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Abstract: In this paper we study multipartite Ramsey numbers for
odd cycles. We formulate the following conjecture: Let n≥5 be an arbi-
trary positive odd integer; then, in any two-coloring of the edges of the
complete 5-partite graph K((n−1)/2, (n−1)/2, (n−1)/2, (n−1)/2,1) there
is a monochromatic Cn, a cycle of length n. This roughly says that the
Ramsey number for Cn (i.e. 2n−1) will not change (somewhat surprisingly)
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if four large ``holes'' are allowed. Note that this would be best possible as
the statement is not true if we delete from K2n−1 the edges within a set of
size (n+1)/2. We prove an approximate version of the above conjecture.
� 2009 Wiley Periodicals, Inc. J Graph Theory 61: 12–21, 2009
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1. INTRODUCTION

A. Ramsey Numbers for Odd Cycles

If G1 and G2 are graphs, then the Ramsey number R(G1,G2) is the smallest positive
integer r such that if the edges of a complete graph Kr are partitioned into 2 disjoint
color classes giving graphs H1 and H2, then one of the subgraphs Hi (i=1,2) has a
subgraph isomorphic to Gi . The existence of such a positive integer is guaranteed by
Ramsey’s original paper [17]. The number R(G1,G2) is called the Ramsey number
for the graphs G1 and G2. The determination of these numbers has turned out to be
remarkably difficult in certain cases (see e.g. [5, 16] for results and problems). In this
paper we consider the case when each Gi is a cycle Cn on n vertices, where n is odd.
A theorem obtained independently by Rosta [18] and Faudree and Schelp [2] (see also
a new simple proof in [8]) states that for any n≥5 odd positive integer

R(Cn,Cn)=2n−1. (1)

Recently there has been some interest to see what happens to the Ramsey numbers
when we allow fixed edge deletions from the complete graph Kr , in particular if we
delete complete subgraphs from Kr . One result of this type appeared in [7], where we
gave a tripartite version of the Gerencsér–Gyárfás Theorem [4], i.e. we showed that
the Ramsey number for a path is about the same when two-colorings of a complete
graph or a balanced complete tripartite graph are considered. Another result of this
type appeared in [15], where it was shown for any odd n≥5 that if we delete the edges
of a complete subgraph of order (n−1)/2 from the complete graph of order 2n−1 and
we two-color the rest, we can still guarantee a monochromatic Cn .

In this paper along these lines we consider a multipartite version of (1). We formulate
the following conjecture.

Conjecture 1. Let n≥5 be an arbitrary positive odd integer; then, in any two-
coloring of the edges of the complete 5-partite graph K ((n−1)/2, (n−1)/2, (n−
1)/2, (n−1)/2,1), there is a monochromatic Cn.

Again this roughly says that the Ramsey number for Cn will not change (somewhat
surprisingly) if four large “holes” are allowed. Note that this would be best possible
as the statement is already not true if we have an independent set of size (n+1)/2 (so
even one hole of size (n+1)/2 is not allowed). Indeed, let us remove all the edges
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spanned by the set A, where |A|= (n+1)/2. Divide the vertices V \A into two sets B
and C with |B|= (n−1)/2 and |C |=n−1. Let the first color be all the edges within
B, within C and between A and B. The second color is the remaining edges. Then it
is easy to see that there is no monochromatic Cn .

Conjecture 1 holds for n=5, but is open in general. It is the purpose of this paper to
give an approximate result which gives further evidence to the truth of this conjecture.
More precisely we prove the following theorem.

Theorem 1. For all 0<�< 1
2 there exists an n0=n0(�) with the following properties.

For any n≥n0 positive odd integer, in any two-coloring of the edges of the complete
5-partite graph of order (2+�)n with 5 parts of size g(1),g(2),g(3),g(4) and g(5),
where we have

n/2≥g(1)≥g(2)≥g(3)≥g(4)≥g(5)≥�n,

there is a monochromatic Cn.

We note that recently there has been some interest in multipartite versions of classical
results, see e.g. the result of Magyar and Martin [14], a tripartite version of the Corrádi–
Hajnal Theorem, or our result in [7], a tripartite version of the Gerencsér–Gyárfás
Theorem.

