Monochromatic Hamiltonian t-Tight Berge-Cycles in Hypergraphs

Paul Dorbec, ${ }^{1}$ Sylvain Gravier, ${ }^{1}$ and Gábor N. Sárközy ${ }^{2,3}$
${ }^{1}$ INSTITUT FOURIER
100 RUE DES MATHS, BP74
38402 SAINT MARTIN D'HÈRES, FRANCE
E-mail: paul.dorbec@ujf-grenoble.fr; sy/vain.gravier@ujf-grenoble.fr
${ }^{2}$ COMPUTER SCIENCE DEPARTMENT
WORCESTER POLYTECHNIC INSTITUTE WORCESTER, MASSACHUSETTS 01609
E-mail: gsarkozy@cs.wpi.edu
${ }^{3}$ COMPUTER AND AUTOMATION RESEARCH INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES BUDAPEST H-1518, P.O. BOX 63, HUNGARY

Received August 2, 2007; Revised March 4, 2008

Published online 28 May 2008 in Wiley InterScience(www.interscience.wiley.com).
DOI 10.1002/jgt. 20329

Abstract

In any r-uniform hypergraph \mathcal{H} for $2 \leq t \leq r$ we define an r uniform t-tight Berge-cycle of length ℓ, denoted by $C_{\ell}^{(r, \bar{t})}$, as a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{\ell}$, such that for each set $\left(v_{i}, v_{i+1}, \ldots, v_{i+t-1}\right)$ of t consecutive vertices on the cycle, there is an edge E_{i} of \mathcal{H} that contains these t vertices and the edges E_{i} are all distinct for $i, 1 \leq i \leq \ell$, where $\ell+j \equiv j$. For $t=2$ we get the classical Berge-cycle and for $t=r$ we get the so-called tight cycle. In this note we formulate the following conjecture. For

[^0]any fixed $2 \leq c, t \leq r$ satisfying $c+t \leq r+1$ and sufficiently large n, if we color the edges of $K_{n}^{(r)}$, the complete r-uniform hypergraph on n vertices, with c colors, then there is a monochromatic Hamiltonian t-tight Bergecycle. We prove some partial results about this conjecture and we show that if true the conjecture is best possible. © 2008 wiley Periodicals Inc. J Graph Theory 59: 34-44, 2008
Keyword: colored complete uniform hypergraphs; monochromatic hamiltonian Berge-cycles

1. INTRODUCTION

The investigations of Turán type problems for paths and cycles of graphs were started by Erdős and Gallai in [3]. The corresponding Ramsey problems have been looked at some years later first in [6] and then later in [4,5,8,12,14].

There are several possibilities to define paths and cycles in hypergraphs. In this article we address the case of the Berge-cycle; probably it is the earliest definition of a cycle in hypergraphs in the book of Berge [1]. Turán type problems for Berge-paths and Berge-cycles of hypergraphs appeared perhaps first in [2]. Other types of hypergraph cycles, loose and tight, have been studied in [11,13,15]. The investigations of the corresponding Ramsey problems started quite recently with [9,10] where Ramsey numbers of loose and tight cycles have been determined asymptotically for two colors and for 3-uniform hypergraphs.

Let \mathcal{H} be an r-uniform hypergraph (some r-element subsets of a set). Let $K_{n}^{(r)}$ denote the complete r-uniform hypergraph on n vertices. In any r-uniform hypergraph \mathcal{H} for $2 \leq t \leq r$ we define an r-uniform t-tight Berge-cycle of length ℓ, denoted by $C_{\ell}^{(r, t)}$, as a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{\ell}$, such that for each set $\left(v_{i}, v_{i+1}, \ldots, v_{i+t-1}\right)$ of t consecutive vertices on the cycle, there is an edge E_{i} of \mathcal{H} that contains these t vertices and the edges E_{i} are all distinct for $i, 1 \leq i \leq \ell$, where $\ell+j \equiv j$. We will denote by $E\left(C_{\ell}^{(r, t)}\right)$ the set of these edges E_{i} used on the cycle. For $t=2$ we get Berge-cycles and for $t=r$ we get the tight cycle. When the uniformity is clearly understood we may simply write $C_{\ell}^{(t)}$ for $C_{\ell}^{(r, t)}$ or just C_{ℓ}. $R_{c}\left(C_{\ell}^{(r, t)}\right)$ will denote the Ramsey number of the r-uniform t-tight ℓ cycle using c colors. A Berge-cycle of length n in a hypergraph of n vertices is called a Hamiltonian Berge-cycle. It is important to remember that, in contrast to the case $r=t=2$, for $r>t \geq 2$ a Berge-cycle $C_{\ell}^{(r, t)}$, is not determined uniquely, it can be viewed as an arbitrary choice from many possible cycles with the same triple of parameters.

