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Abstract

The 2-color Ramsey number R(C3
n, C3

n) of a 3-uniform loose cycle Cn is asymp-
totic to 5n/4 as has been recently proved by Haxell,  Luczak, Peng, Rödl, Ruciński,
Simonovits and Skokan. Here we extend their result to the r-uniform case by show-
ing that the corresponding Ramsey number is asymptotic to (2r−1)n

2r−2 . Partly as a
tool, partly as a subject of its own, we also prove that for r ≥ 2, R(kDr, kDr) =
k(2r − 1)− 1 and R(kDr, kDr, kDr) = 2kr − 2 where kDr is the hypergraph having
k disjoint copies of two r-element hyperedges intersecting in two vertices.
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1 Introduction

The r-uniform loose cycle Cr
n, is the hypergraph with vertex set {1, 2, . . . , m(r − 1) = n}

and with the set of m edges ei = {1, 2, . . . , r}+ i(r − 1), i = 0, 1, . . . , m− 1 where we use
mod n arithmetic, and adding a number t to a set H means a shift, i.e. the set obtained
by adding t to each element of H. Notice that Cr

n has n vertices and m = n
r−1

edges and for
r = 2 we get the usual definition of a cycle in graphs. Similarly, the r-uniform loose path
(or shortly just a path) Pr

n, is the hypergraph with vertex set {1, 2, . . . , m(r− 1) + 1 = n}
and with the set of m edges ei = {1, 2, . . . , r}+ i(r − 1), i = 0, 1, . . . , m− 1. The Ramsey
number R(Cr

n, Cr
n) is the smallest integer N for which there is a monochromatic Cr

n in every
2-coloring of the edges of the complete r-uniform hypergraph Kr

N . It was proved in [18]
that R(C3

n, C3
n) is asymptotic to 5n/4. In this paper we extend that result by showing

that for r ≥ 3, R(Cr
n, Cr

n) is asymptotic to (2r−1)n
2r−2

. To see that this is about best, set

n = (2r−2)k and consider the 2-coloring of a complete graph with (2r−1)k−2 = (2r−1)n
2r−2

−2
vertices as follows (it is a straightforward generalization of the construction of [18]) . The
vertex set is partitioned into sets A, B such that |A| = k − 1, |B| = (2r − 2)k − 1 = n− 1
and all edges within B are red, the others are blue. The largest red loose cycle must be
inside B so it has at most n − 1 vertices. Since all edges of a loose cycle with m edges
can not be met with less than m/2 vertices, there is no blue loose cycle with more than
2(|A| − 1) edges, i.e. with more than 2(r − 1)(k − 1) < n − 1 vertices.

In the proof we follow the argument of [18]. It uses an important tool established by
 Luczak in [22] that has been successfully applied in recent results [8], [14], [15], [16], [17].
Vaguely, the method reduces the problem of finding the Ramsey number of a path or a
cycle to finding the Ramsey number of a connected matching. An additional - usually
technical - difficulty is that the coloring is not on the edges of a complete hypergraph but
on an almost complete one, where ε

(

n

r

)

edges may be missing.
In order to state our main results we need a few more definitions. Let H be an r-

uniform hypergraph. The shadow graph of H is defined as the graph Γ(H) on the same
vertex set, where two vertices are adjacent if they are covered by at least one edge of H.
A hypergraph is called connected if its shadow graph is connected (and its components
are defined similarly). A coloring of the edges of an r-uniform hypergraph H, r ≥ 2,
induces a multicoloring on the edges of the shadow graph Γ(H) in a natural way; every
edge e of Γ(H) receives the color of all hyperedges containing e. A subgraph of Γ(H) is
monochromatic if the color sets of its edges have a nonempty intersection.

The key element in [18] was to search for a monochromatic connected structure with
many diamonds, where the diamond D3 is two triples intersecting in two vertices. More
precisely, it was proved that in any 2-coloring of the edges of an almost complete 3-
uniform hypergraph with n vertices, there is a color, say red, such that there are vertex
disjoint red diamonds covering approximately 4n

5
vertices and all of them are in the same

component of the hypergraph determined by the red edges. In this paper we extend this
result for the r-uniform diamond Dr, defined as two r-element edges intersecting in two
vertices. (In fact, one may consider also D2 as an edge of a graph.) The two vertices are
called the central vertices of the diamond. A diamond matching is the union of vertex
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disjoint diamonds. A diamond matching is connected if all of its vertices are in the same
component of the hypergraph.

Our main result is the following.

Theorem 1. Suppose that r is fixed and the edges of an almost complete r-uniform
hypergraph H with n vertices are 2-colored. Then there is a monochromatic connected
diamond matching kDr such that |V (kDr)| ∼ (2r−2)n

2r−1
.

Here by |V (kDr)| ∼ (2r−2)n
2r−1

we mean that |V (kDr)| → (2r−2)n
2r−1

as ε → 0, where ε is an
upper bound on the fraction of the missing edges from the almost complete hypergraph.

