers r, k ≥ 2, there exists a constant n0 = n0(r, k) such that
if n ≥ n0 and the edges of the complete graph Kn are colored with r colors then the
vertex set of Kn can be partitioned into at most 100r log r + 2rk vertex disjoint connected
monochromatic k-regular subgraphs and vertices.
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We note that this is not far from being best possible (especially if r is small compared
to k), as we have the following lower bound.

Theorem 3.

f (r, k) ≥ (r − 1)(k − 1) + 1.

One of our tools in the proof of Theorem 2 is a Ramsey-type result for the existence
of connected monochromatic k-regular subgraphs that may be of independent interest.

Theorem 4. For every positive ε and integers r, k ≥ 2, there exists a constant n0 =
n0(ε, r, k) such that for any r-coloring of the edges of a complete graph on n ≥ n0

vertices, we can find a connected monochromatic k-regular subgraph spanning at least
(1 − ε)n/r vertices.

Thus, perhaps surprisingly, k-regular graphs for k > 2 are not that different from cycles:
we can find a connected monochromatic k-regular subgraph almost as large as the largest
monochromatic cycle we can guarantee from the Erdős–Gallai theorem.

1.2. Sketch of the Proof of Theorem 2

A matching in a graph G is called connected if its edges are all in the same connected
component of G. To prove Theorem 2, we apply the edge-colored version of the Regularity
Lemma to an r-colored Kn. Then we introduce the so called reduced graph GR, the graph
whose vertices are associated with the clusters and whose edges are associated with dense
ε-regular pairs. The edges of the reduced graph will be colored with a color that appears
most often on the edges between the two clusters. Then we study large monochromatic
connected matchings in the reduced graph. This approach was initiated in [15] and, for
example, it played an important role in [9] where the three-color Ramsey numbers of
paths for large n have been determined.

We follow the absorbing proof technique from [7]. This originated in [5] and is used
in many papers in this area (e.g. [7], [10], [18]). We establish the bound on f (r, k) in the
following steps.

� Step 1: We find a sufficiently large monochromatic (say red), dense (more precisely
half-dense in a sense explained later), connected matching M in GR.

� Step 2: We remove the vertices of M from GR and greedily remove a number
(depending on r) of vertex disjoint connected monochromatic k-regular subgraphs
from the remainder in Kn until the number of leftover vertices is much smaller than
the number of vertices associated with M. For this purpose, we will use the Ramsey-
type result (Theorem 4) for the existence of connected k-regular subgraphs.

� Step 3: Using a lemma about k-regular subgraph covers of r-colored unbalanced
complete bipartite graphs, we combine the leftover vertices with some vertices of
the clusters associated with vertices of M. (M absorbs the leftover vertices.)

� Step 4: Finally, after some adjustments through alternating paths with respect to
M, we find a red k-regular subgraph spanning the remaining vertices of M.

The proof of Theorem 2 in Section 2 will follow this outline. The proof of Theorem 4
is given where we need it in Section 2.2 Since some steps in the proof are straightforward
adaptations of the corresponding steps from [7] to k-regular graphs, at some places we
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will omit the details. First, we discuss the necessary definitions and tools. Then the easy
construction for Theorem 3 is given in Section 3.

1.3. Notation and Definitions

For basic graph concepts see the monograph of Bollobás [3]. Disjoint union of sets will
sometimes be denoted by +.V (G) and E(G) denote the vertex-set and the edge-set of
the graph G. (A, B, E ) denotes a bipartite graph G = (V, E ), where V = A + B, and
E ⊂ A × B · Kn is the complete graph on n vertices, K(n1, . . . , nk) is the complete k-
partite graph with classes containing n1, . . . , nk vertices, Pn (Cn) is the path (cycle) with
n vertices. G(n1, . . . , nk) is a k-partite graph with classes containing n1, . . . , nk vertices.
For a graph G and a subset U of its vertices, G|U is the restriction to U of G · �(v) is the
set of neighbors of v ∈ V . The size of�(v) is |�(v)| = deg(v) = degG(v), the degree of
v. For a vertex v ∈ V and set U ⊆ V , we write N(v,U ) for the set of neighbors of v in U
and deg(v,U ) = |N(v,U )|. For a subset S ⊆ V , we denote by N(S,U ) = ∩v∈SN(v,U ),
the common neighbors of the vertices of S in U . A graph G on n vertices is γ -dense if

it has at least γ (n
2) edges. A bipartite graph G(k, l) is γ -dense if it contains at least γ kl

edges. When A, B are disjoint subsets of V (G), we denote by eG(A, B) the number of
edges of G with one end point in A and the other in B. For nonempty A and B,

dG(A, B) = eG(A, B)

|A||B|
is the density of the graph between A and B.

Definition 1. Given a pair (A, B) and a bipartite graph G = (A, B, E ), the pair (A, B)

is (ε, G)-regular if

X ⊂ A, Y ⊂ B, |X | > ε|A|, |Y | > ε|B| imply |dG(X,Y ) − dG(A, B)| < ε,

otherwise it is (ε, G)-irregular. Furthermore, (A, B, E ) is (ε, δ, G)-super-regular if it is
(ε, G)-regular and

degG(a) > δ|B| ∀ a ∈ A, degG(b) > δ|A| ∀ b ∈ B.

Note that we need this nonstandard notation for ε-regularity to make clear which
edge-colored graph is being considered.

1.4. Tools

In the proof, an r-color version of the Regularity Lemma and the Blow-up Lemma plays
a central role.

Lemma 1 (Regularity Lemma, [19]). For every positive ε and positive integer l0,
there are positive integers L0 and n0 such that for n ≥ n0 the following holds. For all
graphs G1, G2, . . . , Gr with V (G1) = V (G2) = . . . = V (Gr) = V, r ≥ 2, |V | = n, there
is a partition of V into l + 1 classes (clusters)

V = V0 + V1 + V2 + · · · + Vl

such that

� l0 ≤ l ≤ L0,
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� |V1| = |V2| = · · · = |Vl|,
� |V0| < εn,
� apart from at most ε( l

2) exceptional pairs, the pairs {Vi,Vj} are (ε, Gs)-regular

for s = 1, 2, . . . , r.