In this note, continuing the investigations from [7], we study Hamiltonian Bergecycles in hypergraphs. Thinking in terms of graphs, this task seems quite hopeless, since in many 2-colorings of K_{n} there are no monochromatic Hamiltonian cycles. For example, if each edge incident to a fixed vertex is red and the other edges are blue, there is no monochromatic Hamiltonian cycle. However, from the nature of Berge-cycles, this example does not carry over to hypergraphs, in this 2-coloring of $K_{n}^{(3)}$, there is a red Hamiltonian Berge-cycle (for $n \geq 5$).
Journal of Graph Theory DOI 10.1002/jgt

In [7] monochromatic Hamiltonian (2-tight) Berge-cycles were studied and the following conjecture was formulated. Assume that $r>1$ is fixed and n is sufficiently large. Then every $(r-1)$-coloring of $K_{n}^{(r)}$ contains a monochromatic Hamiltonian (2-tight) Berge-cycle. The conjecture was proved for $r=3$. For general r, the statement was proved for sufficiently large n with $\left\lfloor\frac{r-1}{2}\right\rfloor$ colors instead of $r-1$ colors. In this note we look at monochromatic Hamiltonian t-tight Berge-cycles and we generalize the above conjecture in the following way.

Conjecture 1. For any fixed $2 \leq c, t \leq r$ satisfying $c+t \leq r+1$ and sufficiently large n, if we color the edges of $K_{n}^{(r)}$ with c colors, then there is a monochromatic Hamiltonian t-tight Berge-cycle.

We will prove that if the conjecture is true it is best possible, since for any values of $2 \leq c, t \leq r$ satisfying $c+t>r+1$ the statement is not true.

Theorem 2. For any fixed $2 \leq c, t \leq r$ satisfying $c+t>r+1$ and sufficiently large n, there is a coloring of the edges of $K_{n}^{(r)}$ with c colors, such that the longest monochromatic t-tight Berge-cycle has length at most $\left\lceil\frac{t(c-1) n}{t(c-1)+1}\right\rceil$.

We know that Conjecture 1 is true for $c=t=2$ and $r=3$, see [7]. It has also been proved in [7] that Conjecture 1 is asymptotically true for $c=3, t=2$, and $r=4$. For the symmetrical case, $c=2, t=3$, we were able to prove only the following weaker but sharp result.
Theorem 3. For any $n \geq 7$, if the edges of $K_{n}^{(5)}$ are colored with two colors, then there exists a monochromatic Hamiltonian 3-tight Berge-cycle.

Note that Conjecture 1 would imply the same statement with $r=4$ instead of $r=5$, however, at this point we were unable to prove the statement for $r=4$.

Similarly as in [7], for general r we were able to obtain only the following weaker result, where essentially we replace the sum $c+t$ with the product $c t$.
Theorem 4. For any fixed $2 \leq c, t \leq r$ satisfying $c t+1 \leq r$ and $n \geq 2(t+1) r c^{2}$, if we color the edges of $K_{n}^{(r)}$ with c colors, then there is a monochromatic Hamiltonian t-tight Berge-cycle.

In Section 2 we give the simple construction for Theorem 2. In Sections 3 and 4 we present the proofs of Theorems 3 and 4 .