The method of [18] can be used to derive from Theorem 1 the following.

Theorem 2. R(Cr
n, Cr

n) ∼ (2r−1)n
2r−2

. More precisely for all η > 0 there exists n0 = n0(η) such

that every 2-coloring of K
(r)
N where N = (1+η)(2r−1)n/(2r−2) contains a monochromatic

copy of Cr
n.

Partly as a tool, partly as a subject interesting in its own, we determine exactly the
2- and 3-color Ramsey numbers of a diamond-matching: R(kDr, kDr)= k(2r − 1) − 1
(Theorem 4), R(kDr, kDr, kDr) = 2kr − 2 (Theorem 5).

1.1 Ramsey numbers for multiple copies

If H0 is a fixed r-uniform hypergraph, a multiple copy of H0 is meant to be the hypergraph
kH0, the union of k vertex disjoint copies of H0. When H0 is a single edge Er, a multiple
copy is usually called a matching . The Ramsey number of multiple copies of graphs has
been thoroughly studied, the first such results were perhaps [4] and [6] - both in 1975.
The Ramsey number of a hypergraph matching is known exactly. The most general case
is due to Alon, Frankl and Lovász (1986, [2]):

Theorem 3. Assume that N = kr+(t−1)(k−1) and the edges of the complete r-uniform
hypergraph Kr

N are colored with t colors. Then there is a monochromatic matching of size
k.

One can easily see that Theorem 3 is sharp. Partition a set S of N − 1 elements into t
parts, A1, A2, . . . , At so that |Ai| = k − 1 for 1 ≤ i < t. For T ⊂ S, |T | = r, color T with
the smallest i such that T ∩Ai 6= ∅. Therefore - using the notation of Ramsey theory - it
follows that

Rt(kEr) = R(kEr, kEr, . . . , kEr) = kr + (t − 1)(k − 1),

where the dots stand for t arguments. It is worth noting that Theorem 3 was conjectured
by Erdős in 1973, [7] (rediscovered in [13]). Its special cases include earlier results: r = 2
(1975, Cockayne - Lorimer, [6]), k = 2 (this is Kneser’s conjecture proved in 1978 by
Lovász [21], see also Bárány [3], Green [12]) and t = 2 (Alon and Frankl [1] and Gyárfás
[13]).

Next we state and prove the Ramsey-type form of our main result, it determines the
exact value of the Ramsey number of a diamond-matching.
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Theorem 4. For every k ≥ 1, r ≥ 2, R(kDr, kDr) = k(2r − 1) − 1.

Proof. To see that the stated value is a lower bound, consider a coloring of the edges of
Kr

k(2r−1)−2 where all edges intersecting a fixed (k−1)-element subset are red and all other
edges are blue.

To see that m = k(2r−1)−1 is an upper bound for R(kDr, kDr), consider a 2-coloring
c of E(Kr

m). For every set T ⊂ V (Kr
m) with |T | = 2r− 2 consider the 2-coloring c∗ on the

(r − 2)-element subsets of T by coloring S ⊂ T , |S| = r − 2, with c(T \ S). By Theorem
3, R(2Er−2, 2Er−2) = 2(r − 2) + 1 = 2r − 3, so there are two disjoint sets colored with
the same color under c∗ and this implies that there is a monochromatic Dr ⊂ T under c.
The color of this monochromatic Dr can be used to color T . Applying Theorem 3 again
to this coloring, R(kE2r−2, kE2r−2) = k(2r − 2) + k − 1 = k(2r − 1) − 1, so we get that
there is a monochromatic k-matching and this gives a monochromatic kDr, finishing the
proof. �

In fact, the proof method of Theorem 4 can be copied to determine the 3-colored
Ramsey number of the diamond-matching as well.

Theorem 5. For every k ≥ 1, r ≥ 2, R(kDr, kDr, kDr) = 2kr − 2.

Proof. To see that the claimed value is a lower bound, partition a (2kr − 3)-element set
V into A1, A2, A3 with |A1| = |A2| = k − 1, |A3| = k(2r − 2)− 1. Let S ⊂ V , |S| = r, and
color S with the minimum i for which S ∩ Ai 6= ∅.

To prove the upper bound, let c be a 3-coloring of the edges of Kr
m with m = 2kr− 2.