For an extensive survey on different variants of the Regularity Lemma, see [13]. Next,
we will need two well-known properties of ε-regular pairs. The first one claims that every
(ε, G)-regular graph contains a large super-regular pair.

Lemma 2 (e.g. Proposition 2.3 in [14]). Assume that G = (A, B, E ) is an (ε, G)-
regular graph of density at least δ > 2ε. We can delete at most ε|A| vertices of A and at
most ε|B| vertices of B (denote the resulting graph by G′) such that the resulting graph
is an (ε/(1 − ε)), δ − 2ε, G′)-super-regular graph.

The second one claims that in an (ε, G)-regular graph (A, B, E ), most sets of vertices
in A have a large common neighborhood in any large set Y ⊂ B.

Lemma 3 (e.g. Fact 1.4 in [13]). Assume that G = (A, B, E ) is an (ε, G)-regular graph
of density at least δ > 2ε. If Y ⊂ B and (δ − ε)�−1|Y | > ε|B|, (� ≥ 1), then∣∣{(x1, x2, . . . , x�) : xi ∈ A,

∣∣Y ∩ (∩�
i=1N(xi)

)∣∣ < (δ − ε)�|Y |}∣∣ ≤ �ε|A|�.

We will also use the following lemma of Sárközy and Selkow [18] (a special case
of the Blow-up Lemma, [11], [12]) claiming that a balanced super-regular pair can be
spanned by a k-regular subgraph.

Lemma 4 (Lemmas 5, 6 in [18]). Given an ε > 0 and an integer k ≥ 1, if G = (A, B, E )

is an (ε, δ, G)-super-regular pair with |A| = |B| = m ≥ k
ε2 and δ > 9ε, then G contains

a k-regular spanning subgraph. Furthermore, if k ≥ 2 then G contains a connected
k-regular spanning subgraph.

We will use the above-mentioned Erdős–Gallai [4] theorem.

Lemma 5. Every graph of order n with more than p(n − 1)/2 edges contains a cycle of
length at least p + 1.

Finally, we will also need two lemmas of Gyárfás, Ruszinkó, Sárközy, and Szemerédi
from [7].

A matching M in a graph G is called k-half dense if one can label its edges as
x1y1, . . . , x|M|y|M| so that each vertex of X = {x1, . . . , x|M|} (called the strong end points)
is adjacent in G to at least k vertices of Y = {y1, . . . , y|M|}.
Lemma 6 (Lemma 4 in [7]). Every graph G of average degree at least 8k has a
nontrivial connected k-half dense matching.

Here, nontrivial means that the matching contains at least one (and therefore at least
k) edges.

Lemma 7 (Lemma 5 in [7]). Let �G = �G(V, E ) be a directed graph with |V | = n
sufficiently large and minimum out-degree d+(x) ≥ cn for some constant 0 < c ≤ 0.001.
Then, there are subsets X,Y ⊆ V such that

� |X |, |Y | ≥ cn/2;
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� From every x ∈ X, there are at least c6n internally vertex disjoint paths of length
at most c−3 to every y ∈ Y (denoted by x ↪→ y).

2. Proof of Theorem 2

2.1. Step 1

We will assume that n is sufficiently large in terms of k and r and that k ≥ 3. In fact, for
k = 2, Theorem 2 follows from the main result of [7] (actually the proof there gives a
98r log r bound). We will use the following main parameters

0 < ε � δ � 1, (1)

where a � b means that a is sufficiently small compared to b. In order to present the
results transparently we do not compute the actual dependencies, although it could be
done.

Consider an r-edge coloring (G1, G2, . . . , Gr) of Kn. Apply the r-color version of
the Regularity Lemma (Lemma 1), with ε as in (1) and get a partition of V (Kn) =
V = ∪0≤i≤lVi, where |Vi| = m, 1 ≤ i ≤ l. We define the reduced graph GR: the vertices
of GR are p1, . . . , pl , and we have an edge between vertices pi and p j if the pair
{Vi,Vj} is (ε, Gs)-regular for s = 1, 2, . . . , r. Thus, we have a one-to-one correspondence
f : pi → Vi between the vertices of GR and the clusters of the partition. Then,

|E(GR)| ≥ (1 − ε)

(
l

2

)
,

and thus GR is a (1 − ε)-dense graph on l vertices.
Define an edge-coloring (GR

1 , GR
2 , . . . , GR

r ) of GR by r colors in the following way.
The edge pi p j is colored with a color s that contains the most edges from K(Vi,Vj), thus
clearly eGs (Vi,Vj) ≥ 1

r |Vi||Vj|. Let us take the color class in this coloring of GR that has
the most edges. For simplicity, assume that this is GR

1 and call this color red. Clearly, we
have

∣∣E(
GR

1

)∣∣ ≥ (1 − ε)
1

r

(
l

2

)
, (2)

and thus using (1) the average degree in GR
1 is at least (1 − ε)(l − 1)/r ≥ l/2r. Using

Lemma 6, we can find a connected l/16r-half dense matching M in GR
1 . Say M has size

|M| = l1 ≥ l

16r
, (3)

and the matching M = {e1, e2, . . . , el1} is between the two sets of end points U1 and
U2, where U1 contains the strong end points, i.e. the points in U1 have at least l/16r
neighbors in U2. Furthermore, define f (ei) = (V i

1,V i
2) for 1 ≤ i ≤ l1, where V i

1 is the
cluster assigned to the strong end point of ei, and V i

2 is the cluster assigned to the other
end point. Hence, we have our large, red, half-dense, connected matching M as desired
in Step 1.