In the proof of Theorem 1 the notion of an odd connected matching plays a central
role; this is a matching M in a graph G [12] such that all edges of M are in the
same non-bipartite connected component of G. Such a component is called an odd
component. This is related to the concept of a connected matching that was introduced
by Łuczak [13] and applied e.g. in [3, 6, 7].

Sections 2 and 3 provide our main tools including the Regularity Lemma. Then in
Section 4 we prove our main lemma (Lemma 6), which states that in any two-coloring
of a (1−�)-dense 5-partite graph with the right parameters there is a sufficiently large
monochromatic odd connected matching. Finally, in Section 5 we show how Lemma 6
implies Theorem 1.

B. Notation and Definitions

For basic graph concepts see the monograph of Bollobás [1]. Disjoint union of sets will
sometimes be denoted by +. Let V (G) and E(G) denote the vertex-set and the edge-set
of the graph G. Usually Gn is a graph with n vertices, and G(n1, . . . ,nk) is a k-partite
graph with classes containing n1, . . . ,nk vertices. Let (A, B,E) denote a bipartite graph
G= (V,E), where V = A+B and E⊂ A×B. Denote by Kn the complete graph on n
vertices, K (n1, . . . ,nk) the complete k-partite graph with classes containing n1, . . . ,nk
vertices, and Pn (Cn) the path (cycle) with n vertices. For a graph G and a subset U of
its vertices, G|U is the restriction to U of G, and �(v) is the set of neighbors of v∈V .
Hence the size of �(v) is |�(v)|=deg(v)=degG(v), the degree of v. Let �(G) stand
for the minimum and �(G) for the maximum degree in G. For a vertex v∈V and set
U ⊂V −{v}, we write deg(v,U ) for the number of edges from v to U . A graph Gn is
�-dense if it has at least �( n2 ) edges. The (A, B,E) bipartite graph is �-dense if it has
at least �|A||B| edges. The G(n1, . . . ,nk) k-partite graph is �-dense if all the bipartite
graphs between two classes are �-dense. When A, B are disjoint subsets of V (G), we
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denote by eG(A, B) the number of edges of G with one endpoint in A and the other
in B. For non-empty A and B,

dG(A, B)= eG(A, B)

|A||B|
is the density of the graph between A and B.

Definition 1. The bipartite graph G= (A, B,E) is (�,G)-regular if

X ⊂ A, Y ⊂ B, |X |>�|A|, |Y |>�|B| imply |dG(X,Y )−dG(A, B)|<�,

otherwise it is �-irregular.

2. THE REGULARITY LEMMA

In the proof a two-color version of the Regularity Lemma plays a central role.

Lemma 1 (Regularity Lemma, Szemerédi [19]). For every positive � and positive
integer m there are positive integers M and n0 such that for n≥n0 the following holds.
For all graphs G1 and G2 with V (G1)=V (G2)=V, |V |=n, there is a partition of V
into l+1 classes (clusters)

V =V0+V1+V2+·· ·+Vl

such that

• m≤ l≤M,

• |V1|=|V2|=· · ·=|Vl |,
• |V0|<�n,

• apart from at most �( l2 ) exceptional pairs, the pairs {Vi ,Vj } are (�,Gs)-regular for
s=1,2.

For an extensive survey on different variants of the Regularity Lemma, see [11].
Note also that if we apply the Regularity Lemma for a multipartite graph G with big
enough partite classes we can guarantee that for each cluster that is not V0, all vertices
of the cluster belong to the same partite class of G (see e.g. [14]).

We will also use the following simple property of (�,G)-regular pairs.

Lemma 2. Let G be a bipartite graph with bipartition V (G)=V1∪V2 such that
|V1|=|V2|=m≥45. Furthermore, let eG(V1,V2)≥m2/4 and the pair {V1,V2} be
(�,G)-regular for 0<�<0.01. Then for every l,1≤ l≤m−5�m and for every pair of
vertices v′ ∈V1,v′′ ∈V2, where deg(v′),deg(v′′)≥m/5, G contains a path of length
2l+1 connecting v′ and v′′.

