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Abstract: Here improving on our earlier results, we prove that there
exists an n0 such that for n≥n0 in every 2-coloring of the edges of K(4)

n

there is a monochromatic Hamiltonian 3-tight Berge cycle. This proves the
c=2, t=3, r=4 special case of a conjecture from (P. Dorbec, S. Gravier,
and G. N. Sárközy, J Graph Theory 59 (2008), 34–44). � 2009 Wiley Periodicals,

Inc. J Graph Theory 63: 288–299, 2010
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1. INTRODUCTION

V(G) and E(G) denote the vertex set and the edge set of the graph G. (A,B,E)
denotes a bipartite graph G= (V ,E), where V =A+B and E⊂A×B. For a graph G
and a subset U of its vertices, G|U is the restriction of G to U. N(v) is the set of
neighbors of v∈V . Hence the size of N(v) is |N(v)|=deg(v)=degG(v), the degree
of v. �(G) stands for the minimum and �(G) for the maximum degree in G. When
A,B are subsets of V(G), we denote by e(A,B) the number of edges of G with one
endpoint in A and the other in B. In particular, we write deg(v,U)=e({v},U) for
the number of edges from v to U. A graph Gn on n vertices is �-dense if it has
at least �

(n
2

)
edges. A bipartite graph G(k, l) is �-dense if it contains at least �kl

edges.
Let H be an r-uniform hypergraph (a family of some r-element subsets of a

set). The shadow graph of H is defined as the graph �(H) on the same vertex
set, where two vertices are adjacent if they are covered by at least one edge of H.
A coloring of the edges of an r-uniform hypergraph H, r≥2, induces a multicoloring on
the edges of the shadow graph �(H) in a natural way; every edge e of �(H) receives
the color of all hyperedges containing e. We shall denote by c(x,y) the color set of
the edge xy in �(H). A subgraph of �(H) is monochromatic if the color sets of its
edges have a nonempty intersection. Let K(r)

n denote the complete r-uniform hypergraph
on n vertices.

In any r-uniform hypergraph H for 2≤ t≤r we define an r-uniform t-tight Berge-
cycle of length �, denoted by C(r,t)

� , as a sequence of distinct vertices v1,v2, . . . ,v�,
such that for each set (vi,vi+1, . . . ,vi+t−1) of t consecutive vertices on the cycle, there
is an edge ei of H that contains these t vertices and the edges ei are all distinct for i,
1≤ i≤� where addition is done modulo �. This notion was introduced in [5] and for
t=2 we get ordinary Berge-cycles [1] and for t=r we get the tight cycle (see e.g. [14]
or [19]). A Berge-cycle of length n in a hypergraph of n vertices is called a Hamiltonian
Berge-cycle. It is important to keep in mind that, in contrast to the case r= t=2, for
r>t≥2 a Berge-cycle C(r,t)

� is not determined uniquely; it is considered as an arbitrary
choice from many possible cycles with the same triple of parameters.

In this paper, continuing investigations from [5, 8, 10, 11] and [12], we study long
Berge-cycles in hypergraphs. In [5] (by generalizing an earlier conjecture from [8]) the
following conjecture was formulated.
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Conjecture 1.1. For any fixed 2≤c, t≤r satisfying c+ t≤r+1 and sufficiently
large n, if we color the edges of K(r)

n with c colors, then there is a monochromatic
Hamiltonian t-tight Berge-cycle.

In [5] it was proved that if the conjecture is true it is best possible, since for any
values of 2≤c, t≤r satisfying c+ t>r+1 the statement is not true. The conjecture can
easily be proved for c= t=2 and r=3, see [8]. The asymptotic form of the conjecture
was proved for c=3, t=2 and r=4 in [8] and for every r and c=r−1, t=2 in [11]—in
both papers the Regularity Lemma [20] was used. In this paper we prove the conjecture
in a sharp form for the first non-trivial special case: c=2, t=3 and r=4 and thus
providing more evidence to the truth of the conjecture in general.

Theorem 1.2. There exists an n0 such that for n≥n0, in every 2-coloring of the edges
of K(4)

n there is a monochromatic Hamiltonian 3-tight Berge-cycle.