However, we need to do some preparations on the matching M. We will need the
following lemma (this will be used later again).
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Lemma 8. Assume that for some positive constant c we find a monochromatic connected
matching M (say in GR

1 ) covering at least c|V (GR)| vertices of GR. Then in the original r-
edge colored Kn, we find a connected monochromatic k-regular subgraph in G1 covering
at least c(1 − 3ε)n vertices.

Proof. Note that for k = 2, this lemma is well known and has been used ex-
tensively (e.g. in [7], [9]). Let us use the same notation as above, the matching
M = {e1, e2, . . . , el1}, f (ei) = (V i

1,V i
2) for 1 ≤ i ≤ l1 and 2l1 ≥ cl.

First, we make the matching edges super-regular by applying Lemma 2. Then we
find connecting paths between the edges of the matching M. Since M is a connected
matching in GR

1 we can find a connecting path PR
i in GR

1 from f −1(V i
2) to f −1(V i+1

1 )

for every 1 ≤ i ≤ l1 (for i = l1, we have i + 1 = 1). Note that these paths in GR
1 may

not be internally vertex disjoint. From these paths PR
i in GR

1 , we can construct l1
vertex disjoint connecting (almost) k-regular subgraphs Hi in G1 connecting V i

2 and
V i+1

1 . More precisely we construct H1 with the following simple greedy strategy. De-
note PR

1 = (p1, . . . , pt ), 2 ≤ t ≤ l, where according to the definition f (p1) = V 1
2 and

f (pt ) = V 2
1 . First, let us take a set C1 of 2k “typical” vertices in f (p1) = V 1

2 , more pre-
cisely we have |C1| = 2k and NG1 (C

1,V 1
1 ), NG1 (C

1, f (p2)) ≥ (1/r − ε)2km. By (ε, G1)-
regularity and Lemma 3, most 2k-sets of the vertices in V 1

2 satisfy this. We halve C1

arbitrarily: C1 = C1
1 ∪ C1

2, |C1
1 | = |C1

2 | = k. Next, we take a set C2 of 2k typical vertices in
NG1 (C

1, f (p2)), more precisely we have |C2| = 2k and NG1 (C
2, f (p3)) ≥ (1/r − ε)2km.

By (ε, G1)-regularity, most of the vertices satisfy this in NG1 (C
1, f (p2)). Note that

between C1 and C2, we have a complete bipartite graph K(2k, 2k). Again halve C2 arbi-
trarily: C2 = C2

1 ∪ C2
2, |C2

1 | = |C2
2 | = k. We continue in this fashion. Finally, for the last

Ct , we take 2k typical vertices in NG1 (C
t−1, f (pt )).

To define the connecting subgraph H1, we do the following. First from each K(2k, 2k)

between Ci and Ci+1, 1 ≤ i ≤ t − 1 we take a �k/2�-regular subgraph (clearly this can be
done). Then if k is odd, we add perfect matchings between Ci

1 and Ci+1
2 , 1 ≤ i ≤ t − 1.

Again this can be done as |Ci
1| = |Ci+1

2 | = k and the minimum degree is at least k/2, so
we can apply the König–Hall theorem. Then for the resulting connecting subgraph H1,
all interior vertices (vertices in ∪t−1

i=2Ci) have degree k, the degrees in C1
1 and Ct

2 are �k/2�
and the degrees in C1

2 and Ct
1 are �k/2�.

Then we move on to the next connecting subgraph H2. We follow the same greedy
procedure, we always take the next subset from the next cluster in PR

2 . However, if the
cluster has occurred already on the path PR

1 , then we just have to make sure that we pick
vertices that have not been used yet on H1.

We continue in this fashion and construct the vertex disjoint connecting subgraphs Hi

in G1, 1 ≤ i ≤ l1. Note that for k = 3, these connecting subgraphs may not be connected.
However, the final k-regular subgraph will be connected. These will be parts of the final
connected k-regular subgraph in G1. We remove the internal vertices of these subgraphs
from G1. At this point, we might have some discrepancies in the cardinalities of the
clusters of a matching edge. We remove some more vertices from some clusters V i

j of the
matching to assure that now we have the same number of vertices left in both clusters
of a matching edge. For simplicity, we still keep the notation f (ei) = (V i

1,V i
2) for the

modified clusters. Note that from each cluster V i
j , we removed altogether at most 2εm

vertices.
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Finally, by applying Lemma 4, we close the connected k-regular subgraph in G1 within
each super-regular matching edge in such a way that we span all the remaining vertices
in (V i

1,V i
2). Indeed, let us take a balanced super-regular matching edge. The connected

spanning subgraph we want to find in (V i
1,V i

2) must have k vertices with degree �k/2�, k
vertices with degree �k/2� and all other vertices must have degree k (so here these are
the missing degrees in the k-regular subgraph we are constructing). First, remove the
vertices with degree �k/2�, and by applying Lemma 4 with �k/2� we find a connected
�k/2�-regular subgraph in the remainder (note that �k/2� ≥ 2 so we may guarantee a
connected subgraph). Remove the edges of this subgraph and those vertices that only
need degree �k/2� and add back the vertices with degree �k/2�. Note that since k is
a constant these changes do not affect much the super-regular properties. By applying
Lemma 4 again with �k/2�, we find a �k/2�-regular subgraph in the resulting pair (if
k = 3, we just find a perfect matching) in such a way that we are not using any edges
from the bipartite graph between the two sets of vertices with degree �k/2�. Again since
these sets have a constant size this is not a significant restriction. Note that the reason
we need this restriction is to guarantee that the spanning subgraph we are constructing
within (V i

1,V i
2) is connected. This is indeed the case as now every vertex is connected

(even for k = 3) to the connected �k/2�-regular subgraph we constructed in the previous
step. But then since the spanning subgraph within each (V i

1,V i
2) is connected, from

the construction it follows that the resulting final subgraph is a connected k-regular
subgraph. �

Returning to Step 1, for our matching M = {e1, e2, . . . , el1} satisfying (3) we follow
the same procedure as in Lemma 8 (so in Lemma 8, we have c = 1/8r). However, for
technical reasons we postpone the last step, the closing of the k-regular subgraph within
each (V i

1,V i
2), until the end of Step 4, since in Step 3 we will use some of the vertices in

f (M), and we will have to make some adjustments first in Step 4.

