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Abstract: In any r-uniform hypergraph H for 2 ≤ t ≤ r we define an r-
uniform t-tight Berge-cycle of length �, denoted by C(r,t)

� , as a sequence of
distinct vertices v1, v2, . . . , v�, such that for each set (vi , vi+1, . . . ,vi+t−1 ) of
t consecutive vertices on the cycle, there is an edge Ei of H that contains
these t vertices and the edges Ei are all distinct for i, 1 ≤ i ≤ �, where
� + j ≡ j. For t = 2 we get the classical Berge-cycle and for t = r we get the
so-called tight cycle. In this note we formulate the following conjecture. For
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any fixed 2 ≤ c, t ≤ r satisfying c + t ≤ r + 1 and sufficiently large n, if we
color the edges of K(r)

n , the complete r-uniform hypergraph on n vertices,
with c colors, then there is a monochromatic Hamiltonian t-tight Berge-
cycle. We prove some partial results about this conjecture and we show
that if true the conjecture is best possible. © 2008 Wiley Periodicals Inc. J Graph Theory

59: 34–44, 2008
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1. INTRODUCTION

The investigations of Turán type problems for paths and cycles of graphs were
started by Erdős and Gallai in [3]. The corresponding Ramsey problems have been
looked at some years later first in [6] and then later in [4,5,8,12,14].

There are several possibilities to define paths and cycles in hypergraphs. In this
article we address the case of the Berge-cycle; probably it is the earliest defini-
tion of a cycle in hypergraphs in the book of Berge [1]. Turán type problems for
Berge-paths and Berge-cycles of hypergraphs appeared perhaps first in [2]. Other
types of hypergraph cycles, loose and tight, have been studied in [11,13,15]. The
investigations of the corresponding Ramsey problems started quite recently with
[9,10] where Ramsey numbers of loose and tight cycles have been determined
asymptotically for two colors and for 3-uniform hypergraphs.

Let H be an r-uniform hypergraph (some r-element subsets of a set). LetK(r)
n de-

note the complete r-uniform hypergraph on n vertices. In any r-uniform hypergraph
H for 2 ≤ t ≤ r we define an r-uniform t-tight Berge-cycle of length �, denoted
by C

(r,t)
� , as a sequence of distinct vertices v1, v2, . . . , v�, such that for each set

(vi, vi+1, . . . , vi+t−1) of t consecutive vertices on the cycle, there is an edge Ei of
H that contains these t vertices and the edges Ei are all distinct for i, 1 ≤ i ≤ �,
where � + j ≡ j. We will denote by E(C(r,t)

� ) the set of these edges Ei used on the
cycle. For t = 2 we get Berge-cycles and for t = r we get the tight cycle. When
the uniformity is clearly understood we may simply write C(t)

� for C(r,t)
� or just C�.

Rc(C
(r,t)
� ) will denote the Ramsey number of the r-uniform t-tight � cycle using c

colors. A Berge-cycle of length n in a hypergraph of n vertices is called a Hamilto-
nian Berge-cycle. It is important to remember that, in contrast to the case r = t = 2,
for r > t ≥ 2 a Berge-cycle C(r,t)

� , is not determined uniquely, it can be viewed as
an arbitrary choice from many possible cycles with the same triple of parameters.

In this note, continuing the investigations from [7], we study Hamiltonian Berge-
cycles in hypergraphs. Thinking in terms of graphs, this task seems quite hopeless,
since in many 2-colorings of Kn there are no monochromatic Hamiltonian cycles.
For example, if each edge incident to a fixed vertex is red and the other edges are
blue, there is no monochromatic Hamiltonian cycle. However, from the nature of
Berge-cycles, this example does not carry over to hypergraphs, in this 2-coloring
of K(3)

n , there is a red Hamiltonian Berge-cycle (for n ≥ 5).
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In [7] monochromatic Hamiltonian (2-tight) Berge-cycles were studied and the
following conjecture was formulated. Assume that r > 1 is fixed and n is sufficiently
large. Then every (r − 1)-coloring of K(r)

n contains a monochromatic Hamiltonian
(2-tight) Berge-cycle. The conjecture was proved for r = 3. For general r, the
statement was proved for sufficiently large n with

⌊
r−1

2

⌋
colors instead of r − 1

colors. In this note we look at monochromatic Hamiltonian t-tight Berge-cycles
and we generalize the above conjecture in the following way.

Conjecture 1. For any fixed 2 ≤ c, t ≤ r satisfying c + t ≤ r + 1 and sufficiently
large n, if we color the edges of K(r)

n with c colors, then there is a monochromatic
Hamiltonian t-tight Berge-cycle.