This improves a result of [12] where under the same assumptions we could only
find a monochromatic 3-tight Berge-cycle of length at least n−10. It also improves
a result from [5] where we did manage to find a Hamiltonian monochromatic 3-tight
Berge-cycle but only in 2-colorings of the edges of the complete 5-uniform hypergraph.
In the proof we combine the proof method of the weaker statement from [12] with
stability arguments discussed in the next section.

2. A STABILITY VERSION OF THE GERENCSÉR–GYÁRFÁS

THEOREM

For graphs G1,G2, . . . ,Gr, the Ramsey number R(G1,G2, . . . ,Gr) is the smallest positive
integer n such that if the edges of a complete graph Kn are partitioned into r disjoint color
classes giving r graphs H1,H2, . . . ,Hr, then at least one Hi (1≤ i≤r) has a subgraph
isomorphic to Gi. The existence of such a positive integer is guaranteed by Ramsey’s
classical result [18]. The number R(G1,G2, . . . ,Gr) is called the Ramsey number for
the graphs G1,G2, . . . ,Gr. There is very little known about R(G1,G2, . . . ,Gr) even for
very special graphs (see e.g. [7] or [17]). For r=2 a theorem of Gerencsér and Gyárfás
[6] states that

R(Pn,Pn)=
⌊

3n−2

2

⌋
.

To get the extremal example let V(G)=A∪B where |A|=n−1, |B|=�(n−2) /2�, all
the edges inside A are of one color (say red) and all the edges between A and B are
of the other color (blue). (Note that we have no restriction on the coloring inside the
smaller set.)

In the proof of Theorem 1.2 we will use a stability version of the Gerencsér–Gyárfás
Theorem that we proved recently in [13]. For this purpose we need to define a relaxed
version of the above extremal coloring. We work with 2-edge multicolorings (G1,G2)
of a graph G. Here multicoloring means that the edges can receive more than one color,
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i.e. the graphs Gi are not necessarily edge disjoint. The subgraph colored with color i
only is denoted by G∗

i , i.e.

G∗
1 =G1 \G2, G∗

2 =G2 \G1.

Extremal Coloring 1 (with parameter �) : There exists a partition V(G)=A∪B
such that

• |A|≥ (1−�)2|V(G)| /3, |B|≥ (1−�)|V(G)| /3.
• The graph G∗

1|A is (1−�)-dense and the bipartite graph G∗
2|A×B is (1−�)-dense,

where say G1 is red and G2 is blue. (Note again that we have no restriction on
the coloring inside the smaller set.)

Then the following stability version of the Gerencsér–Gyárfás Theorem from [13]
claims that we can either find a monochromatic path substantially longer than 2n /3 or
the coloring is close to the extremal coloring.

Lemma 2.1. For every �>0, there exist positive reals �,c1 (0<�
�
1 where 

means sufficiently smaller) and a positive integer n0 such that for every n≥n0 the
following holds: if the edges of the complete graph Kn are 2-multicolored then we have
one of the following two cases:

• Case 1: There exists a color (say red) and k≥ (2 /3+�)n such that Kn contains
a red path P of length k. Furthermore, in the process of finding P, given a
red initial subpath of P, for the next vertex of the path P we always have at
least c1 logn choices. More precisely, for each i=1,2, . . . ,k, given a red initial
subpath p1p2 . . .pi−1, there are at least c1 logn choices of pi ∈V(Kn) for which
p1p2 . . .pi−1pi is a red path.

• Case 2: This is an Extremal Coloring 1 (EC1) with parameter �.

Surprisingly, as far as we know, this natural question has not been studied, despite
the fact that stability versions for some classical density (see [2]) and Ramsey-type
results (see [9, 15]) are known.

Lemma 2.1 (and thus Theorem 1.2) can also be proved from the Regularity Lemma;
however, in [13] we used a more elementary approach using only the Kővári–Sós–Turán
bound [16] on the number of edges ensuring a balanced complete bipartite graph.