2.2. Step 2 and the Proof of Theorem 4

First, we give the proof of Theorem 4. As in Step 1, we apply the Regularity Lemma (but
with ε/4 instead of ε) and we define the reduced graph GR and a coloring in GR by the

most frequent color. Then as in (2), GR contains a subgraph with at least (1 − ε
4 )( l

2)/r

edges of the same color. The Erdős–Gallai extremal theorem for cycles (Lemma 5) assures
us that this subgraph contains a cycle of length at least (1 − ε

4 )l/r. Choosing alternate
edges of this cycle yields a monochromatic connected matching and then an application
of Lemma 8 yields a connected monochromatic k-regular subgraph covering at least(

1 − 3ε

4

) (
1 − ε

4

) n

r
≥ (1 − ε)

n

r

vertices. This finishes the proof of Theorem 4. �
Returning to Step 2, we go back from the reduced graph to the original graph and we

remove the vertices assigned to the matching M, i.e. f (M). We will apply repeatedly
Theorem 4 to the r-colored complete graph induced by Kn \ f (M). Indeed, first we apply
Theorem 4 to Kn \ f (M), then the vertices of the resulting connected monochromatic
k-regular subgraph are removed and Theorem 4 is applied again to the remaining graph,
etc. This way we choose t vertex disjoint connected monochromatic k-regular subgraphs
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AN IMPROVED BOUND FOR VERTEX PARTITIONS 135

in Kn \ f (M). Define the constant c = 1/500r (thus note c ≤ 0.001 what is needed in
Lemma 7). We wish to choose t such that the remaining set B of vertices in Kn \ f (M)

not covered by these t cycles has cardinality at most c11n. Since after t steps at most

(n − | f (M)|)
(

1 − 1 − ε

r

)t

vertices are left uncovered, we have to choose t to satisfy

(n − | f (M)|)
(

1 − 1 − ε

r

)t

≤ c11n.

This inequality is certainly true if(
1 − 1 − ε

r

)t

≤ c11,

which in turn is true using 1 − x ≤ e−x if

e− (1−ε)t
r ≤ c11.

This shows that we can choose t = 12r�log 500r� (assuming that ε is small enough).
We may assume that the number of remaining vertices in B is even by removing one

more vertex (a degenerate cycle) if necessary.

2.3. Step 3

This step is similar to the corresponding step in [7]. The key to this step is the following
lemma about r-colored complete unbalanced bipartite graphs.

Lemma 9. There exists a constant n0 such that the following is true. Assume that
the edges of the complete bipartite graph K(A, B) are colored with r colors. If |A| ≥
n0, |B| ≤ |A|/2r, then B can be covered by at most (k + 1)r vertex disjoint connected
monochromatic k-regular subgraphs.

The proof of this lemma is postponed until Section 2.5 We have the connected, red
matching M of size l1 between U1 and U2. Define the auxiliary directed graph �G on
the vertex set U1 as follows. We have the directed edge from V i

1 to V j
1 , 1 ≤ i, j ≤ l1 if

and only if (V i
1,V j

2 ) ∈ GR
1 . The fact that M is l/16r-half dense implies that in �G for the

minimum outdegree we have

min
x∈U1

d+(x) ≥ l

16r
≥ |U1|

16r

(
≥ |U1|

500r

)
.

Thus, applying Lemma 7 for �G with c = 1
500r (< 0.001), there are subsets X1,Y1 ⊂ U1

such that

� |X1|, |Y1| ≥ c|U1|/2;
� From every x ∈ X1, there are at least c6|U1| internally vertex disjoint paths of length

at most c−3 to every y ∈ Y1 (x ↪→ y).

Let X2,Y2 denote the set of the other end points of the edges of M incident to X1,Y1,
respectively. Note that a path in �G corresponds to an alternating path with respect to M
in GR

1 .
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In each cluster V i
1 ∈ Y1, let us consider an arbitrary subset of c8|V i

1| vertices. Let us
denote by A1 the union of all of these subsets. Similarly, we denote by A2 the union of
arbitrary subsets of V j

2 ∈ X2 of size c8|V j
2 |. Then we have

|A1|, |A2| ≥ c8| f (Y1)| ≥ c8 c

2
| f (U1)| ≥ c8 c

2

n

16r
≥ c10n.

Let us divide the remaining vertices in B (B was defined in Step 2) into two equal sets B1

and B2. Thus, we have |B1|, |B2| ≤ |B| ≤ c11n. We apply Lemma 9 in K(A1, B1) and in
K(A2, B2). The conditions of the lemma are satisfied by the above since |Bi| ≤ |Ai|/2r for
i = 1, 2. Let us remove the at most (k + 1)r vertex disjoint connected monochromatic k-
regular subgraphs covering B1 in K(A1, B1) and the at most (k + 1)rk-regular subgraphs
covering B2 in K(A2, B2). By doing this, we may create discrepancies in the number of
remaining vertices in the two clusters of a matching edge. In the next step, we have to
eliminate these discrepancies with the use of the many alternating paths.

2.4. Step 4

Again similar to Step 4 in [7]. By removing the vertex disjoint connected monochromatic
k-regular subgraphs covering B1 in K(A1, B1), we have created a “surplus” of |B1| vertices
in the clusters of Y2 compared to the remaining number of vertices in the corresponding
clusters of Y1. Similarly, by removing the k-regular subgraphs covering B2 in K(A2, B2),

we have created a “deficit” of |B2|(= |B1|) vertices in the clusters of X2 compared to the
number of vertices in the corresponding clusters of X1. The natural idea is to “move” the
surplus from Y2 through an alternating path to cover the deficit in X2.