This lemma is used by Łuczak in [13]. Lemma 2 (with somewhat weaker parameters)
also follows from the much stronger Blow-up Lemma (see [9, 10]).
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3. FURTHER GRAPH THEORY TOOLS

A set M of pairwise disjoint edges of a graph G is called a matching. The size |M | of
a maximum matching is the matching number, �(G). A key notion in our approach is
the notion of an odd connected matching. A matching M is an odd connected matching
in G if all edges of M are in the same non-bipartite connected component of G. Such
a component is called an odd component. For a multipartite graph G, we shall work
with its multipartite complement, G, defined as the graph we obtain from the usual
complement after deleting all edges within the partite classes. The next lemmas collect
some simple properties of multipartite graphs of high density.

Lemma 3. Assume that m<n is a positive integer, �(Gn)<m and H = [A, B] is a
bipartite subgraph of Gn with 2m<|A|≤|B|. Then H is a connected subgraph of Gn
and contains a matching of size at least |A|−m. Moreover, if only 2m<|B| and A 	=∅
is assumed then there is a subgraph H ′ which is connected and covers A and all but
at most m vertices of B.

Proof. Two vertices in A (B) have a common neighbor in B (A). Also if a∈ A,b∈ B
then any neighbor of a and b have a common neighbor in A. Thus, H is a connected
subgraph. Moreover, any maximum matching M misses fewer than m vertices of A.
The statement about H ′ follows by fixing a vertex a∈ A and H ′ is obtained by deleting
from B the vertices non-adjacent to A. �

Lemma 4. Assume that G is an r-partite graph with N vertices such that r ≥3,
N ≥2r (r−1)/(r−2), and �(G)<�N where �<1/(2r (r−1)). Suppose that the largest
partite class of G has at most as many vertices as the sum of the orders of the
other color classes. Then G has a matching covering at least (1−2�)N vertices
of G.

Proof. Assume that V1, . . . ,Vr are the vertex classes of G in a non-decreasing
order. Continue with the following procedure until the set U of uncovered vertices
in V1∪·· ·∪Vr−1 satisfies |U |<|Vr |. Note that by the assumption of the lemma, the
stopping condition is not present at the beginning, when U =V1∪·· ·∪Vr−1.

Take the edges of a largest matching from V1 to V2, one by one. Take the edges of
a largest matching from the unmatched vertices of V2 to V3, one by one, etc. The last
step is to take a largest matching from the unmatched vertices of Vr−2 to Vr−1, one
by one.

This procedure covers two vertices at a time and by Lemma 3 (applied with n=
N ,m=�N ) leaves at most 2�N vertices uncovered in each of the first r−1 partite
classes. If the stopping condition never occurs then

2(r−1)�N ≥|Vr |≥ N

r
,

contradicting the assumption of the lemma. Thus, the procedure eventually stops. Notice
that we have at least |Vr |−2 uncovered vertices at this time because before the last
matching edge was added, the stopping condition was not present and so we have
|U |+2≥|Vr |. Now we finish by taking a largest matching from the set U to Vr . At this
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point by Lemma 3 (applied again with n=N ,m=�N ) we leave at most �N uncovered
points in Vr and also in V (G)\Vr . Indeed, the lemma can be applied as

|U |≥|Vr |−2≥ N

r
−2>2�N

holds using N ≥2r (r−1)/(r−2) and �<1/(2r (r−1)). This proves the lemma. �

Lemma 5. Let 0<�,�< 1
2 . Assume that G=G(g(1),g(2),g(3),g(4),g(5)) is a (1−�)-

dense 5-partite graph on (2+�)n=g(1)+g(2)+g(3)+g(4)+g(5) vertices, where we
have

n/2≥g(1)≥g(2)≥g(3)≥g(4)≥g(5)≥�n.

Then G has a 5-partite subgraph H =H (h(1),h(2),h(3),h(4),h(5)) with h(i)≥ (1−
5
√

�/(8�2))g(i) for all 1≤ i≤5 such that �(H )<4
√

�g(1).