3. OUTLINE OF THE PROOF OF THEOREM 1.2

As in Lemma 2.1 we will use the following main parameters:
0<�
�
1,

and we shall assume that n is sufficiently large.
We will follow the same rough outline as in [12]. Indeed, suppose that a 2-coloring

c is given on the edges of K=K(4)
n . Let V be the vertex set of K and observe that c

defines a 2-multicoloring on the complete 3-uniform hypergraph T with vertex set V
by coloring a triple T with the colors of the edges of K containing T . We say that
T ∈T is good in color i if T is contained in at least two edges of K of color i (i=1,2).
Let G be the shadow graph of K. The following easy lemma is from [12].
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Lemma 3.1. Every edge xy∈E(G) is in at least n−4 good triples of the same color.

Proof. Consider an edge xy in G and let W =V \{x,y}. Assume indirectly that the
triples {x,y,a}, {x,y,b} and {x,y,c} are all bad in color 1 for some a,b,c∈W. Thus
if the triple {x,y,z} is bad in color 2 for some z∈W, then z �∈ {a,b,c} and without
loss of generality we may assume that c(xyza)=c(xyzb)=1. If also the triple {x,y,w}
is bad in color 2 for some w∈W \{z}, then w �∈ {a,b,c} and without loss of gener-
ality we may assume that c(xywa)=1, contradicting the fact that the triple {x,y,a} is
bad in color 1. We note that the lemma also follows from a result of Bollobás and
Gyárfás [3]. �

Using Lemma 3.1, we can define a 2-multicoloring c∗ on the shadow graph G=�(K)
by coloring xy∈E(G) with the color(s) of the (at least n−4) good triples containing xy.
We apply the stability version of the Gerencsér–Gyárfás Theorem (Lemma 2.1) for this
2-multicoloring of G. Case 2, i.e. EC1 is handled in Section 6. Assuming that we have
the non-extremal case, Case 1, we can find in G a monochromatic path P (say in red)
of length l≥ (2 /3+�)n. From now on in the non-extremal case we work in the color
red. Label the edges of P by ej ={pj,pj+1}, j=1,2, . . . , l−1. From Lemma 2.1 it also
follows that we can guarantee that all the triples {pj,pj+1,pj+2}, j=1,2, . . . , l−2, are
good in red. Indeed, when we select pj+2 we select a vertex from the available c1 logn
choices that forms a good triple with {pj,pj+1}. Since only two vertices are forbidden
we still have plenty to choose from.

We plan to splice in the remaining vertices in V(G)\V(P) into (most of) the edges
e2j ={p2j,p2j+1}. For this purpose we make sure that if we plan to splice in the
vertex v∈V(G)\V(P) into the edge e2j, then all 3 triples {p2j−1,p2j,v}, {p2j,v,p2j+1}
and {v,p2j+1,p2j+2} are good in red. This will guarantee, through Hall’s condition,
that we will be able to make this into a 3-tight Berge-cycle later. Note that we
need the technical condition for the triples to be good in red rather than just red to
make sure that we can select through Hall’s condition distinct 4-edges containing the
consecutive triples along the cycle. This is a necessary condition for being a 3-tight
Berge-cycle.

However, as in [12], there could be a small (constant) number of exceptional
vertices in V(G)\V(P) that simply cannot be spliced in into any of the edges e2j.
In order to avoid this technical difficulty we do the following. First we build an
initial red path P′ that has length 26. This determines a small number of exceptional
vertices in V(G)\V(P′) that cannot be spliced in into P′. For each such exceptional
vertex v we make sure artificially that we will be able to splice it in; we will build a
v-absorbing bridge.

Definition 3.2. We define a v-absorbing bridge {p1,p2,p3,p4} (in red) in the following
way. The edges {p1,p2}, {p2,p3} and {p3,p4} are all red (under c∗) in G and we have
one of the following two cases:

• All 3 triples {p1,p2,v}, {p2,v,p3} and {v,p3,p4} are good in red (type 1 bridge),
• Otherwise there exists a vertex w �∈ {v,p1,p2,p3,p4} such that the 4-edges

{p1,p2,v,w}, {p2,v,p3,w} and {v,p3,p4,w} are all red edges of K (type 2 bridge).
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Note that in the second case the triples {p1,p2,v}, {p2,v,p3} and {v,p3,p4} might not
be good in red, as w might be the only vertex that can be added to them. However,
this definition will imply that in both cases v can be spliced in into the edge {p2,p3}.