Denote by s′ the minimum of 2k and the maximum current surplus in any cluster of
Y2, by d′ the minimum of 2k and the maximum current deficit in any cluster of X2. We
have s′ > 0 if and only if d′ > 0 since the total surplus is always equal to the total deficit.
Put s = min(s′, d′) and we always move s vertices at a time. Note that if s < 2k then
the total surplus (and thus the total deficit) has a constant size. Take an arbitrary cluster
V i

2 ∈ Y2 that has a surplus of s vertices and an arbitrary cluster V j
2 ∈ X2 that has a deficit

of s vertices (note that these must exist by the choice of s).
By the construction, there is an alternating path

V j
2 ,V j

1 ,V j1
2 ,V j1

1 , . . . ,V jk
2 ,V jk

1 ,V i
2

such that k < c−3. First, we extend the red (G1) connecting subgraph Hj−1 (defined in
Step 1) by a four-partite subgraph. The four partite sets (each of size 2k) in this extension
come from the following sets (in this order):

V j
2 ,V j

1 ,V j
2 ∪ V j1

2 ,V j
1 ,

where we make sure that the third partite set includes exactly s vertices from V j1
2 (thus,

for s = 2k, all vertices of the third partite set come from V j1
2 ). Otherwise the construction

of this extension is the same as in the proof of Lemma 8. Similarly, we extend the
red connecting subgraphs Hj1−1, Hj2−1, etc., with four-partite subgraphs in such a way
that we always use s vertices from V j2

2 ,V j3
2 , etc. Finally, we extend the red connecting

subgraph Hjk−1 with a four-partite subgraph in such a way that we use s vertices from
V i

2. The overall effect of these extensions is that we moved the surplus of size s from V i
2

to V j
2 without changing any of the other relative sizes in the edges of the matching. This
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way we came closer to eliminating the discrepancies, and by iterating this procedure, we
can totally eliminate them.

However, we have to pay attention again that during this process we never use up
too many vertices from any given cluster. It is not hard to see from the construction
that we can guarantee that during the whole process with these extensions we use up at
most 7c2-fraction of any given cluster. Indeed, the total number of vertices along these
extensions is at most

3c−3c12n = 3c9n. (4)

We declare an alternating path forbidden if there is a cluster along the path from which
we used up at least a 6c2-fraction already with these extensions. Then by (4), the total
number of vertex disjoint forbidden alternating paths during the whole process is at most
c7

2 l, and thus by Lemma 7, we have plenty of nonforbidden alternating paths to choose

from between any V j
2 and V i

2.
Hence after this process, the remaining vertices in a matching edge f (ei) = (V i

1,V i
2)

will form a balanced super-regular pair where the parameters are somewhat weaker (say
(2ε, 1/2r, G1)-super-regular). Then as we mentioned at the end of Step 1 we can close
the k-regular subgraph to span all the remaining vertices of f (M).

Thus, the total number of vertex disjoint connected monochromatic k-regular subgraphs
we used to partition the vertex set of Kn is at most

12r�log(500r)� + 2(k + 1)r + 2 ≤ 100r�log r� + 2kr,

finishing the proof of Theorem 1. �

2.5. Proof of Lemma 9

Again similar to the corresponding Lemma 6 in [7] but we will use a more recent,
improved lemma from [8]. Lemma 9 clearly follows from the following two lemmas
(corresponding to Lemmas 7 and 8 in [7]).

Lemma 10. For every 0 < ε < 1/2, there exists a constant n0 = n0(ε) such that the
following is true. Assume that the edges of the complete bipartite graph K(A, B) are
colored with r colors. If |A| ≥ n0, |B| ≤ |A|/2r, then apart from at most ε|B| vertices B can
be covered by at most r vertex disjoint connected monochromatic k-regular subgraphs.

Lemma 11. There exists a constant n0 such that the following is true. Assume that
the edges of the complete bipartite graph K(A, B) are colored with r colors. If |A| ≥
n0, |B| ≤ |A|/(8r)8(r+1), then B can be covered by at most kr vertex disjoint connected
monochromatic k-regular subgraphs.

Lemma 10 follows easily from Lemma 8 and the following lemma from [8].

Lemma 12 (Theorem 2.2 in [8]). For some 0 < ε < 1/9, assume that the edges of
a (1 − ε)-dense bipartite graph G(A, B) are colored with r colors, |B| ≤ 2|A|/3r. Then
there are vertex disjoint monochromatic connected matchings, each of a different color,
such that their union covers at least (1 − √

ε)-fraction of the vertices of B.

Proof of Lemma 10. Indeed, consider an r-edge coloring (G1, G2, . . . , Gr) of K(A, B).
We apply the bipartite r-color version of the Regularity Lemma with ε′ = ε2

4 . By
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standard arguments, we may assume that for each cluster that is not V0, all vertices
of the cluster belong to the same partite class. Thus, we get a partition A = V 0

A + V 1
A +

· · · + V lA
A , B = V 0

B + V 1
B + · · · + V lB

B , where |V j1
A | = |V j2

B | = m, 1 ≤ j1 ≤ lA, 1 ≤ j2 ≤ lB
and |V 0

A | ≤ ε|A|,V 0
B | ≤ ε|B|. We define the reduced graph GR: the vertices of GR are

AR = {pj1
A | 1 ≤ j1 ≤ lA} and BR = {pj2

B | 1 ≤ j2 ≤ lB}, and we have an edge between
vertices pj1

A and pj2
B , if the pair {V j1

A ,V j2
B } is (ε′, Gs)-regular for s = 1, 2, . . . , r. Thus, we

have a one-to-one correspondence f : {pj
A, pj

B} → {V j
A ,V j

B } between the vertices of GR

and the nonexceptional clusters of the partition. Then GR = (AR, BR) is a (1 − ε′)-dense
bipartite graph. Define an r-edge coloring (GR