2. THE CONSTRUCTION

Proof of Theorem 2. Let A_{1}, \ldots, A_{c-1} be disjoint vertex sets of size $\left\lfloor\frac{n}{t(c-1)+1}\right\rfloor$. The r-edges not containing a vertex from A_{1} are colored with color 1 . The r-edges that are not colored yet and do not contain a vertex from A_{2} are colored with color 2. We continue in this fashion. Finally the r-edges that are not colored yet with colors $1, \ldots, c-2$ and do not contain a vertex from A_{c-1} are colored with color $c-1$. The r-edges that contain a vertex from all $c-1$ sets A_{1}, \ldots, A_{c-1} (if such r-edges exist) get color c. We claim that in this c-coloring of the edges of $K_{n}^{(r)}$ the longest Journal of Graph Theory DOI 10.1002/jgt
monochromatic t-tight Berge-cycle has length $\leq\left\lceil\frac{t(c-1) n}{t(c-1)+1}\right\rceil$. This is certainly true for Berge-cycles in color i for $1 \leq i \leq c-1$, since the subhypergraph induced by the edges in color i leaves out A_{i} (a set of size $\left\lfloor\frac{n}{t(c-1)+1}\right\rfloor$) completely. Finally, note that in a t-tight Berge-cycle in color c (if such a cycle exists) from $t(>r-c+1)$ consecutive vertices on the cycle at least one has to come from $A_{1} \cup \cdots \cup A_{c-1}$. Indeed, otherwise the edge containing the t vertices must contain a vertex from each of A_{1}, \ldots, A_{c-1}. Since $t+c-1>r$, this is a contradiction. Thus the cycle has length at most

$$
t(c-1)\left\lfloor\frac{n}{t(c-1)+1}\right\rfloor \leq \frac{t(c-1) n}{t(c-1)+1} \leq\left\lceil\frac{t(c-1) n}{t(c-1)+1}\right\rceil
$$

3. 3-TIGHT 5-UNIFORM BERGE-CYCLES

Lemma 5. If the edges of $K_{7}^{(5)}$ are colored with two colors, there exists a monochromatic Hamiltonian 3-tight Berge-cycle.

Proof. We first remark that the hypergraph $K_{7}^{(5)}$ contains 21 edges, that each pair is contained in exactly 10 edges, and each triple is contained in exactly 6 edges.

Let us consider a coloring of the edges of $K_{7}^{(5)}$ in two colors, blue and red. We will first consider two favorable cases, when the edges containing a pair or a triple of vertices are mostly colored with the same color.

Case 1. Suppose that there exists a pair of vertices (for instance $\{0,4\}$) contained in less than 3 edges of a color (for instance blue); that is it is contained in at least 8 red edges. Without loss of generality, we can assume that if there are blue edges containing $\{0,4\}$, one is $(0,1,2,3,4)$ and possibly a second one is either $(0,1,4$, $5,6)$ or $(0,1,2,4,5)$.

Let us consider the cycle $(0,6,2,3,4,5,1)$. In Table I, we give a choice of a red edge for each triple of consecutive vertices of this cycle, all distinct.

TABLE I. Choice of a Red Edge for Each Triple for Lemma 5 Case 1

```
{0,6,2}:(0, 2, 4,5,6)
{6,2,3}:(0, 2,3,4, 6)
{2,3,4}:(0, 2,3,4,5 )
{3,4,5}:(0, 3,4,5,6)
{4,5,1}:(0,1, 3,4,5 )
{5,1,0}:(0,1,2, 4,5) or (0,1, 4,5,6)
{1,0,6}:(0,1, 3,4, 6)
```

TABLE II. Choice of a Red Edge for Each Triple for Lemma 5 Case 2
$\{0,3,6\}:(0,1,2,3, \quad 6)$
$\{3,6,2\}:\left(\begin{array}{rr}6,3, & 6, \alpha, \beta) \\ \{6,2,4\}:(0,1,2,4, & 6) \\ \{2,4,1\}:(0,1,2,3,4) \\ \{4,1,5\}:(0,1,2,4,5) \\ \{1,5,0\}:(0,1,2, \quad 5,6) \\ \{5,0,3\}:(0,1,2,3, & 5)\end{array}\right.$

Case 2. Suppose now that every pair of vertices is contained in at least 3 edges of each color. Suppose that for some triple of vertices, say $\{0,1,2\}$, all the 6 edges containing it are of the same color, for instance red.

Consider the pair $\{3,6\}$, at least three red edges contains it. One of them is $(0$, $1,2,3,6)$, let ($3,6, \alpha, \beta, \gamma$) be another one. Necessarily, $\{\alpha, \beta, \gamma\} \cap\{0,1,2\} \neq \emptyset$, so we can suppose without loss of generality $\gamma=2$.

We give in Table II a choice of a red edge for each triple of consecutive vertices for the cycle $(0,3,6,2,4,1,5)$. All these edges are obviously distinct, except perhaps for $(2,3,6, \alpha, \beta)$. Yet this edge may be equal only to $(0,1,2,3,6)$, and we chose them to be different. So this cycle with this choice of edges forms a red Hamiltonian 3-tight Berge-cycle in $K_{7}^{(5)}$.