For every set T ⊂ V (Kr
m) with |T | = 2r − 2 consider the 3-coloring c∗ on the (r − 2)-

element subsets of T by coloring S ⊂ T , |S| = r − 2, with c(T \ S). By Theorem 3,
R(2Er−2, 2Er−2, 2Er−2) = 2(r− 2) + 2 = 2r− 2 so there are two disjoint sets colored with
the same color under c∗. This implies that there is a monochromatic Dr ⊂ T under c.
The color of this monochromatic Dr can be used to color T . Applying Theorem 3 again
to this coloring, R(kE2r−2, kE2r−2, kE2r−2) = k(2r − 2) + 2(k − 1) = 2kr − 2, so we get
that there is a monochromatic k-matching and this gives a monochromatic kDr, finishing
the proof. �

For our purposes we need a proof of Theorem 4 that carries over to almost complete
hypergraphs. We use a compression principle that occurred first perhaps in [6] and in [4].
For example, a red and a blue triangle with a common vertex - called a bow tie in [11] -
drives the inductive argument of [4] to prove that R(kK3, kK3) = 5k (for k ≥ 2). Similar
compression - a red and a blue Er intersecting in r − 1 elements - makes the proof of
Theorem 3 easy when t = 2 (however, it seems that for t > 2 the Borsuk - Ulam theorem
is essential). In fact, the first author suggested the case t = 2, k = r as a problem for
the 2007 USA Mathematical Olympiad (Problem 3 on the first day). For our case, the
diamond matching, the compressed structure is a red and a blue diamond within 2r − 1
vertices. We note here that for r = 3 this structure played a role also in [18], (it was
called a diadem there).
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1.2 Almost complete hypergraphs, selection lemma

Throughout this section r ≥ 2 is a fixed integer, 0 < ε < 1 is arbitrarily small but fixed, n
approaches infinity (thus arbitrarily large). Greek letters δ, ρ, etc. will be used to denote
numbers that tend to zero when ε tends to zero (r is fixed). Hypergraph H is a (1 − ε)-

complete r-uniform hypergraph on n vertices, i.e. is obtained from K
(r)
n by deleting at

most ε
(

n

r

)

edges. For easier computation we shall assume that |E(H)| ≥ (1 − ε)nr/r!.
Different technical lemmas have been used earlier to handle almost complete graphs

and 3-uniform hypergraphs (see [15], [18]). Here we use the concept of δ-bounded selection,
a tool introduced and used in [14] and in [17]. It is convenient for almost complete
hypergraphs when one needs to show that there exists at least one edge at a prescribed
spot or there are many edges where they need to be.

For 0 < δ < 1 fixed, we say that a sequence L ⊂ V (H) of k distinct vertices is obtained
by a δ-bounded selection (with respect to forbidden subsets of vertices) if its elements are
chosen in k consecutive steps so that in each step every vertex can be included as the
next vertex apart from a forbidden set of at most δn vertices. It is allowed - and that is
typical in the applications - that a forbidden set for the next step depends on the sequence
of previous vertices. For simplicity, sometimes we will call shortly the sequence itself a
δ-bounded selection. Observe that a δ-bounded selection L is also a δ ′-bounded selection
for any δ′ > δ.

In the subsequent applications when specifying a δ-bounded selection of k vertices in
an (1 − ε)-dense hypergraph, we would like to guarantee that for every subset S of the
selected vertices such that 0 ≤ |S| ≤ r, at least (1−ρ)nr−|S|/(r − |S|)! edges of H contain
S (where ρ tends to zero with ε, r, k are fixed). Observe that for k = 0 we need that H
has at least (1 − ρ)nr/r! edges, which is obvious with ρ = ε. For larger k our argument
will be based on the following recurrence lemma (from [14]).

Lemma 6. Let S0 ⊂ V (H) be contained in at least (1 − ρ0) nr−|S0|

(r−|S0|)!
edges of H. If

|S0| < r and ρ =
√

ρ0, then there exists F0 ⊂ V (H), |F0| ≤ ρn, such that for every

x ∈ V (H) \ (S0 ∪ F0) at least (1 − ρ) nr−|S|

(r−|S|)!
edges of H contain S = S0 ∪ {x}.

Proof. Let |S0| = i < r. By the assumption, there are β ≤ ρ0n
r−i/(r − i)! distinct (r− i)-

element “bad” subsets B ⊆ V (H) \ S0 with S0 ∪ B /∈ E(H). Let F0 ⊆ V (H) \ S0 be the
set of all vertices contained in more than ρnr−i−1/(r − i − 1)! distinct (r− i)-element bad
sets. We clearly have β ≥ |F0|ρnr−i−1/(r − i)!.

By comparing these two bounds on β, we obtain that |F0| ≤ ρ0

ρ
n = ρn and the lemma

follows. �

We shall use Lemma 6 to prove the following selection Lemma (its special case k = r
is from [14]).