1 , GR
2 , . . . , GR

r ) of GR in the following way.
The edge between the clusters V j1

A and V j2
B is colored with a color s that contains the most

edges from K(V j1
A ,V j2

B ), thus clearly

∣∣EGs

(
V j1

A ,V j2
B

)∣∣ ≥ 1

r

∣∣V j1
A

∣∣∣∣V j2
B

∣∣.
Applying Lemma 12 with ε′ to GR, we get at most r vertex disjoint monochromatic

connected matchings that cover at least (1 − √
ε′)-fraction of the vertices of BR. Then

by applying Lemma 8, we go back to the original graph, from these monochromatic
connected matchings, we can construct monochromatic connected k-regular subgraphs
that cover at least

(1 −
√

ε′)(1 − 3ε′)|B| ≥
(

1 − ε

2
− 3

ε2

4

)
|B| ≥ (1 − ε)|B|

vertices of B. �
The proof of Lemma 11 will use the following simple lemma (corresponding to

Lemma 9 in [7]). Note that this is the only place in the proof of our main theorem where
the bound depends on k.

Lemma 13. Assume that the edges of the complete bipartite graph K(A, B) are colored
with r colors. If (|B| − 1)r|B| < |A|, then B can be covered by at most (k − 1)r vertex
disjoint connected monochromatic k-regular subgraphs.

Proof of Lemma 13. Denote the vertices of B by {b1, b2, . . . , b|B|}. To each vertex v ∈ A,

we assign a vector (v1, v2, . . . , v|B|) of colors, where vi is the color of the edge (v, bi). The
total number of distinct color vectors possible is r|B|. Since we have |A| > (|B| − 1)r|B|

vectors, by the pigeon-hole principle, we must have a vector that is repeated at least

|A|
r|B| ≥ |B|

times. In other words, there are at least |B| vertices in A for which the colorings of the
edges going to {b1, b2, . . . , b|B|} are exactly the same. Now if any (and therefore all)
vertex in A has at least k neighbors in B in one color, then we can clearly cover the
other end points of these edges in B with one connected k-regular subgraph in this color.
However, if the number of edges is less than k for a certain color, then the corresponding
end points in B will be isolated vertices in our cover. Thus altogether in the worst
case we need (k − 1)r vertex disjoint connected monochromatic k-regular subgraphs to
cover B. Note that the bound can be improved to (k − 1)(r − 1) + 1 provided |B| >

(k − 1)r. �
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Proof of Lemma 11. This is almost identical to the proof of the corresponding lemma
(Lemma 8) in [7]. For the sake of completeness, we repeat the proof here with minor dif-
ferences. Of course, one difference is that whenever we have a monochromatic connected
matching in the reduced graph, we saturate it with a connected k-regular subgraph instead
of a cycle by applying Lemma 8. The second difference is again we connect the matching
edges in the reduced graph by k-regular subgraphs Hi instead of paths. Finally, we will
finish with Lemma 13 resulting in at most (k − 1)r + r = kr connected monochromatic
k-regular subgraphs in the cover.

We proceed similarly as in the proof of Lemma 10. Consider an r-edge coloring
(G1, G2, . . . , Gr) of K(A, B).A is sufficiently large and we may assume that B is suffi-
ciently large as well, since otherwise we are done by Lemma 13. We may assume that

|A| = (8r)8(r+1)|B| (5)

by keeping a subset of A of this size and deleting the rest. We apply the bipartite r-color
version of the Regularity Lemma and similarly as in the proof of Lemma 10 we get the
reduced graph GR = (AR, BR) that is an (1 − ε)-dense bipartite graph. However, here we
will use a multicoloring in GR. Define an r-edge multicoloring (GR

1 , GR
2 , . . . , GR

r ) of GR

in the following way. The edge between the clusters V j1
A and V j2

B has color s for all s such
that ∣∣EGs

(
V j1

A ,V j2
B

)∣∣ ≥ δ
∣∣V j1

A

∣∣∣∣V j2
B

∣∣,
where δ is given in (1). We use the following claim from [7].

Claim 1 (Claim 1 in [7]). There exists a color (say G1, called red) such that GR
1 =

(AR, BR) contains a connected (A′′R, B′′R) satisfying the following:

|A′′R| ≥ 1

4(4r)4
lA and |B′′R| ≥ 1

2(4r)2
lB, (6)

degGR
1

(
pj

B, AR
) ≥ 1

4r
lA, ∀pj

B ∈ B′′R, (7)

and

degGR
1

(
pj

A, B′′R) ≥ 1

2(4r)2
lB, ∀pj

A ∈ A′′R. (8)

We modify B′′R in the following way. We add any vertex pj
B ∈ (BR \ B′′R) to B′′R for

which we have

degGR
1

(
pj

B, A′′R) ≥ 2

(8r)8(r+1)
lA (≥ lB) . (9)

For simplicity, we keep the notation B′′R for the resulting set. Thus, now we may assume
that for any pj

B ∈ (BR \ B′′R), the inequality (9) does not hold.
Then using (7) and (9) by Hall’s theorem, we can find a monochromatic (red) connected

matching M covering the vertices B′′R (note that the other end points of the matching
edges may not be in A′′R for the original vertices of B′′R).

Denote the found M = {e1, e2, . . . , el1} and f (ei) = (V i
A,V i

B) for 1 ≤ i ≤ l1 (where
l1 = |B′′R|). Similarly, as in the proof of Lemma 8 in Step 1, we make the pairs of clusters
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belonging to the edges in M super-regular (in red). The exceptional vertices removed from
the clusters in B are added to V 0

B . Again, similarly as in the proof of Lemma 8 in Step 1,
we find the connecting red subgraphs Hi between the super-regular pairs belonging to
edges of M and we make the partite sets equal inside one super-regular pair. However, we
postpone the closing of the red connected k-regular subgraph inside each pair of clusters
belonging to edges of M. First, we need some technical steps. We go back to the original
graph and we consider the set of remaining vertices in B:

B1 = V 0
B + f (BR \ B′′R).