Case 3. Finally, we can assume that every pair of vertices is contained in 3 edges of each color and that every triple of vertices is contained in an edge of each color.

The hypergraph $K_{7}^{(5)}$ contains 21 edges, so there must be 11 edges of the same color, suppose red. By the pigeonhole principle, we will prove that there must exist a triple that is contained in at least 4 red edges. Each red edge contains exactly $\binom{5}{3}=10$ distinct triples, this makes at least 110 pairs $\{e, f\}$ such that e is a red edge and f is a triple with $f \subset e$. There are exactly $\binom{7}{3}=35$ triples, now $\frac{110}{35}>3$, so there exists a triple that is contained in at least 4 red edges.

Let the triple $\{0,1,2\}$ be contained in at least 4 red edges. It is also contained in a blue edge, suppose $(0,1,2,4,5)$. If there is a second blue edge containing $\{0,1,2\}$, we assume without loss of generality that it is either ($0,1,2,3,6$) or (0 , $1,2,4,6)$. Consider the pair $\{4,5\}$; it is contained in at least 3 red edges: e_{1}, e_{2} and e_{3}. Since none are equal to ($0,1,2,4,5$), they all contain the vertex 3 or 6 , maybe both. Moreover, since both triples $\{3,4,5\}$ and $\{4,5,6\}$ are contained in a red edge, then at least one contains 3 and one contains 6 . Suppose e_{1} contains 3 and e_{3} contains $6, e_{2}$ contains either 3 or 6 . We consider 3 subcases:

1. If $(0,1,2,4,6)$ is red:

In this case, since the edge $(0,1,2,3,4)$ is also red, we may assume without
loss of generality that e_{2} contains 6 . The edge e_{3} contains either 0,1 , or 2 ;

TABLE III. Choice of a Red Edge for Each Triple for Lemma 5 Case 3

triple :	Subcase 1	Subcase 2	Subcase 3	
$\{0,1,2\}:$	$(0,1,2$,	$5,6)$	$(0,1,2$,	$5,6)$
$\{1,2,3\}:$	$(0,1,2,3$,	$5)$	$(0,1,2,3,5)$	$(0,1,2,3,5,4)$
$\{2,3,4\}:$	$(0,1,2,3,4)$	$(0,1,2,3,4)$	e_{1}	
$\{3,4,5\}:$	e_{1}	e_{1}	e_{2}	
$\{4,5,6\}:$	e_{2}	e_{2}	e_{3}	
$\{5,6,0\}:$	e_{3}	e_{3}	$(0,1,2, \quad 5,6)$	
$\{6,0,1\}:$	$(0,1,2,4,6)$	$(0,1,2,3, \quad 6)$	$(0,1,2,3, \quad 6)$	

by symmetry, suppose it is 0 . We form the cycle $(0,1,2,3,4,5,6)$ with the choice of edges given in Table III, first column.
2. If $(0,1,2,4,6)$ is blue and e_{2} contains 6 :

The edge e_{3} necessarily contains a vertex among 0,1 and 2 , suppose it is 0 . Then, we form the cycle $(0,1,2,3,4,5,6)$ with the choice of edges given in Table III, second column.
3. If $(0,1,2,4,6)$ is blue and e_{2} contains 3 :

The edge e_{1} necessarily contains a vertex among 0,1 and 2 , suppose it is 2 . Then, we form the cycle ($0,1,2,3,4,5,6$) with the choice of edges given in Table III, third column.

Thus in every case, we managed to build a monochromatic Hamiltonian 3-tight Berge-cycle in $K_{7}^{(5)}$.

Proof of Theorem 3. Consider the complete hypergraph $\mathcal{H}=K_{n}^{(5)}$ whose edges are 2 -colored. We will proceed by induction on n, its number of vertices. Lemma 5 establishes the base case for $n=7$. Let $n \geq 8$. Suppose the result is true for $n-1$.

Let a be a vertex of \mathcal{H}. By the induction hypothesis, the induced subgraph of \mathcal{H} on all its vertices except a has a monochromatic Hamiltonian 5uniform 3-tight Berge-cycle C. Say its color is carmine, the other color being azure. Let us name its vertices $\{1,2, \ldots, n-1\}$ in the order they appear in the cycle.