Lemma 7. Assume that H is a (1 − ε)-complete r-uniform hypergraph (r ≥ 2), k is a
positive integer, ρ = ε2−r

, δ = 2kρ < 1. There exist forbidden sets such that for every δ-
bounded selection L ⊂ V (H) of k vertices (with respect to the forbidden sets), the following

holds: for every S ⊆ L such that 0 ≤ |S| ≤ r, at least (1− ρ) nr−|S|

(r−|S|)!
edges of H contain S.
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Proof. We iterate Lemma 6 as we select x1, x2, . . . , xk in k steps, in each step we consider
all subsets of size less than r to extend with a new vertex. At step i we ensure that for
every δi-bounded selection L of i vertices the following holds: for every S ⊆ L such that
0 ≤ |S| ≤ r, at least (1 − ε2−|S|

) nr−|S|

(r−|S|)!
edges of H contain S. For i = 0, δ0 = ε obviously

works. Assume this is true with δi for step i, 0 ≤ i < k. At step i + 1 to ensure that xi+1

can be selected, we use Lemma 6 for all S0 ⊆ {x1, . . . , xi} such that |S0| < r. By Lemma

6, for each j-element S0 there exists a forbidden set F0 for xi+1 with |F0| ≤ ε2−(j+1)
n

such that S = S0 ∪ {xi+1} will be in at least (1 − ε2−|S|
) nr−|S|

(r−|S|)!
edges of H. There are

∑

j<r

(

i

j

)

< 2i choices for S0 and each j-element S0 forbids ε2−(j+1)
n choices of xi+1. Thus

altogether the set of forbidden vertices for xi+1 is less than 2iε2−r

n, so δi+1 = 2iε2−r

is a
good choice for step i + 1. On the other hand, ρ = ε2−r

is a good choice for every step
since we iterate the square root operation of Lemma 6 at most r times (to extend sets of
size less than r).

Since
δi+1 = 2iε2−r ≤ 2kε2−r

= 2kρ = δ,

the statement of the lemma holds with δ = 2kε2−r

= 2kρ. �

The case |S| = r in Lemma 7 gives that every r-element set of the selected k vertices
is in at least 1 − ρ > 0 edges of H, thus we have the following.

Corollary 8. If k ≥ r then every δ-bounded selection of k vertices with respect to the
forbidden sets ensured by Lemma 7 spans a complete r-uniform subhypergraph of H.

The key in our proof of Theorem 1 is a compression lemma. We use T and N in its
formulation instead of H and n to avoid misunderstanding when we apply it to subhyper-
graphs of H. Let T be a (1− ε)-complete r uniform hypergraph with N vertices. Assume
that x1, x2 are the first two vertices of some δ-bounded selection process on T - with
δ = 2kε2−r

as in Lemma 7. Moreover, let T ∗ be the (r − 2)-uniform hypergraph induced
on Z = V (T ) \ {x1, x2} by T together with the induced 2-coloring c(x1, x2). Notice that
T ∗ is an (1−ε∗)-complete (r−2)-uniform hypergraph with parameter ε∗ = ρ = ε2−r

. Using
ε∗ in the role of ε, we can define δ∗, ρ∗ as defined in Lemma 7 (ρ∗ = (ε∗)2−r

, δ∗ = 2kρ∗).

Lemma 9. Assume that T is a 2-colored (1 − ε)-complete r-uniform hypergraph on N
vertices. Suppose that the pair x1, x2 ∈ V (T ) is in at least µ

(

N

r−2

)

edges in both colors,
where µ = 1 − (1 − ρ∗)r−2. Then one can find a diamond in both colors within 2r − 1
vertices.

Proof. Set k = 4(r− 2) and apply Lemma 7 to T and T ∗ simultaneously in the following
way. Starting with x1, x2, continue the sequence x1, x2, y1, y2, . . . , yk of vertices of T so that
at each step yi is selected outside the union of the forbidden set for T and the forbidden
set of T ∗. Then at each step we have a forbidden set of size at most (δ+δ∗)N ≤ 2δ∗N, thus
we can define selections x1, x2, y1, y2, . . . , yk that is 2δ∗-bounded on T and y1, y2, . . . , yk is
2δ∗-bounded on T ∗. This ensures, by Corollary 8, that the r-uniform subhypergraph of
T spanned by x1, x2, y1, y2, . . . , yk and the (r − 2)-uniform subhypergraph of T ∗ spanned
by y1, y2, . . . , yk are complete subhypergraphs.
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Fix an edge e ∈ T ∗ with vertex set {y1, . . . , yr−2}, say e is red under c(x1, x2). Consider
the subhypergraph F of T ∗ with edges that can be obtained as the next r − 2 vertices,
yr−1, . . . y2r−4 in the selection. The choice of µ and the lower bound on the number of
blue edges ensures that at least one edge f ∈ F is blue (under c(x1, x2)):

|F| >
(1 − 2ρ∗)r−2N r−2

(r − 2)!
=

(1 − µ)N r−2

(r − 2)!
> (1 − µ)

(

N

r − 2

)

≥ |E(T ∗
R)|

where T ∗
R is the set of hyperedges of T colored with red by c(x1, x2). Consider the complete

r − 2-uniform hypergraph F ⊂ T ∗ spanned by the vertex set of e∪ f . Among all pairs of
edges of F with distinct colors (there are pairs like that: e, f) select a pair R1, B1 with
the largest intersection. Clearly, |R1 ∩ B1| = r − 3.