Proof. If G has p(i) vertices in the same partite class of g(i) vertices with degree at
least 4

√
�g(i) in G, then G has at least p(i)4

√
�g(i) edges. Therefore p(i)4

√
�g(i)≤

10�g(1)2, implying p(i)≤ 5
2

√
�g(1)2/g(i). Remove these p(i) vertices from the partite

class with g(i) vertices for each 1≤ i≤5, and let the remaining vertices induce the
subgraph H . Clearly �(H )<4

√
�g(1). We also have

h(i)≥g(i)− 5

2

√
�
g(1)2

g(i)
=

(
1− 5

2

√
�
g(1)2

g(i)2

)
g(i)≥

(
1− 5

√
�

8�2

)
g(i). �

4. LARGE MONOCHROMATIC ODD CONNECTED MATCHINGS IN

DENSE 5-PARTITE GRAPHS

In our main lemma we show that we can find large monochromatic odd connected
matchings in dense 5-partite graphs.

Lemma 6. For all 0<�≤�6/1002,0<�< 1
2 , there exists an n0=n0(�,�) with the

following properties. For any n≥n0 positive integer, assume that G=G(g(1),g(2),
g(3),g(4),g(5)) is a (1−�)-dense 5-partite graph on (2+�)n=g(1)+g(2)+g(3)+
g(4)+g(5) vertices, where we have

n/2≥g(1)≥g(2)≥g(3)≥g(4)≥g(5)≥�n.

Then for each two-coloring of G there is a monochromatic odd connected matching
covering at least n vertices.

Proof. Let us first apply Lemma 5 for the 5-partite graph G to find a 5-partite
subgraph H =H (h(1),h(2),h(3),h(4),h(5)) of G with h(i)≥ (1−5

√
�/(8�2))g(i) for

all 1≤ i≤5 such that �(H )<4
√

�g(1)≤2
√

�n. Thus, each vertex in any partite set of H
is adjacent to almost all (all but 2

√
�n) vertices in the remaining four partite sets of H .
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This is used throughout without special mention and observe that with �=2
√

� any
subgraph F of H with at least n vertices satisfies the condition �(F)<�n≤�|V (F)|
in Lemma 4. Here we use the assumption �=2

√
�<1/(5×4)= 1

20 .
We consider only the two-coloring (red/blue) of E(H ) induced by the coloring of

E(G). In this two-coloring of H select a maximal monochromatic (say red) connected
odd component C . In fact we need only that the component we select is not proper
part of another odd component in the other color. It is easy to check that there exist
monochromatic odd components since H is a 5-chromatic graph.

For 1≤ i≤5, let Vi denote the partite sets of H , so |Vi |=h(i), let Xi =Vi \V (C),Yi =
V (C)∩Vi . Call an Xi large if |Xi |>4

√
�n.

We will distinguish two cases:
Case 1. At least two of the Xi -s are large.
By Lemma 3 applied with m=2

√
�n (since all edges of H from a large Xi to C

are blue) the blue subgraph of H is a spanning connected subgraph. Moreover, any
blue edge between two Yi -s would make the blue subgraph odd—this contradicts the
choice of C . Similarly, any blue edge between a pair of large Xi -s would contradict
the choice of C . Thus, C and the union of the large Xi -s both are almost complete red
partite graphs. The larger, denote it by F , has at least

1

2

(
2+�−(2+�)

5
√

�

8�2
−12

√
�

)
n= (1+�)n

vertices. The condition �≤�6/1002 ensures that

(1−2�)(1+�)≥1, (2)

and in particular � is positive here. Since each partite class of F has at most n/2
vertices, the assumption of Lemma 4 about the size of the largest partite class holds
and it is also ensured that F is r -partite with r ≥3. Thus, the red matching M obtained
by Lemma 4 is odd and M covers at least (1−2�)(1+�)n≥n vertices because of (2).