We will prove that if the conjecture is true it is best possible, since for any values
of 2 ≤ c, t ≤ r satisfying c + t > r + 1 the statement is not true.

Theorem 2. For any fixed 2 ≤ c, t ≤ r satisfying c + t > r + 1 and sufficiently
large n, there is a coloring of the edges of K(r)

n with c colors, such that the longest
monochromatic t-tight Berge-cycle has length at most

⌈
t(c−1)n
t(c−1)+1

⌉
.

We know that Conjecture 1 is true for c = t = 2 and r = 3, see [7]. It has also
been proved in [7] that Conjecture 1 is asymptotically true for c = 3, t = 2, and
r = 4. For the symmetrical case, c = 2, t = 3, we were able to prove only the
following weaker but sharp result.

Theorem 3. For any n ≥ 7, if the edges of K(5)
n are colored with two colors, then

there exists a monochromatic Hamiltonian 3-tight Berge-cycle.

Note that Conjecture 1 would imply the same statement with r = 4 instead of
r = 5, however, at this point we were unable to prove the statement for r = 4.

Similarly as in [7], for general r we were able to obtain only the following weaker
result, where essentially we replace the sum c + t with the product ct.

Theorem 4. For any fixed 2 ≤ c, t ≤ r satisfying ct + 1 ≤ r and n ≥ 2(t + 1)rc2,
if we color the edges of K(r)

n with c colors, then there is a monochromatic Hamilto-
nian t-tight Berge-cycle.

In Section 2 we give the simple construction for Theorem 2. In Sections 3 and 4
we present the proofs of Theorems 3 and 4.

2. THE CONSTRUCTION

Proof of Theorem 2. Let A1, . . . , Ac−1 be disjoint vertex sets of size
⌊

n
t(c−1)+1

⌋
.

The r-edges not containing a vertex from A1 are colored with color 1. The r-edges
that are not colored yet and do not contain a vertex fromA2 are colored with color 2.
We continue in this fashion. Finally the r-edges that are not colored yet with colors
1, . . . , c − 2 and do not contain a vertex from Ac−1 are colored with color c − 1.
The r-edges that contain a vertex from all c − 1 sets A1, . . . , Ac−1 (if such r-edges
exist) get color c. We claim that in this c-coloring of the edges of K(r)

n the longest
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monochromatic t-tight Berge-cycle has length ≤ ⌈
t(c−1)n
t(c−1)+1

⌉
. This is certainly true

for Berge-cycles in color i for 1 ≤ i ≤ c − 1, since the subhypergraph induced by
the edges in color i leaves out Ai (a set of size

⌊
n

t(c−1)+1

⌋
) completely. Finally, note

that in a t-tight Berge-cycle in color c (if such a cycle exists) from t (> r − c + 1)
consecutive vertices on the cycle at least one has to come from A1 ∪ · · · ∪ Ac−1.
Indeed, otherwise the edge containing the t vertices must contain a vertex from
each of A1, . . . , Ac−1. Since t + c − 1 > r, this is a contradiction. Thus the cycle
has length at most

t(c − 1)
⌊

n

t(c − 1) + 1

⌋
≤ t(c − 1)n

t(c − 1) + 1
≤
⌈

t(c − 1)n

t(c − 1) + 1

⌉

�

3. 3-TIGHT 5-UNIFORM BERGE-CYCLES

Lemma 5. If the edges of K
(5)
7 are colored with two colors, there exists a

monochromatic Hamiltonian 3-tight Berge-cycle.

Proof. We first remark that the hypergraph K
(5)
7 contains 21 edges, that each

pair is contained in exactly 10 edges, and each triple is contained in exactly 6 edges.
Let us consider a coloring of the edges of K(5)

7 in two colors, blue and red. We
will first consider two favorable cases, when the edges containing a pair or a triple
of vertices are mostly colored with the same color.

Case 1. Suppose that there exists a pair of vertices (for instance {0, 4}) contained
in less than 3 edges of a color (for instance blue); that is it is contained in at least
8 red edges. Without loss of generality, we can assume that if there are blue edges
containing {0, 4}, one is (0, 1, 2, 3, 4) and possibly a second one is either (0, 1, 4,
5, 6) or (0, 1, 2, 4, 5).

Let us consider the cycle (0, 6, 2, 3, 4, 5, 1). In Table I, we give a choice of a red
edge for each triple of consecutive vertices of this cycle, all distinct.