In the following, we will give a color to any pair $\{x, y\}$ of vertices of $V \backslash\{a\}$, depending on the color of the edges containing x, y, and a. We will say a pair $\{x, y\}$ is red if all the edges containing x, y, and a are carmine, except perhaps one. We will say a pair $\{x, y\}$ is blue if all the edges containing x, y, and a are azure, except perhaps one. Otherwise, we will say a pair is green, meaning at least 2 edges containing x, y and a are carmine and at least 2 are azure.

Remark that if a pair containing x is red, then no pairs containing x can be blue, and vice versa. To prove it, suppose a pair $\{x, y\}$ is red while a pair $\{x, z\}$ is blue.

Take three vertices $u, v, w \notin\{a, x, y, z\}$. Consider the three edges (a, x, y, z, u), (a, x, y, z, v), and (a, x, y, z, w). Two of them have the same color, say carmine, then $\{x, z\}$ cannot be blue, and if the color is azure, $\{x, y\}$ cannot be red.

Suppose first that there exists a $1 \leq i \leq n-1$ such that the pairs $\{i, i+1\},\{i+$ $1, i+2\}$, and $\{i+2, i+3\}$ (with $n-1+j \equiv j$) are green or red. For notation convenience, suppose $i=1$. We claim that there is a choice of edges such that $(1,2, a, 3,4, \ldots, n-1)$ is a 3 -tight monochromatic carmine Hamiltonian cycle. Let us define such a choice of edges. For any $3 \leq j \leq n-1$, choose for the set $\{j, j+1, j+2\}$ the corresponding edge in C. Three edges still have to be found, corresponding to the sets $\{1,2, a\},\{2, a, 3\}$ and $\{a, 3,4\}$. For these three sets, we will choose edges containing a, that are therefore different from the edges we took before.

Since the pairs $\{1,2\},\{2,3\}$, and $\{3,4\}$ are green or red, there are at least two carmine edges containing each of the sets $\{a, 1,2\},\{a, 2,3\}$, and $\{a, 3,4\}$.

If the edge $(1,2,3,4, a)$ is carmine, take it for the set $\{2, a, 3\}$. Now choose any other carmine edge for $\{1,2, a\}$ and $\{a, 3,4\}$. There exist such edges since $\{1,2\}$ and $\{3,4\}$ are green or red, and they are distinct since different from $(1,2,3,4, a)$. Otherwise, take any suiting carmine edge for $\{2, a, 3\}$, and different carmine edges for $\{1,2, a\}$ and $\{a, 3,4\}$. All these edges exist since $\{1,2\},\{2,3\}$, and $\{3,4\}$ are green or red, and the edge for $\{1,2, a\}$ and $\{a, 3,4\}$ are different or it would be $(1,2,3,4, a)$, which is azure.

Now we can suppose that for any $1 \leq i \leq n-1,\{i, i+1\},\{i+1, i+2\}$, or $\{i+2, i+3\}$ is blue. Since most edges are now blue, we are tempted to try to form a cycle of color azure. We will still form a carmine cycle in the following case.

Suppose there exists a vertex $1 \leq i \leq n-1$, such that the edges $(a, i, i+1, i+$ $2, i+3),(a, i, i+1, i+2, i+4)$, and $(a, i, i+1, i+2, i+5)$ are carmine. Then to form a carmine cycle, we insert a between $i+1$ and $i+2$. We get the cycle $(1,2, \ldots, i, i+1, a, i+2, i+3, \ldots, n-1)$. For $\{i, i+1, a\}$, we use the edge ($a, i, i+1, i+2, i+5$), for $\{i+1, a, i+2\}$, the edge ($a, i, i+1, i+2, i+4$), for $\{a, i+2, i+3\}$, the edge $(a, i, i+1, i+2, i+3)$, and for all the other triples, we use the corresponding edge of C.

We finally can assume otherwise that for any $1 \leq i \leq n-1$, one of the edges $(a, i, i+1, i+2, i+3),(a, i, i+1, i+2, i+4)$, and $(a, i, i+1, i+2, i+5)$ is azure. Then using this edge for the set $\{i, i+1, i+2\}$, we form an azure cycle C^{\prime} $\{1,2, \ldots n\}$ not containing a. All the edges we used are distinct since $n-1>6$. Let us choose a blue pair of consecutive vertices in the cycle. Without loss of generality, suppose the pair is $\{2,3\}$. We will insert the vertex a between 2 and 3 in the cycle C^{\prime}. Most edges may remain unchanged. For the set $\{1,2, a\}$, we can use the edge of C^{\prime} formerly used for $\{1,2,3\}$ which contains a by construction of C^{\prime}. Likewise, we can use for $\{a, 3,4\}$ the edge of C^{\prime} formerly used for $\{2,3,4\}$. We only have to find an edge for $\{2, a, 3\}$. Since $\{2,3\}$ is blue, either $(2, a, 3,5,6)$ or $(2, a, 3,5,7)$ is azure, and they both are distinct from any edge of C^{\prime}. So we can find among these two an edge for $\{2, a, 3\}$, and we get a monochromatic Hamiltonian 3-tight Berge-cycle.