Case 2. At most one Xi—say X1 (if there is one)—is large.
If there is no blue edge in the subgraph induced by S=V (C)\V1 then we can apply

Lemma 4 to the red subgraph of H induced by S and we have a red odd matching in
C covering almost all points of S. This is much larger than we need since |S|>3n/2.
Thus, we may assume that there is at least one blue edge in S. If X1 is large then this
ensures, since all edges of H from X1 to S are blue, a blue odd component C1 of H
covering X1 and all vertices of S. Let Z denote the part of V1 that is not covered by
C1. Since all edges of H from Z to V (H )\V1 are red (from the definition of C1), we
can cover Z by a red matching MR . Similarly we can cover X1 with a blue matching
MB that is disjoint from MR . One can easily complete the matching MR∪MB to a
matching M covering almost all vertices of V (H ) (here we can apply Lemma 4 again
for the 2-colored partite graph spanned by V (H )\(V (MR)∪V (MB)). Selecting the
majority color from the edges of M we have the required monochromatic large odd
matching.

If X1 is not large then C covers almost all vertices of H . Select the largest red
matching M in C . If M covers less than n vertices, then, since all edges of H in the
subgraph induced by T =V (C)\V (M) are blue, Lemma 4 ensures again that we have
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a blue matching covering almost all vertices of the odd component induced by T . This
matching is large enough. �

5. PROOF OF THEOREM 1

We will assume that n is a sufficiently large odd natural number. Let 0<�< 1
2 be

arbitrary and choose

�=

(�

2

)6
1002

. (3)

Let G be the complete 5-partite graph of order (2+�)n with 5 parts of size
g(1),g(2),g(3),g(4) and g(5), where we have

n/2≥g(1)≥g(2)≥g(3)≥g(4)≥g(5)≥�n.

We need to show that each 2-edge coloring of G leads to a monochromatic Cn . Consider
a 2-edge coloring (G1,G2) of G. Let Vi denote the partite classes, so |Vi |=g(i). Apply
the two-color 5-partite version of the Regularity Lemma(Lemma 1), with � as in (3)
and (by using the remark after the lemma) we can get a partition for i=1, . . . ,5 of
Vi =V 0

i +V 1
i +·· ·+V li

i , where |V j
i |=m, 1≤ j ≤ li , 1≤ i≤5 and |V 0

i |<�n, 1≤ i≤5.

We define the following reduced graph Gr : The vertices of Gr are p j
i , 1≤ j ≤ li ,

1≤ i≤5, and we have an edge between vertices p j1
i1

and p j2
i2
, 1≤ j1≤ li1 , 1≤ j2≤ li2 ,

1≤ i1, i2≤5, i1 	= i2, if the pair {V j1
i1

,V j2
i2

} is (�,Gs)-regular for s=1,2. Thus, we have

a one-to-one correspondence f : p j
i →V j

i between the vertices of Gr and the non-
exceptional clusters of the partition. Then Gr is a (1−�)-dense 5-partite graph on
l= l1+·· ·+l5 vertices, where note again that l is a constant (it does not depend on n).
Define a 2-edge coloring (Gr

1,G
r
2) of G

r in the following way. The color of the edge

between the clusters V j1
i1

and V j2
i2

is the majority color in the pair {V j1
i1

,V j2
i2

}. Let

l ′ = l

4+�
(4)

(assume for simplicity that this is an integer).
Using (3), (4) and Lemma 6 with �/2 instead of � implies that in such a 2-coloring of

Gr we can find a monochromatic odd connected matching M={e1,e2, . . . ,el ′ } covering
2l ′ vertices of Gr . Assume that M is in Gr

1. Thus, we have∣∣∣∣∣
l ′⋃

i=1

⋃
p∈ei

f (p)

∣∣∣∣∣≥
2+�

2+�/2
(1−�)n≥

(
1+ �

8

)
n, (5)

i.e. the total number of vertices of G in the clusters covered by M is significantly
more than n, a fact that will be important later. Furthermore, define f (ei )= (Ci

1,C
i
2) for

1≤i≤l ′ where Ci
1,C

i
2 are the clusters assigned to the end points of ei . In the remainder

from this odd connected matching M in Gr
1 we will construct a cycle Cn in G1.
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Since M is a connected matching in Gr
1 we can find a connecting path Pr

i in Gr
1 from

f −1(Ci
2) to f −1(Ci+1

1 ) for every 1≤ i≤ l ′−1. Note that these paths in Gr
1 may not be

internally vertex disjoint. The last connecting path Pr
l ′ in Gr

1 from f −1(Cl ′
2 ) to f −1(C1

1 )
will be used to guarantee the right parity. Since M is an odd connected matching in Gr