Repeat the previous procedure by fixing an edge with vertices y2r−3, . . . y3r−2 in T ∗

then find an edge of the other color. By taking a pair with the largest intersection again,
we have another red-blue pair of edges R2, B2 such that |R2 ∩ B2| = r − 3. Notice that
R1 ∪B1 and R2 ∪B2 are vertex disjoint. Define r1 = R1 \B1, r2 = R2 \B2, b1 = B1 \R1,
b2 = B2 \ R2.

Notice that the (complete) subhypergraph of T spanned by {x1, x2}∪R1∪R2∪B1∪B2

has 2r vertices and contains Dr in both colors. To finish the proof, we need to find a
vertex whose deletion keeps a copy of Dr in both colors.

Consider the r-element set U1 that is the union of B2, one vertex of R1 ∩ B1 and the
vertex r1. (In case of r = 3, R1 ∩ B1 is empty - then we can select x1 as the third vertex
and r2 or b1 can be removed, the argument ends here.) If U1 is red (under c) then the
vertex r2 can be removed and we get both red and blue diamonds within 2r − 1 vertices.
Thus we may assume that U1 is blue. Similar argument gives that U2, defined as the
union of R1, one vertex of R2 ∩ B2 and the vertex b2 is red. Likewise, U3 defined as the
union of B1, one vertex of R2 ∩ B2 and the vertex r2 is blue, finally U4, defined as the
union of R2, one vertex of R1 ∩B1 and the vertex b1 is red. Now U1 ∪U3 and U2 ∪U4 are
the required diamonds (in fact they are within 2r − 2 vertices). �

2 Proof of Theorem 1

Assume that H is (1− ε)-complete. We start by fixing the upper bound of ε under which
our argument works. Initially we select δ to satisfy Lemma 7, i.e. δ ≤ 2kρ = 2kε2−r

but we also need Lemma 9 to make 2δ∗-bounded selections of k = 4(r − 2) vertices in
(1 − ε∗)-complete hypergraphs. Thus - with a bit generously - we bound ε (in terms of
our fixed r) by requiring

2δ∗ = 2k+1ρ∗ = 2k+1ε∗2−r

= 24r+1ε4−r

< 1. (1)

To prove Theorem 1, consider a 2-coloring c of an (1 − ε)-complete r-uniform hyper-
graph H with ε bounded by (1). Let HR,HB denote the the hypergraphs determined by
the red and blue edges of H. We start with some observations about the monochromatic
components of H which leads to distinguishing some cases (A, B1 and B2). We apply the
following proposition from [14].
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Proposition 10. Assume H is an arbitrary hypergraph and 0 < λ < 1/3. It is either
possible to delete at most λn vertices from H so that the remaining hypergraph H′ is
connected or the connected components of H can be partitioned into two groups so that
each group contains more than λn vertices.

Proof. Mark the connected components of H until the union of them has at most λn
vertices. If one unmarked component remains, let it be H′. Otherwise, we form two groups
from the unmarked components. The larger group has order at least (n − λn)/2 > λn,
and the smaller one together with the marked components have a union containing more
than λn vertices as well. �

We start by applying Proposition 10 to HR and to HB with λ that tends to zero with
ε.

If the first possibility holds to one of them, say to HR, we find a subhypergraph H1

with at least (1−λ)n vertices that is connected in red. Now apply Proposition 10 again to
the hypergraph determined by the blue edges of H1. If the first possibility holds then we
have a subhypergraph H2 of H1 with at least (1− 2λ)n vertices that is connected in blue
and also part of the connected red hypergraph H1. Since we loose at most 2λn = o(n)
vertices, for convenience, we still use the notation H for Hi and consider this as case A.
To comply with the notation of cases B1, B2 below, set Y = V in case A.

Assume that the first possibility does not hold for at least one of the steps above, this
is case B. We may assume that it does not hold in the first step. We look at two subcases.
Apply again Proposition 10 to HR but with λ = 1

2r−1
. Note that s < 1

3
since r ≥ 3.

If the first possibility holds, the vertex set of H is partitioned into X and Y such that
|X| < n

2r−1
and HR spans a connected red hypergraph on Y , this is subcase B1.

If the second possibility holds, the vertex set of H can be partitioned into X and Y
such that n

2r−1
≤ |X| ≤ |Y |, this is subcase B2.

Notice that (in both subcases) all edges of H meeting both X and Y are blue.
Continuing the proof of Theorem 1, we try to cover as many vertices of Y as we can

with pairwise disjoint sets Si, i = 1, 2, . . .m that contain diamonds of both colors and
|Si| = 2r − 1. Set S = ∪m

i=1Si, T = Y \ S. The hypergraphs induced by H on S, T are
denoted by S, T . Since Lemma 9 does not give a new Si ⊂ T , for every pair x1, x2 ∈ T
there is a color such that there are more than (1 − µ)

(

|T |
r−2

)

edges in that color in the
coloring c(x1, x2). Assign that color to the pair x1, x2, to get a 2-coloring C on the graph
G whose edges are the pairs available as the first two vertices on a δ-bounded selection
on T . Notice that G is an (1 − 2δ)-complete graph.