4. PROOF OF THEOREM 4

Proof of Theorem 4. We follow the method of [7]. For the sake of completeness we give the details. We first prove the following lemma.

Lemma 6. Let k and $t \geq 2$ be fixed positive integers and let $n>2(t+1) t k$. Then $a(t+1)$-uniform hypergraph \mathcal{H} of order n with at least $\binom{n}{t+1}-k n$ edges has a Hamiltonian t-tight Berge-cycle.

Proof. By averaging there exists a vertex $x \in V(\mathcal{H})$ contained in at least $\binom{n-1}{t}-$ $(t+1) k$ edges of \mathcal{H}. Thus apart from at most $(t+1) k$ exceptional sets all subsets of size t on the remaining $n-1$ vertices form an edge of \mathcal{H} together with x. Let us denote the union of the vertices in the exceptional subsets by U. Thus $|U| \leq$ $(t+1) k t$. Take a cyclic permutation on the remaining vertices where two vertices from U are never neighbors. Since $n>2(t+1) t k$, this is possible. But then this cyclic permutation is actually a t-tight Berge-cycle, that is, $C_{n-1}^{(t+1, t)}$. Indeed, any set of t consecutive vertices on the cycle contains a non-exceptional vertex and thus it forms an edge with x. Furthermore, since $n>2(t+1) t k$, there must be two non-exceptional vertices, denoted by x_{1} and y_{1}, that are neighbors on the cycle. Consider the $2 t$ consecutive vertices along the cycle that include x_{1} and y_{1} in the middle, and denote these vertices by $x_{t}, \ldots, x_{1}, y_{1}, \ldots, y_{t}$. Consider also a vertex z along the cycle that is not among these $2 t$ vertices. We claim that x can be inserted between x_{1} and y_{1} on the cycle and thus giving a Hamiltonian t-tight Berge-cycle in \mathcal{H}. Indeed, for those sets of t consecutive vertices which do not include x, we can add x to get the required edge E_{i}. If a set of t consecutive vertices includes x, then it also must include either x_{1} or y_{1} (or maybe both), that is, a non-exceptional vertex. But then we can add z to get the required edge. It is easy to check that all the used edges are distinct.

For $S \subseteq V\left(K_{n}^{(g)}\right),|S|<g$, let $E_{S}=\left\{e \mid e \in E\left(K_{n}^{(g)}\right)\right.$ with $\left.S \subseteq e\right\}$, the set of edges containing S. Thus $\left|E_{S}\right|=\binom{n-|S|}{g-|S|}$. It is enough to prove Theorem 4 for $r=c t+1$. Indeed, for $r>c t+1$, one can have a color transfer by any injection of the $(c t+1)$ element subsets of the n vertices into their r-element supersets ($n \geq 2 r$ is ensured). Then Theorem 4 will easily follow from the following stronger theorem where only a fraction of the edges are colored (although with perhaps fewer colors), and we can still manage to find a monochromatic Hamiltonian t-tight Berge-cycle.

Theorem 7. Let $c, t \geq 2$ and let $n \geq 2(t+1) t c^{2}$. Furthermore let $S \subseteq V\left(K_{n}^{(c t+1)}\right)$ such that S is of order divisible by t (possibly empty) with $|S| \leq(c-1)$ t. Set $u=$ $c-\frac{|S|}{t}(\geq 1)$. Colorm $\geq\binom{ n-|S|}{c t+1-|S|}-(c-u)(n+t)>0$ edges of E_{S} with u colors. Then E_{S} contains a monochromatic Hamiltonian t-tight Berge-cycle.