Now we are ready to define our second extremal coloring.
Extremal Coloring 2 (with parameter �) : We will call the coloring an Extremal

Coloring 2 (EC2) if the following statement is not true: For both colors and for every
vertex v∈V(G) there are at least

√
�n4 v-absorbing bridges (with the same w if they

are type 2).
EC2 is handled later in Section 5. If the condition in the definition of EC2 is violated

for red, then we call it an EC2-red; if the condition is violated for blue, then we call
it an EC2-blue (thus potentially we might have a coloring that is both in EC2-red and
in EC2-blue).

Assuming that EC2 does not hold we connect P′ and these red absorbing bridges
for the exceptional vertices into a path P′′ that still has a constant length. Then we
extend this to a red cycle C′ that has length at least (2 /3+�)n and that contains P′′
as a subpath. Now we are able to splice in all the remaining vertices into the cycle C′
and thus resulting in a red Hamiltonian 3-tight Berge-cycle.

4. THE NON-EXTREMAL CASE

Assume in this case that we do not have Extremal Colorings 1 or 2. Following the outline
above first we build an initial red path P′ in G that has length 26. Label the edges of P′
by ej ={pj,pj+1}, j=1,2, . . . ,25. P′ determines a small number of exceptional vertices
in V(G)\V(P′) in the following way. As indicated above for a vertex v∈V(G)\V(P′)
and for an edge e2j ={p2j,p2j+1}, j=1,2, . . . ,12, of P′ we say that v can be spliced in
into e2j if all 3 triples {p2j−1,p2j,v}, {p2j,v,p2j+1} and {v,p2j+1,p2j+2} are good in red.
A vertex v∈V(G)\V(P′) is exceptional if it can be spliced in into at most 6 edges
e2j of P′. We claim that the number of these exceptional vertices in V(G)\V(P′) is at
most 12. Indeed, for each fixed edge e2j of P′, 1≤ j≤12, there could be only at most
6 vertices of V(G)\V(P′) that cannot be spliced in into e2j since for each of the pairs
{p2j−1,p2j}, {p2j,p2j+1} and {p2j+1,p2j+2} there could be at most 2 exceptional vertices.
Then, as usual, we define an auxiliary bipartite graph Gb between the edges e2j and
the vertices v∈V(G)\V(P′) where we put an edge between e2j and v, if v cannot be
spliced in into e2j. By the above Gb has at most 6 ·12=72 edges. Then indeed the
number of exceptional vertices is at most 12, since otherwise the number of edges
of this bipartite graph would be more than 12 ·6=72, a contradiction. Note that the
degree of all non-exceptional vertices of V(G)\V(P′) in Gb is at least 6, i.e. each
non-exceptional vertex can be spliced in into at least 6 edges e2j of P′; a fact that will
be important later.

For the at most 12 exceptional vertices we will find vertex disjoint absorbing bridges
in red where they will be spliced in. The fact that we are not in EC2 makes this
possible. Indeed, we do the following for the exceptional vertices. Denote the excep-
tional vertices with v1,v2, . . . ,v12 (we may assume that there are exactly 12 such vertices
by taking arbitrary vertices from V(G)\V(P′).). We find vertex disjoint vi-absorbing
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bridges Pi ={pi
1,pi

2,pi
3,pi

4} for 1≤ i≤12 such that the following are true (to make sure
that the paths can be connected and that this new path can be a part of a 3-tight
Berge-cycle).

• The triples {pc2−1,pc2 ,p1
1} and {pc2 ,p1

1,p1
2} are good in red. This allows us to

connect P′ and the bridge P1.
• The triples {pi

3,pi
4,pi+1

1 } and {pi
4,pi+1

1 ,pi+1
2 } are good in red for 1≤ i≤11. This

allows us to connect the bridges Pi and Pi+1.
• If Pi is a type 2 bridge with the 4th vertex wi, then the vertices pi−1

4 (or pc2 if
i=1) and pi+1

1 are not equal to wi.