We claim that T has an almost perfect monochromatic diamond matching M (i.e.
V (T ) can be partitioned into vertex disjoint diamonds all of the same color, apart from
o(n) vertices.) First we show that almost all edges of G are colored with the same color
(under C). Indeed, otherwise - using that G is almost complete - we could easily find a
red edge uv and a blue edge vw of G. Define a coloring c∗ by restricting the colorings
c(u, v), c(v, w) to the hypergraph T ∗ whose edges are the (r − 2)-element subsets e ⊂ T
for which e ∪ {u, v} and e ∪ {v, w} are both in H. Observe that c∗ colors every edge of
an (1 − 2µ − 2ε∗)-complete (r − 2)-uniform hypergraph with both red and blue colors.
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Then one can make a δ-bounded selection u, v, w, y1, . . . y2r−4 such that y1, . . . y2r−4 spans

a K
2(r−2)
r−2 with all edges colored in both colors. In particular, we have a red and a blue

Dr within 2r − 1 vertices of T , contradicting the choice of m. Thus almost all edges of G
have the same color, implying that almost all edges of T have the same color, i.e. T is an
almost complete hypergraph in one of the two colors, so certainly has an almost perfect
monochromatic diamond matching M as required.

In case A both colors define a connected hypergraph so the diamonds in the color
of M together with the diamonds of the appropriate color from the Si-s provide the
monochromatic connected diamond matching, covering approximately a portion of 2r−2

2r−1

of the vertex set of H.
In case B2 it easy to cover the required portion of vertices by blue diamonds since all

edges meeting both X and Y are blue and n
2r−1

≤ |X| ≤ |Y | (connectivity of the blue

hypergraph is obvious). In fact, one can cover approximately (2r−2)n
2r−1

vertices with vertex
disjoint blue diamonds using only diamonds of type (1, 2r− 3) and (2r− 3, 1) where type
(a, b) means a diamond intersecting X, Y in a and b vertices, respectively, with its center
vertices in X, Y . The reason is that flipping one blue diamond in a diamond matching
from type (1, 2r − 3) to type (2r − 3, 1) changes the cover ratio of Y and X by at most
a quantity that tends to zero if n tends to infinity (r is fixed). The details are left to the
reader. This argument extends to case B1 as well, if m ≥ n

2r−1
− |X|: in addition to the

blue diamonds meeting both X and Y we can use the blue diamonds of Si. Thus we may
assume that m < n

2r−1
− |X|.

If M is red then the diamonds of M together with the red diamonds of the Si-s cover
all but m + |X| < n

2r−1
− |X| + |X| = n

2r−1
vertices, finishing the proof. If M is blue

we can do the same in blue - here we gain since all diamonds meeting X and vertices
uncovered by the blue diamonds of Si are giving extra to the covered area. This finishes
the proof of Theorem 1. �

3 From connected diamond matchings to loose cycles

For the sake of completeness here we sketch how the method of [18] with minor modifi-
cations (that are needed since the uniformity is r instead of 3) can be used to transform
our asymptotic result on monochromatic connected diamond matchings (Theorem 1) to
our asymptotic result on monochromatic loose cycles (Theorem 2). The missing details
can be found in [18].

The main tool is the hypergraph version of the Regularity Lemma of Szemerédi [24].
We shall assume throughout the rest of the paper that n is sufficiently large and r is fixed.

There are several generalizations of the Regularity Lemma for hypergraphs due to
various authors ([5], [9], for an extensive survey see [20], new developments are in [10],
[23] and [25]). Following [18], the simplest one, due to Chung [5] can be used. To state
it, one needs to define the notion of ε-regularity. Let ε > 0 and let V1, V2, . . . , Vr be
disjoint vertex sets of order m, and let H be an r-uniform hypergraph such that every
edge of H contains exactly one vertex from each Vi for i = 1, 2, . . . , r. The density of H is
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dH = |E(H)|
mr . The r-tuple (V1, V2, . . . , Vr) is called an (ε,H)-regular r-tuple of density dH

if for every choice of Xi ⊂ Vi, |Xi| > ε|Vi|, i = 1, 2, . . . , r we have

∣

∣

∣

∣

|E(H[X1, . . . , Xr])|
|X1| . . . |Xr|

− dH

∣

∣

∣

∣

< ε.

Here we denote by H[X1, . . . , Xr] the subhypergraph of H induced by the vertex set
X1 ∪ . . .∪ Xr. Similarly as in [18] for r = 3, we need a 2-color version of the Hypergraph
Regularity Lemma from [5] for general r.