Consider those vertices v ∈ B1 for which

degG1
(v, f (A′′R)) ≥ 4

(8r)5(r+1)
|A| (≥ |B|) . (10)

These vertices are removed from B1 and they will be inserted into the red cycle. (For
simplicity, we will keep the notation B1 for the remaining vertices.) For this purpose, first
we need an estimate on the number of vertices satisfying (10). We have |V 0

B | ≤ 2ε|B|.
Let us consider a pj

B ∈ BR \ B′′R. Using (1), the definition of the coloring in GR and the
fact that for pj

B (9) does not hold, the number of red edges between f (pj
B) and f (A′′R) is

at most

2

(8r)8(r+1)
lAm2 + δlAm2 ≤

(
2

(8r)8(r+1)
+ δ

)
|A|m ≤ 4

(8r)8(r+1)
|A|m.

This clearly implies that we can have at most 1
(8r)3(r+1) m vertices in f (pj

B) satisfying (10).
Thus altogether, the number of vertices satisfying (10) is at most∣∣V 0

B

∣∣ + 1

(8r)3(r+1)
| f (BR \ B′′R)| ≤ 2ε|B| + 1

(8r)3(r+1)
|B| ≤ 2

(8r)3(r+1)
|B|. (11)

To handle the vertices satisfying (10), we are going to extend some of the red connecting
subgraphs Hi connecting the edges of M so now they are going to include these vertices.
Take the first vertex v satisfying (10). Then clearly there is a cluster pj

A ∈ A′′R that is not
covered by M for which

degG1

(
v, f

(
pj

A

)) ≥ δm.

Take an arbitrary neighbor of pj
A in B′′R (there must be many by (8)). Then this neighbor

is covered by the matching M, say by the edge ei, 1 ≤ i ≤ l1 where f (ei) = (V i
A,V i

B).
Consider the red connecting subgraph Hi−1 between f (ei−1) and f (ei) ending with 2k
vertices in V i

A. We extend this connecting subgraph Hi−1 by a six-partite subgraph. The
six partite sets (each of size 2k) in this extension come from the following sets (in this
order):

V i
B, f

(
pj

A

)
, v ∪ V i

B, f
(
pj

A

)
, V i

B,V i
A,

where we make sure that the third partite set includes v. Otherwise the construction of
this extension is the same as in the proof of Lemma 8.

We repeat the same procedure for all the other vertices satisfying (10). However,
we have to pay attention to several technical details. First, of course in repeating this
procedure we always consider the remaining free vertices in each cluster; the internal
vertices of the connecting subgraphs are always removed. Second, we make sure that we
never use up too many vertices from any cluster. It is not hard to see (using (8), (10),
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and (11)) that we can guarantee that we use up at most half of the vertices from every
cluster. Finally, since we are removing vertices from a pair (V i

A,V i
B), we might violate

the super-regularity. Note that we never violate the ε-regularity. Therefore, we do the
following. After using up, say, �δ2m� vertices from a pair (V i

A,V i
B), we update the pair as

follows. In the pair (V i
A,V i

B), we remove all vertices u from V i
A (and similarly from V i

B) for
which deg (u,V i

B) < (δ − ε)|V i
B| (again, we consider only the remaining vertices) and we

make the partite sets equal inside one super-regular pair. We add the at most εm vertices
removed from V i

B to V 0
B , check whether they satisfy (10) and if they do, we process them

with the above procedure.
This way we can handle all the vertices satisfying (10). Now as in the proof of

Lemma 8 in Step 1, we can close the red connected k-regular subgraph inside each
super-regular edge of M such that it covers all the remaining vertices in V i

B.
Remove this red connected k-regular subgraph. Denote the resulting sets by B1 in B

and by A1 in f (A′′R). Put A0 = A and B0 = B. By (5), (6), and the fact that the relative
proportions in the original graph are almost the same as in the reduced graph, we certainly
have

|A1| ≥ 1

(8r)4
|A0|. (12)

We will apply repeatedly the above procedure in (A1, B1). However, we consider only
the (r − 1)-edge multicoloring (G2, . . . , Gr) in K(A1, B1), the edges in G1 are deleted.
Notice that |A1| is still sufficiently large. We have three cases depending on the size B1.

Case 1: (|B1| − 1)r|B1| < |A1|.
In this case, we are done by Lemma 13 since we have a covering of B by (k − 1)r + 1

(≤ kr) vertex disjoint connected monochromatic k-regular subgraphs. Thus, we may
assume that this case does not hold.

Case 2: (8r)8(r+1)|B1| ≤ |A1| ≤ (|B1| − 1)r|B1|.

In this case, we may run into the problem that the removed k-regular subgraph may
contain almost all vertices of B, i.e. |B1| = o(|A1|). In this case, the reduced graph might
become empty. To avoid this we keep a subset of A1 of size (8r)8(r+1)|B1| (denoted again
by A1) and we delete the rest. By the fact that (10) does not hold we know that before
this deletion all vertices in B1 have small degrees in the color removed (red). But then
it may happen that the relative degree (the fraction of the degree and the “new” |A1|) of
some vertices in the trimmed B1 in red will not be small any more, i.e. similarly to (10)

degG1
(v, A1) ≥ 4

(8r)5(r+1)
|A1|. (13)

To avoid this, we choose a random subset of A1 of this size (denoted again by A1 for
simplicity). Then the relative degrees of the vertices of B1 will be roughly the same as
before the deletion of the superfluous vertices. To make this precise, we use the following
claim from [7].

Claim 2 (Claim 2 in [7]). Let Vn = {v1, . . . , vn} with n sufficiently large, F =
{S1, . . . Sm} with Si ⊆ Vn, |Si| ≤ cn for some constant 0 < c ≤ 1. Then for arbitrary
k > 3

c log m, there exists a T ⊆ Vn such that

� |T | = k,
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� |Si ∩ T | ≤ 2ck, ∀i.