Indeed, from the fact that we have at least
√

�n4 vi-absorbing bridges for each 1≤ i≤12
(since we are not in EC2) we can find vertex disjoint {pi

2,pi
3} in such a way that we

have at least
√

�n /4 available choices for both pi
1 and pi

4. Then clearly we can pick
pi

1 and pi
4 such that the above properties hold and the resulting vi-absorbing bridges Pi

are vertex disjoint.
Thus indeed we can connect P′,P1,P2, . . . ,P12 into one path. Splice in the vertices

v1,v2, . . . ,v12 into their bridges between pi
2 and pi

3. Denote the resulting path by P′′.
For technical reasons let us “leave open” the endpoints of this path. This P′′ has the
following properties. Any triple of consecutive three vertices on P′′ is good in red if
it does not contain any of the vertices vi,1≤ i≤12, or if it does contain a vertex vi

with a type 1 bridge. For the consecutive triples T that contain a vertex vi with a type
2 bridge with the 4th vertex wi, the corresponding 4-edge of K containing T will be
T ∪{wi}. The above construction guarantees that there will not be any repetitions of
these 4-edges and thus indeed P′′ can be a part of a 3-tight Berge-cycle. Note that the
length of P′′ is still a constant (26+60=86).

Using the fact that P′′ has length 85, we can still apply Lemma 2.1 to find in G
a red path Q={q1,q2, . . . ,ql}, fi ={qi,qi+1}, l≥ (2 /3+�)n that is vertex disjoint from
P′′. Indeed, we mark the vertices in P′′ as forbidden vertices, and by Lemma 2.1 we
still have at least c1 logn−86≥c1 logn /2 available choices for each vertex of Q (using
that n is sufficiently large). Furthermore, as in P′, we can also guarantee that any
triple of consecutive three vertices on Q is good in red and that we can connect the
endpoints of P′′ and Q similarly as above. Thus we get a cycle C′ =P′′ ∪Q. Consider
the bipartite graph Gb between the remaining vertices in V(G)\V(C′) and the set of
edges

E={e2j|2≤2j≤24}∪{f2i|2≤2i≤ l−2},
where we put en edge between a vertex v∈V(G)\V(C′) and an edge e2j or f2i if the
vertex can be spliced in into the edge.

Claim 1. There is a perfect matching M in Gb from V(G)\V(C′).

Indeed, we have to check Hall’s condition, i.e. for every S⊂V(G)\V(C′) we need
|NGb

(S)|≥|S|. For |S|≤6, this is true as

|NGb
(S)|≥deg(v)≥6≥|S|,
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for an arbitrary v∈S. However, for |S|≥7 we have

|NGb
(S)|=|E|≥ (1 /3+� /2)n≥|S|, (1)

as desired (since for each e∈E we can have at most six exceptional vertices that cannot
be spliced in into e).

We splice in the vertices of V(G)\V(C′) into the edges where they are matched
under M. Now we finish the proof of the non-extremal case by claiming that the
Hamiltonian cycle C that we get after splicing in the vertices of V(G)\V(C′) is indeed
a red 3-tight Berge-cycle. Indeed, every triple of three consecutive vertices on C that
does not contain a vertex vi with a type 2 bridge is good in red. For the triples
containing a vertex vi with a type 2 bridge we already found the distinct red 4-edges
of K containing them (by adding the corresponding wi to the triple). For the other
triples, since they are good in red, there are at least two red 4-edges of K available
to cover them. However, no edge of K can cover more than two of these triples of C.
Thus, by Hall’s theorem again, there is a matching from these triples of C to the set
of red edges of K containing them, and thus resulting in a red Hamiltonian 3-tight
Berge-cycle finishing the proof in the non-extremal case.

5. EXTREMAL COLORING 2

For technical reasons we treat first EC2. In fact, this can be reduced to the non-extremal
case. Let us assume that we have an EC2, say an EC2-red. By the definition there must
exist a vertex vr, such that we cannot find at least

√
�n4 vr-absorbing bridges in red.

In this case we will show that either we can find a Hamiltonian 3-tight Berge-cycle
in blue or we can find sufficiently many vr-absorbing bridges in red after all with a
somewhat weaker definition of a bridge, which is just as good.