Lemma 11 (2-color Weak Hypergraph Regularity Lemma). For every positive ε
and positive integers t, r there are positive integers M and n0 such that for n ≥ n0 the
following holds. For all r-uniform hypergraphs H1, H2 with V (H1) = V (H2), |V | = n,
there is a partition of V into l + 1 classes (clusters)

V = V0 + V1 + V2 + ... + Vl

such that

• t ≤ l ≤ M

• |V1| = |V2| = ... = |Vl|

• |V0| < εn

• apart from at most ε
(

l

r

)

exceptional r-tuples, the r-tuples {Vi1, Vi2 , . . . , Vir} are
(ε,Hs)-regular for s = 1, 2.

Consider a 2-edge coloring (H1,H2) of the r-uniform complete hypergraph K
(r)
N , where

N = (1 + η)(2r − 1)n/(2r − 2), i.e. H1 is the subhypergraph induced by the first color
(say red) and H2 is the subhypergraph induced by the second color (say blue).

We apply the above 2-color Weak Hypergraph Regularity Lemma with t = r and with
a small enough ε to obtain a partition of V (K

(r)
N ) = V = ∪0≤i≤lVi, where |Vi| = N−|V0|

l
=

m, 1 ≤ i ≤ l. We define the following reduced hypergraph HR: The vertices of HR are
p1, . . . , pl, and we have an r-edge on vertices pi1, pi2 , . . . , pir if the r-tuple (Vi1 , Vi2, . . . , Vir)
is (ε,Hs)-regular for s = 1, 2. Thus we have a one-to-one correspondence f : pi → Vi

between the vertices of HR and the clusters of the partition. Then,

|E(HR)| ≥ (1 − ε)

(

l

r

)

,

and thus HR is a (1 − ε)-complete r-uniform hypergraph on l vertices. Define a 2-edge
coloring (HR

1 ,HR
2 ) of HR with the majority color, i.e. the r-tuple {pi1, pi2 , . . . , pir} ∈

E(HR
s ) if s is the more frequent color in the r-tuple (Vi1, Vi2 , . . . , Vir) ∈ E(Hs). Note then

that the density of this color is ≥ 1/2 in this r-tuple. Finally we consider the multicolored
shadow graph Γ(HR). The vertices are V (HR) = {p1, . . . , pl} and we join vertices x and
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y by an edge of color s, s = 1, 2 if x and y are contained in an edge of HR that is colored
with color s.

Applying Theorem 1 to the 2-colored almost complete reduced graph HR we get a
monochromatic (say red) connected diamond matching D1

r , . . . , D
k
r with k(2r − 2) ∼

(2r−2)l
2r−1

, i.e. k ∼ l/(2r − 1). Let L be the red component of HR that contains these
diamonds.

Applying the method of [18] to find the red Cr
n we do the following. We first trace a

closed “route” in L, that visits all the diamonds D1
r , . . . , D

k
r . Then we choose a collection

of short loose paths (of length three or six where we count edges) in the red subhypergraph
H1, that link together to form a short loose cycle, following the chosen route. Finally,
to obtain the red loose cycle Cr

n we “blow-up” k ∼ l/(2r − 1) short paths (of length
three) corresponding to diamonds by long paths (each of length ∼ 2m, so covering ∼
(2r − 2)m ∼ (2r − 2)N/l ∼ (2r − 1)n/l vertices). More precisely, for each diamond Di

r

with middle clusters V i
1 and V i

2 , we replace the short path that starts in V i
1 and ends in

V i
2 by a long path with the same end-vertices, that uses almost all the vertices in Di

r.
Note that these long paths are mutually vertex disjoint since all diamonds Di

r are vertex
disjoint. Therefore, to obtain our cycle, we just need to make sure that the short paths
do not intersect and they do not interfere with the long paths. This will be guaranteed
by the introduction of the set B in the lemmas below.

This plan can be achieved via the same sequence of lemmas as in [18]. To demonstrate
what kind of minor modifications are needed in these lemmas for r-uniform hypergraphs,
we present the modified version of perhaps the most important lemma, Lemma 5.3 in [18],
that shows how to find the short connecting loose paths of length three. First we need
the following definition.

Let (Vi1, . . . , Vir) be an (ε,H1)-regular r-tuple with density d > 2ε, and for j = 1, . . . , r
let Uij ⊂ Vij be arbitrary subsets. We say that a vertex x ∈ Vi1 is good for the r-
tuple (Ui1 , . . . , Uir) if for every j = 2, . . . , r there are at least d|Uij |/2 vertices y ∈ Uij ,
such that for each such y, there are at least d|Ui2 |/2 vertices z1 ∈ Ui2 , such that for
each such z1, there are at least d|Ui3|/2 vertices z2 ∈ Ui3 , etc. we go through the sets
Uij′

, j ′ = 2, . . . , r, j ′ 6= j with this process, finally there at least d|Uir |/2 vertices zr−2 ∈ Uir ,
such that {x, y, z1 . . . , zr−2} ∈ E(H1). Thus note that for x ∈ Vi1 , the property of being
good for (Ui1 , . . . , Uir) is independent of the choice of Ui1 . The set of vertices in Vi1∪. . .∪Vir

that are good for (Vi1 , . . . , Vir) will simply be called good.
We modify Lemma 5.3 of [18] in the following way for r-uniform hypergraphs.