TABLE I. Choice of a Red Edge for Each Triple for Lemma 5 Case 1

Journal of Graph Theory DOI 10.1002/jgt
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TABLE II. Choice of a Red Edge for Each Triple for Lemma 5 Case 2

Case 2. Suppose now that every pair of vertices is contained in at least 3 edges
of each color. Suppose that for some triple of vertices, say {0, 1, 2}, all the 6 edges
containing it are of the same color, for instance red.

Consider the pair {3, 6}, at least three red edges contains it. One of them is (0,
1, 2, 3, 6), let (3, 6, α, β, γ) be another one. Necessarily, {α, β, γ}∩{0,1,2}�= ∅, so
we can suppose without loss of generality γ = 2.

We give in Table II a choice of a red edge for each triple of consecutive vertices
for the cycle (0, 3, 6, 2, 4, 1, 5). All these edges are obviously distinct, except
perhaps for (2, 3, 6, α, β). Yet this edge may be equal only to (0, 1, 2, 3, 6), and
we chose them to be different. So this cycle with this choice of edges forms a red
Hamiltonian 3-tight Berge-cycle in K

(5)
7 .

Case 3. Finally, we can assume that every pair of vertices is contained in 3 edges
of each color and that every triple of vertices is contained in an edge of each color.

The hypergraph K
(5)
7 contains 21 edges, so there must be 11 edges of the same

color, suppose red. By the pigeonhole principle, we will prove that there must exist
a triple that is contained in at least 4 red edges. Each red edge contains exactly(5

3

) = 10 distinct triples, this makes at least 110 pairs {e, f } such that e is a red
edge and f is a triple with f ⊂ e. There are exactly

(7
3

) = 35 triples, now 110
35 > 3,

so there exists a triple that is contained in at least 4 red edges.
Let the triple {0, 1, 2} be contained in at least 4 red edges. It is also contained

in a blue edge, suppose (0, 1, 2, 4, 5). If there is a second blue edge containing
{0, 1, 2}, we assume without loss of generality that it is either (0, 1, 2, 3, 6) or (0,
1, 2, 4, 6). Consider the pair {4, 5}; it is contained in at least 3 red edges: e1, e2

and e3. Since none are equal to (0, 1, 2, 4, 5), they all contain the vertex 3 or 6,
maybe both. Moreover, since both triples {3, 4, 5} and {4, 5, 6} are contained in a
red edge, then at least one contains 3 and one contains 6. Suppose e1 contains 3 and
e3 contains 6, e2 contains either 3 or 6. We consider 3 subcases:

1. If (0, 1, 2, 4, 6) is red:
In this case, since the edge (0, 1, 2, 3, 4) is also red, we may assume without
loss of generality that e2 contains 6. The edge e3 contains either 0, 1, or 2;

Journal of Graph Theory DOI 10.1002/jgt



BERGE-CYCLES IN HYPERGRAPHS 39

TABLE III. Choice of a Red Edge for Each Triple for Lemma 5 Case 3

by symmetry, suppose it is 0. We form the cycle (0, 1, 2, 3, 4, 5, 6) with the
choice of edges given in Table III, first column.

2. If (0, 1, 2, 4, 6) is blue and e2 contains 6:
The edge e3 necessarily contains a vertex among 0, 1 and 2, suppose it is 0.
Then, we form the cycle (0, 1, 2, 3, 4, 5, 6) with the choice of edges given in
Table III, second column.

3. If (0, 1, 2, 4, 6) is blue and e2 contains 3:
The edge e1 necessarily contains a vertex among 0, 1 and 2, suppose it is 2.
Then, we form the cycle (0, 1, 2, 3, 4, 5, 6) with the choice of edges given in
Table III, third column.

Thus in every case, we managed to build a monochromatic Hamiltonian 3-tight
Berge-cycle in K

(5)
7 . �

Proof of Theorem 3. Consider the complete hypergraph H = K(5)
n whose

edges are 2-colored. We will proceed by induction on n, its number of vertices.
Lemma 5 establishes the base case for n = 7. Let n ≥ 8. Suppose the result is true
for n − 1.

Let a be a vertex of H. By the induction hypothesis, the induced sub-
graph of H on all its vertices except a has a monochromatic Hamiltonian 5-
uniform 3-tight Berge-cycle C. Say its color is carmine, the other color being
azure. Let us name its vertices {1, 2, . . . , n − 1} in the order they appear in
the cycle.

In the following, we will give a color to any pair {x, y} of vertices of V \ {a},
depending on the color of the edges containing x, y, and a. We will say a pair
{x, y} is red if all the edges containing x, y, and a are carmine, except per-
haps one. We will say a pair {x, y} is blue if all the edges containing x, y,
and a are azure, except perhaps one. Otherwise, we will say a pair is green,
meaning at least 2 edges containing x, y and a are carmine and at least 2 are
azure.