Proof. Let $F_{S} \subseteq E_{S},\left|F_{S}\right|=m$, be the set of colored edges in E_{S}. Fix $t \geq$ 2. The proof will be by induction on $u, 1 \leq u \leq c$. If $u=1$, then $|S|=(c-$ 1) t so that $\binom{n-|S|}{c t+1-|S|}-(c-1)(n+t)=\binom{n-(c-1) t}{t+1}-(c-1)(n+t) \geq\binom{ n-(c-1) t}{t+1}-$ $c(n-(c-1) t)$ when $n \geq t c^{2}$. Define the $(t+1)$-uniform hypergraph \mathcal{H}_{S} with
$V\left(\mathcal{H}_{S}\right)=V\left(K_{n}^{(c t+1)}\right) \backslash S$ and $E\left(\mathcal{H}_{S}\right)=\left\{e \backslash S \mid e \in F_{S}\right\}$. Therefore since $n-(c-$ 1) $t>2(t+1) t c$ by Lemma $6 \mathcal{H}_{S}$ contains a Hamiltonian t-tight Berge-cycle $C_{n-(c-1) t}^{(t+1, t)}$. Then we get the corresponding t-tight Berge-cycle $C_{n-(c-1) t}^{(c t+1, t)}$ in E_{S}. But each edge of E_{S} contains S and only $n-(c-1) t$ edges are used on this $C_{n-(c-1) t}^{(c t+1, t)}$ so that it is easy to insert all of S in place of any edge of $C_{n-(c-1) t}^{(c t+1, t)}$ giving the monochromatic $C_{n}^{(c t+1, t)}$. Indeed, insert all the vertices of S in arbitrary order between two consecutive vertices on the cycle. Consider a set T of t consecutive vertices on the new cycle. If T does not contain a vertex from S, then we can use the edge E_{i} from $E\left(C_{n-(c-1) t}^{(c t+1, t)}\right)$. If T does have at least one vertex from S, then it has at most $(t-1)$ vertices outside S, and thus at least $c t+1-|S|-(t-1)=2$ more vertices are "free", so in E_{S} the number of edges containing T that we can still use (not missing or not used on the cycle yet) is at least

$$
\binom{n-|S \cup T|}{2}-(c+1)(n-(c-1) t) \geq \frac{(n-c t)^{2}}{2}-(c+1)(n-(c-1) t)
$$

Thus we can select a distinct edge E_{i} for each such T if

$$
\frac{(n-c t)^{2}}{2}-(c+1)(n-(c-1) t) \geq c t
$$

which is certainly true for $n \geq 2(t+1) t c^{2}$.
Therefore assume the theorem holds for $u-1$ colors with $c \geq u \geq 2$ and color the m edges of E_{S} by u colors, $m \geq\binom{ n-|S|}{c t+1-|S|}-(c-u)(n+t)>0,|S|=(c-u) t$. In F_{S} select a maximum length monochromatic t-tight Berge-cycle. Suppose first that this is $C_{\ell}^{(c t+1, t)}=\left(z_{1}, z_{2}, \ldots, z_{\ell}\right)$ in color 1 , with $2 t-2 \leq \ell<n$. We will handle the case $\ell<2 t-2$ later. Let $z \in V\left(K_{n}^{(c t+1)}\right) \backslash V\left(C_{\ell}^{(c t+1, t)}\right)$. Consider the vertices $\left\{z_{1}, z_{2}, \ldots, z_{2 t-2}\right\}$ (using $2 t-2 \leq \ell$) and the t subsets T_{1}, \ldots, T_{t} consisting of $t-1$ consecutive vertices in this interval. If for each $i, 1 \leq i \leq t$ the set $T_{i} \cup\{z\}$ is contained in at least t distinct edges in $E_{S} \backslash E\left(C_{\ell}^{(c t+1, t)}\right)$ in color 1, then clearly we could insert z into the cycle between z_{t-1} and z_{t}, a contradiction. Hence we may assume that for some T_{i} (say T_{1} without loss of generality) apart from at most $(c-u)(n+t)+t$ exceptional edges all edges in $E_{S \cup T_{1} \cup\{z\}} \backslash E\left(C_{\ell}^{(c t+1, t)}\right)$ are in color $2,3, \ldots, u$.

Assume now the second case, $\ell<2 t-2$. Consider arbitrary vertices $\left\{z_{1}, z_{2}, \ldots, z_{2 t}\right\} \in V\left(K_{n}^{(c t+1)}\right) \backslash S$ in a cyclic order and the $2 t$ subsets $T_{1}, \ldots, T_{2 t}$ consisting of t consecutive vertices in this cyclic order. If for each $i, 1 \leq i \leq 2 t$ the set T_{i} is contained in at least $2 t$ distinct edges in E_{S} in color 1, then we would have a t-tight Berge-cycle of length $2 t$ in color 1 in F_{S}, a contradiction. Hence we may assume that for some T_{i} (say T_{1} without loss of generality) apart from at most $(c-u)(n+t)+2 t$ exceptional edges all edges in $E_{S \cup T_{1}}$ are in color $2,3, \ldots, u$.