Lemma 12. Let (Vi1 , . . . , Vir) be an (ε,H1)-regular r-tuple with density d > 2ε. Then for
every pair of good vertices x ∈ Vi1 and y ∈ Vi2, and for every set B ⊂ Vi1 ∪ . . .∪Vir \{x, y}
that contains all non-good vertices and satisfies |B ∩ Vij | < (d/2 − ε)m for j = 1, . . . , r,
there is a path of length three in H1 joining x to y that is disjoint from B (and hence
contains only good vertices). Moreover the path can be chosen so that one vertex of degree
two in the path is in Vi1 , and the other is in Vi2.

Proof. Since x is good, there exists a set Ux ⊂ Vi2 , |Ux| ≥ dm/2 (using j = 2 from the
definition), such that for each w ∈ Ux, there are at least dm/2 vertices z1 ∈ Vi3 , such
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that for each such z1, there are at least dm/2 vertices z2 ∈ Vi4 , etc., finally there are at
least dm/2 vertices zr−2 ∈ Vir , such that {x, w, z1 . . . , zr−2} ∈ E(H1). Similarly, since y
is good, there exists a set Uy ⊂ Vi1 , |Uy| ≥ dm/2 (using j = 1 from the definition), such
that for each v ∈ Uy, there are at least dm/2 vertices z1 ∈ Vi3, such that for each such
z1, there are at least dm/2 vertices z2 ∈ Vi4, etc., finally there are at least dm/2 vertices
zr−2 ∈ Vir , such that {y, v, z1 . . . , zr−2} ∈ E(H1). Writing b = (d/2 − ε), we have

|Ux \ B|, |Uy \ B| > (d/2 − b)m = εm.

Therefore, since (Vi1, . . . , Vir) is an (ε,H1)-regular r-tuple with density d, we know that

|E(H[Ux \ B, Uy \ B, Vi3 \ B, . . . , Vir \ B])| ≥

≥ (d − ε)|Ux \ B||Uy \ B|
r

∏

j=3

|Vij \ B|.

We may therefore choose distinct vertices w ∈ Ux \ {y}, v ∈ Uy \ {x}, z1
1 , z

2
1 , z

3
1 ∈ Vi3 ,

z1
2 , z

2
2 , z

3
2 ∈ Vi4, . . ., z1

r−2, z
2
r−2, z

3
r−2 ∈ Vir such that

{x, w, z1
1 , . . . , z

1
r−2}, {y, v, z2

1, . . . , z
2
r−2}, {v, w, z3

1, . . . , z
3
r−2} ∈ E(H1).

This gives us the required loose path of length three joining x to y

x, z1
1 , . . . , z

1
r−2, w, z3

1, . . . , z
3
r−2, v, z2

1, . . . , z
2
r−2, y.

�

Lemma 12 tells us how to find the short connecting loose paths of length three in
the above outline. Then we blow-up these loose paths of length three by the help of the
following lemma. This lemma is again a similarly modified version of Lemma 5.5 of [18],
so we omit the details.

Lemma 13. Let Vi1, Vi2 , Vi3, . . . , Vir , V
′
i3
, . . . , V ′

ir
be (2r − 2) clusters given in such a way

that (Vi1, Vi2 , Vi3, . . . , Vir) and (Vi1 , Vi2, V
′
i3
, . . . , V ′

ir
) are both (ε,H1)-regular r-tuples with

density d � ε. Let x ∈ Vi1 and y ∈ Vi2 be good vertices for both r-tuples. Let B ⊂
Vi1 ∪ . . . ∪ Vir ∪ V ′

i3
∪ . . . ∪ V ′

ir
\ {x, y} be such that B contains all non-good vertices for

either r-tuples and satisfies |B ∩ V | < 2εm for all V ∈ {Vi1 , Vi2, Vi3 , . . . , Vir , V
′
i3
, . . . , V ′

ir
}.

Then there is a path joining x and y in the union of the two r-tuples of length l for all
odd integers l satisfying dm ≤ l ≤ (1 − ε′)2m (for some ε � ε′ � η) that avoids B.

Note again that the set B here is used to make sure that short and long paths do not
intersect. The other lemmas and the proof itself can be modified similarly, details can be
found in [18]. This finishes the proof of Theorem 2.

Acknowledgement. Thanks to an unknown referee whose useful remarks improved
the presentation.
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