We will show first that we may assume that the blue and weak blue (to be defined
later) edges form a (1−�1/10)-dense subgraph in G. Indeed, if the density of the red
edges is at most �1/10, then this is immediate. Otherwise, consider the set of red edges
and mark those red edges e for which vr is not among the at most two exceptional
vertices, i.e. for which (e,vr) forms a good triple in red. If the density of the marked
red edges in G is still at least �1/10, then we could clearly find at least

√
�n4 paths of

length 3 consisting of marked red edges. However, these paths are vr-absorbing bridges
in red, a contradiction with our assumption. Indeed, one may take a subgraph of the
marked red edges where the minimum degree is at least half of the original average
degree (see e.g. Proposition 1.2.2 in [4]), and then use a greedy procedure and the fact
that �
1.

Thus we may assume that this is not the case, the density of the marked red edges is
less than �1/10. Next we will show that we may assume that all unmarked red edges are
blue as well in this 2-multicoloring. Let us take an unmarked red edge f . By definition,
the triple (f ,vr) is not a good triple in red, so apart from at most one edge all 4-edges
of K containing the triple are blue. In other words f is contained in at least (n−4) blue
triples. It seems as this is a slightly weaker condition than being blue in G, as these
(n−4) blue triples might not be good in blue. On the other hand, it is always the same
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vertex (namely vr) that we have to add to each of these triples to get a blue 4-edge of
K, and this property is just as good for building a 3-tight Berge-cycle and that is our
ultimate goal. Let us call these edges weak blue edges, since they are almost as good
as blue edges. Then every unmarked red edge of G is weak blue and thus the density
of the blue edges (blue or weak blue) is at least (1−�1/10), as claimed.

Thus, certainly in this case in blue (or weak blue) we can find a monochromatic
path much longer than (2 /3+�)n. Next we will show that we may assume that in blue
we have sufficiently many absorbing bridges for every vertex, and thus we are in EC2
only because of the red color, i.e. this is an EC2-red but not an EC2-blue. Then we can
proceed similarly in blue, as in the non-extremal case in red. Indeed, having weak blue
edges instead of blue edges is not going to create any difficulties since we can always
choose vr as the 4th vertex of the blue 4-edge containing a triple of three consecutive
vertices with a weak blue edge. This finishes the proof in this case.

Thus to finish let us assume that we are in EC2-blue as well. Thus we do not have
sufficiently many absorbing bridges for every vertex in blue, i.e. there exists a vertex
vb such that we cannot find at least

√
�n4 v-absorbing bridges in blue. Similarly as

above (with the colors playing the opposite roles), we may assume that the density of
red edges (red or weak red, where here for the weak red edges we always have to add
vb as the 4th vertex) is at least (1−�1/10). Thus at least (1−2�1/10)-portion of all the
edges are both red and blue. Consider all those 4-edges of K that we get when we add
{vr,vb} (if vr =vb, we add an arbitrary other vertex) to these edges and the majority
color induced by these edges. If this color is red, then we can find many (certainly
much more than

√
�n4) vr-absorbing type 2 bridges in red where the vertex w in the

definition of the type 2 bridge can be chosen as vb. We might have to use weak red
edges on these red bridges instead of just red edges, but they are just as good for
building bridges. We just have to make sure that vb is never used on these bridges.
Thus we have sufficiently many vr-absorbing bridges in red after all. If the majority color
is blue then we have sufficiently many vr-absorbing type 2 bridges in blue, as desired.

We can repeat the same argument for blue as well if blue also violates the condition
of having sufficiently many bridges. Thus in summary we can claim that either we can
find a monochromatic Hamiltonian 3-tight Berge-cycle or we can assume that we have
sufficiently many bridges for every vertex in both colors.

6. EXTREMAL COLORING 1

Assume finally that we have an EC1. Thus there exists a partition V(G)=A∪B such that

• |A|≥ (1−�)2|V(G)| /3, |B|≥ (1−�)|V(G)| /3.
• The graph G∗

1|A is (1−�)-dense and the bipartite graph G∗
2|A×B is (1−�)-dense,

where say G1 is red and G2 is blue.

The main idea is the same as in the non-extremal case; either in red or in blue we have
to find a long enough monochromatic cycle in G and then we splice in the remaining
vertices into roughly every other edge on the cycle. In light of the previous section we
may assume that we have sufficiently many bridges for every vertex in both colors, so
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this is not going to be a problem. However, here we might not be able to find a long
enough monochromatic cycle since we are in EC1.