Let S^{\prime} be any set of $|S|+t=(c-u+1) t$ vertices containing $S \cup T_{1} \cup$ $\{z\}$ in the first case and $S \cup T_{1}$ in the second case. Thus in both cases at least $\left|E_{S^{\prime}}\right|-(c-u+1)(n+t)$ edges of $E_{S^{\prime}}$ are colored by at most $u-1$ colors. But $\left|E_{S^{\prime}}\right|-(c-u+1)(n+t)=\binom{n-(||S|+t)}{c t+1-(|S|+t)}-(c-(u-1))(n+t)>0$, $1 \leq u-1=c-\frac{\left|S^{\prime}\right|}{t}$, and $\left|S^{\prime}\right|=(c-u+1) t$, so by the induction assumption $E_{S^{\prime}}$ contains a monochromatic Hamiltonian t-tight Berge-cycle, $C_{n}^{(c t+1, t)}$, contradicting the assumption that E_{S} contains no monochromatic $C_{n}^{(c t+1, t)}$. Therefore for any $u, 1 \leq u \leq c, E_{S}$ contains a monochromatic $C_{n}^{(c t+1, t)}$.

Now the proof of Theorem 4 is concluded by applying Theorem 7 with $S=\emptyset$.

ACKNOWLEDGMENTS

This research was supported in part by the National Science Foundation under Grant No. DMS-0456401 and by OTKA Grant No. K68322.

REFERENCES

[1] C. Berge, Graphs and Hypergraphs, North Holland, Amsterdam and London, 1973.
[2] J. C. Bermond, A. Germa, M. C. Heydemann, and D. Sotteau, Hypergraphes hamiltoniens, Problémes et Théorie des Graphes, Coll Int CNRS Orsay 260 (1976), 39-43.
[3] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math Acad Sci Hungar 10 (1959), 337-356.
[4] R. Faudree and R. H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Math 8 (1974), 313-329.
[5] A. Figaj and T. Luczak, The Ramsey number for a triple of long even cycles, J Combin Theory Ser B, 47 (2007), 584-596.
[6] L. Gerencsér and A. Gyárfás, On Ramsey-type problems, Ann Univ Sci Budapest Eötvös Sect Math 10 (1967), 167-170.
[7] A. Gyárfás, J. Lehel, G. N. Sárközy, and R. H. Schelp, Monochromatic Hamiltonian Berge cycles in colored complete hypergraphs, J Combin Theory Ser B 98 (2008), 342-358.
[8] A. Gyárfás, M. Ruszinkó, G. N. Sárközy, E. Szemerédi, Three-color Ramsey numbers for paths, Combinatorica 27(1) (2007), 35-69.
[9] P. Haxell, T. Luczak, Y. Peng, V. Rödl, A. Rucinski, M. Simonovits, and J. Skokan, The Ramsey number for hypergraph cycles I, J Combin Theory Ser A 113 (2006), 67-83.
[10] P. Haxell, T. Luczak, Y. Peng, V. Rödl, A. Rucinski, and J. Skokan, The Ramsey number for hypergraph cycles II, (submitted).
[11] G. Y. Katona and H. A. Kierstead, Hamiltonian chains in hypergraphs, J Graph Theory 30 (1999), 205-212.
[12] Y. Kohayakawa, M. Simonovits, and J. Skokan, The 3-color Ramsey number of odd cycles, manuscript.
[13] D. Kühn and D. Osthus, Hamilton cycles in 3-uniform hypergraphs of large minimum degree, J Combin Theory Ser B 96 (2006), 767-821.
[14] V. Rosta, On a Ramsey-type problem of J. A. Bondy and P. Erdős, I and II, J Combin Theory B 15 (1973), 94-104, 105-120.
[15] V. Rödl, A. Rucinski, and E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, Combin Probab Comput 15 (2006), 229-251.

[^0]: Contract grant sponsor: National Science Foundation; Contract grant number: DMS-0456401; Contract grant sponsor: OTKA; Contract grant number: K68322.

 Journal of Graph Theory
 © 2008 Wiley Periodicals, Inc.