We will apply Claim 2 with the following choices. Let n = |A1|,Vn = A1, m =
|B1|, Si = NG1 (vi, A1) for vi ∈ B1. Then from (12) and the fact that (10) does not hold it
follows that we can select

c = degG1
(vi, A1)

|A1| <
4

(8r)5(r+1)

|A|
|A1| ≤ 4(8r)4

(8r)5(r+1)
. (14)

Clearly, all the conditions of the claim are satisfied so we can select the desired subset of
A1 of size (8r)8(r+1)|B1|.
Case 3: |A1| < (8r)8(r+1)|B1|.

In this case, we continue with A1 with no modifications.
Now, we are ready to repeat the above procedure in (A1, B1). Note that in Case 3

technically we have a somewhat weaker condition for |A1| in terms of |B1| compared to
the original |A0| = (8r)8(r+1)|B0|, but that does not create any difficulties, the procedure
still goes through.

We will treat Cases 2 and 3 simultaneously. We apply the bipartite (r − 1)-color
version of the Regularity Lemma for the (r − 1)-colored bipartite graph between A1 and
B1. Using the fact that in B1 (10) does not hold and Claim 2 in Case 2, in both Cases 2
and 3 we still have the 1

2r lA1 lB1 lower bound for the number of edges in a color, say GR
2 . In

Case 3, the above procedure goes through exactly the same way for (A1, B1). Note that
in Case 3 in (9) we keep the original

2

(8r)8(r+1)
lA

lower bound (and we do not use lA1 instead of lA), and similarly in (10) we keep the

4

(8r)5(r+1)
|A|

lower bound (and we do not use |A1| instead of |A|). However, in Case 2, we replace lA
with lA1 in (9) and |A| with |A1| in (10). Thus, in both cases similarly to (12) we have

|A2| ≥ 1

(8r)4
|A1|,

and furthermore if we had Case 3 for (A1, B1), then using (12) we have

|A2| ≥ 1

(8r)4
|A1| ≥ 1

(8r)8
|A0|.

However, note that if we had Case 2 for (A1, B1), then this last inequality might not hold
as the “new” |A1| might be significantly smaller than 1

(8r)4 |A0|.
In general, let us consider the situation after t iterations in (At, Bt ). Assume that the

last time Case 2 occurred was at t ′ (≤ t). If Case 2 never occurred we put t ′ = 0. The
above procedure goes through exactly the same way for (At, Bt ) but we replace lA with
lAt′ in (9) and |A| with |At ′ | in (10).

If the procedure terminates after t(≤ r) iterations with no more vertices remaining in
B, then we have a cover of B with at most kr vertex disjoint connected monochromatic
k-regular subgraphs, as desired. Assuming that the procedure does not terminate after r
iterations, so Br �= ∅, we will get a contradiction. Indeed, let us examine the maximum
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degree to the set Ar in any color for each vertex v ∈ Br. For G1 since (10) does not hold,
we have

degG1
(v, A0) <

4

(8r)5(r+1)
|A0|.

Then as we saw in (14) in case we have Case 3 for (A1, B1) we have

degG1
(v, A1) <

4(8r)4

(8r)5(r+1)
|A1|,

and in case we have Case 2 for (A1, B1) using Claim 2, we have to multiply by an extra
factor of 2 to get

degG1
(v, A1) <

8(8r)4

(8r)5(r+1)
|A1|.

We continue in this fashion, in each iteration we have to multiply the coefficient of |Ai|
by a factor of (8r)4 and in addition if it was an iteration where we applied Case 2, then
we have to multiply by another factor of 2. Thus, for each vertex v ∈ Br, we have

degG1
(v, Ar) <

4(2)r(8r)4r

(8r)5(r+1)
|Ar| <

|Ar|
r

.

In this upper bound, we assumed the worst possible case when we have a Case 2
application in each iteration and that is why we get the extra factor of 2r. Note also that
we have this upper bound for the other colors as well, and thus for each vertex v ∈ Br

and color 1 ≤ i ≤ r we have

degGi
(v, Ar) <

|Ar|
r

,

a contradiction, since in at least one of the colors we must have at least |Ar|/r edges from
v to Ar. This finishes the proof of Lemma 11. �

3. Proof of Theorem 3

In this section, we present the easy construction for Theorem 3. Let A1, . . . , Ar−1 be
disjoint vertex sets of size k − 1, and Ar is the set of remaining vertices (assuming
n > (r − 1)(k − 1)). The r-coloring is defined in the following way: color 1 is all the
edges containing a vertex from A1, color 2 is all the edges containing a vertex from A2 and
not in color 1, etc. we continue in this fashion. Color r − 1 is all the edges containing a
vertex from Ar−1 and not in color 1, . . . , r − 2. Finally, color r is all the edges within Ar.

To show the lower bound let us assume that we have a covering by vertex disjoint
connected monochromatic k-regular subgraphs. It is not hard to see that in this covering
the vertices in A1 ∪ . . . ∪ Ar−1 must be isolated vertices. Indeed, to cover any vertex in
Ai, 1 ≤ i ≤ r − 1 by a nontrivial connected monochromatic k-regular subgraph, the only
possible color is color i. However, we have to include at least one vertex from the outside
of Ai. But then this vertex must have k neighbors in Ai, a contradiction. The vertices in
A1 ∪ . . . ∪ Ar−1 must be indeed isolated vertices. Counting one more subgraph to cover
Ar, altogether we need at least (r − 1)(k − 1) + 1 connected monochromatic k-regular
subgraphs to cover all the vertices. �
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[4] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math

Sci Hungar 10 (1959), 337–356.
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[14] D. Kühn and D. Osthus, Packings in dense regular graphs, Combin Probab
Comput 14 (2005), 325–337.

[15] T. Łuczak, R(Cn,Cn,Cn) ≤ (4 + o(1))n, J Combin Theory Ser. B 75 (1999),
174–187.
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