1
we can find an odd cycle C in the component of Gr

1 containing M . For the construction
of the last connecting path Pr

l ′ , let us take first an arbitrary connecting path P ′ in Gr
1

from f −1(Cl ′
2 ) to an arbitrary cluster C ′ on the cycle C , and then another connecting

path P ′′ in Gr
1 from another cluster C ′′ on the cycle C to f −1(C1

1 ). On the cycle C
there are two paths, Q′ and Q′′, of different parity connecting C ′ and C ′′. As a first
try construct the last connecting path Pr

l ′ as (P
′,Q′, P ′′). Now compute the parity of

the length of the closed trail that consists of all the connecting paths Pr
i ,1≤ i≤ l ′ and

where we connect each Ci
1 and Ci

2 with an arbitrary path of odd length. If this parity
is even, then we change the construction (and thus the parity) of the last connecting
path Pr

l ′ to (P ′,Q′′, P ′′). Thus, we may assume that this parity is always odd and note
that it remains odd in the remainder when we “blow-up” parts of the path.

From these paths Pr
i in Gr

1 we can construct vertex disjoint connecting paths Pi
in G1 connecting a typical vertex vi2 of Ci

2 to a typical vertex vi+1
1 of Ci+1

1 . More
precisely we construct P1 with the following simple greedy strategy. Denote Pr

1 =
(p1, . . . , pt ),2≤ t≤ l, where according to the definition f (p1)=C1

2 and f (pt )=C2
1 . Let

the first vertex u1 (=v12) of P1 be a vertex u1∈C1
2 for which degG1

(u1, f (p2))≥m/4 and
degG1

(u1,C1
1 )≥m/4. By �-regularity most of the vertices satisfy this in C1

2 . The second
vertex u2 of P1 is a vertex u2∈ ( f (p2)∩NG1 (u1)) for which degG1

(u2, f (p3))≥m/4.
Again by regularity most vertices satisfy this in f (p2)∩NG1 (u1). The third vertex u3 of
P1 is a vertex u3∈ ( f (p3)∩NG1 (u2)) for which degG1

(u3, f (p4))≥m/4. We continue
in this fashion, finally the last vertex ut (=v21) of P1 is a vertex ut ∈ ( f (pt )∩NG1 (ut−1))
for which degG1

(ut ,C2
2 )≥m/4.

Then we move on to the next connecting path P2. Here we follow the same greedy
procedure, we pick the next vertex from the next cluster in Pr

2 . However, if the cluster
has occurred already on the paths Pr

1 or Pr
2 , then we just have to make sure that we

pick a vertex that has not been used on P1 or P2.
We continue in this fashion and construct the vertex disjoint connecting paths Pi in

G1, 1≤ i≤ l ′. These will be parts of the final cycle Cn in G1. We remove the internal
vertices of these paths from G1. Note that the total number of removed vertices, denoted
by C , is still a constant of size at most l2�n, if n is sufficiently large. By doing this we
may create some discrepancies in the cardinalities of the clusters of this odd connected
matching. We remove at most l2 vertices from each cluster of the matching to assure that
now we have the same number of vertices left in each cluster of the matching. Assume
without loss of generality that �(n−C)/ l ′� is odd (otherwise take �(n−C)/ l ′�−1).
By applying Lemma 2 for 1≤ i≤ l ′−1, find a path of length �(n−C)/ l ′� in G1| f (ei )
connecting vi1 and vi2. Indeed, (3) and (5) imply that the conditions of Lemma 2 are
satisfied, since in each f (ei ) we still have (1+�/9)n/ l ′ vertices available after the
removals if n is sufficiently large. Finally, apply Lemma 2 one more time to find a
path of the right length in G1| f (el′ ) connecting vi1 and vi2 so that the overall length of
the cycle is exactly n. This completes the proof of Theorem 1. �
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