First we will redistribute certain exceptional vertices from A and B. A vertex u∈A
is exceptional if its red-only degree in A is significantly less than |A|, i.e. we have

degG∗
1
(u,A)<(1−�)|A|, (2)

From the density condition in G∗
1|A, it follows that the number of these exceptional

vertices in A is at most �|A|. If in (2) we have the stronger inequality

degG∗
1
(u,A)<

√
�|A|,

then we move u from A to B, since indeed now we have

degG2
(u,A)>(1−√

�)|A|.
Similarly, a vertex v∈B is exceptional if its blue-only degree in A is significantly less
than |A|, i.e. we have

degG∗
2
(v,A)<(1−�)|A|. (3)

From the density condition in G∗
2|A×B, it follows again that the number of these

exceptional vertices in B is at most �|B|. If in (3) we have the stronger inequality

degG∗
2
(v,A)<

√
�|A|,

then we move v from B to A, since now we have

degG1
(v,A)>(1−√

�)|A|.
For simplicity let us denote the resulting sets still by A and B. It is easy to see that
in these new sets A,B we still have the following degree conditions. Apart from at
most 2�|A| exceptional vertices in G1|A, all the degrees are at least (1−2

√
�)|A|, and

the degrees of the exceptional vertices are at least
√

�|A| /2. Similarly, in the bipartite
graph G2|A×B apart from at most 2�|B| exceptional vertices in B all the degrees from
B to A are at least (1−2

√
�)|A|, and the degrees of the exceptional vertices are at least√

�|A| /2.
We distinguish two cases.

Case 1. |B|≤�n /3�. In this case we will find a red Hamiltonian 3-tight Berge-cycle.
We proceed exactly as in the non-extremal case, but we have to be slightly more careful
because of the sharp size conditions. We will build P′′ consisting of P′ and the absorbing
bridges for the exceptional vertices as in the non-extremal case. However, here we
also make sure that the connecting edges between the subpaths are also red edges (it
is not hard to see from the degree conditions that this is possible). Furthermore, we
can also see from the degree conditions (using �
1 and a Pósa-type condition on
Hamilton-connectedness, see [1]) that C′ =P′′ ∪Q may cover all vertices in A. Indeed,
let us remove from A the vertices of P′′ other than the endpoints, then from the above
degree conditions and �
1 it follows that the remainder of G1|A still satisfies a
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Pósa-type condition on Hamilton-connectedness, and thus we can connect the endpoints
of P′′ by a Hamiltonian path Q, resulting in a red Hamiltonian cycle C′ in G.

The set of edges E where we can splice in the remaining vertices includes now liter-
ally every second edge on C′, so it has size |E|≥�|C′| /2�≥�n /3�. Then corresponding
to (1) we still have

|NGb
(S)|=|E|≥

⌊n

3

⌋
≥|S|, (4)

and thus we can still splice in every remaining vertex of V(G)\V(C′) resulting in a red
Hamiltonian 3-tight Berge-cycle.

Case 2. |B|>�n /3�. In this case we will find a blue Hamiltonian 3-tight Berge-cycle.
Now we build C′ =P′′ ∪Q in the blue almost-complete bipartite graph between A and B
in such a way that we cover all vertices of B with C′ (again using �
1 and a bipartite
Pósa-type condition on Hamilton-connectedness, see [1]). Then (4) is true again, and
we can splice in every remaining vertex of V(G)\V(C′) resulting in a blue Hamiltonian
3-tight Berge-cycle. This finishes the proof of Theorem 1.2.

REFERENCES

[1] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, London,
1973.

[2] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
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[10] A. Gyárfás and G. N. Sárközy, The 3-color Ramsey number of a 3-uniform
Berge-cycle, submitted for publication.
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[13] A. Gyárfás, G. N. Sárközy, and E. Szemerédi, Stability of the
path–path Ramsey numbers, accepted for publication in Discrete
Mathematics, see also WPI Technical Report WPICS-CS-TR-08-12,
http://www.cs.wpi.edu/Research/techreports.html.

[14] P. Haxell, T. Łuczak, Y. Peng, V. Rödl, A. Rucin̂ski, and J. Skokan, The
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