Remark that if a pair containing x is red, then no pairs containing x can be blue,
and vice versa. To prove it, suppose a pair {x, y} is red while a pair {x, z} is blue.
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40 JOURNAL OF GRAPH THEORY

Take three vertices u, v,w /∈ {a, x, y, z}. Consider the three edges (a, x, y, z, u),
(a, x, y, z, v), and (a, x, y, z, w). Two of them have the same color, say carmine,
then {x, z} cannot be blue, and if the color is azure, {x, y} cannot be red.

Suppose first that there exists a 1 ≤ i ≤ n − 1 such that the pairs {i, i + 1}, {i +
1, i + 2}, and {i + 2, i + 3} (with n − 1 + j ≡ j) are green or red. For notation
convenience, suppose i = 1. We claim that there is a choice of edges such that
(1, 2, a, 3, 4, . . . , n − 1) is a 3-tight monochromatic carmine Hamiltonian cycle.
Let us define such a choice of edges. For any 3 ≤ j ≤ n − 1, choose for the set
{j, j + 1, j + 2} the corresponding edge in C. Three edges still have to be found,
corresponding to the sets {1, 2, a}, {2, a, 3} and {a, 3, 4}. For these three sets, we
will choose edges containing a, that are therefore different from the edges we took
before.

Since the pairs {1, 2}, {2, 3}, and {3, 4} are green or red, there are at least two
carmine edges containing each of the sets {a, 1, 2}, {a, 2, 3}, and {a, 3, 4}.

If the edge (1, 2, 3, 4, a) is carmine, take it for the set {2, a, 3}. Now choose any
other carmine edge for {1, 2, a} and {a, 3, 4}. There exist such edges since {1, 2}
and {3, 4} are green or red, and they are distinct since different from (1, 2, 3, 4, a).
Otherwise, take any suiting carmine edge for {2, a, 3}, and different carmine edges
for {1, 2, a} and {a, 3, 4}. All these edges exist since {1, 2}, {2, 3}, and {3, 4} are
green or red, and the edge for {1, 2, a} and {a, 3, 4} are different or it would be
(1, 2, 3, 4, a), which is azure.

Now we can suppose that for any 1 ≤ i ≤ n − 1, {i, i + 1}, {i + 1, i + 2}, or
{i + 2, i + 3} is blue. Since most edges are now blue, we are tempted to try to form
a cycle of color azure. We will still form a carmine cycle in the following case.

Suppose there exists a vertex 1 ≤ i ≤ n − 1, such that the edges (a, i, i + 1, i +
2, i + 3), (a, i, i + 1, i + 2, i + 4), and (a, i, i + 1, i + 2, i + 5) are carmine. Then
to form a carmine cycle, we insert a between i + 1 and i + 2. We get the cy-
cle (1, 2, . . . , i, i + 1, a, i + 2, i + 3, . . . , n − 1). For {i, i + 1, a}, we use the edge
(a, i, i + 1, i + 2, i + 5), for {i + 1, a, i + 2}, the edge (a, i, i + 1, i + 2, i + 4), for
{a, i + 2, i + 3}, the edge (a, i, i + 1, i + 2, i + 3), and for all the other triples, we
use the corresponding edge of C.

We finally can assume otherwise that for any 1 ≤ i ≤ n − 1, one of the edges
(a, i, i + 1, i + 2, i + 3), (a, i, i + 1, i + 2, i + 4), and (a, i, i + 1, i + 2, i + 5) is
azure. Then using this edge for the set {i, i + 1, i + 2}, we form an azure cycle C′

{1, 2, . . . n} not containing a. All the edges we used are distinct since n − 1 > 6. Let
us choose a blue pair of consecutive vertices in the cycle. Without loss of generality,
suppose the pair is {2, 3}. We will insert the vertex a between 2 and 3 in the cycle
C′. Most edges may remain unchanged. For the set {1, 2, a}, we can use the edge
of C′ formerly used for {1, 2, 3} which contains a by construction of C′. Likewise,
we can use for {a, 3, 4} the edge of C′ formerly used for {2, 3, 4}. We only have to
find an edge for {2, a, 3}. Since {2, 3} is blue, either (2, a, 3, 5, 6) or (2, a, 3, 5, 7)
is azure, and they both are distinct from any edge of C′. So we can find among
these two an edge for {2, a, 3}, and we get a monochromatic Hamiltonian 3-tight
Berge-cycle. �
Journal of Graph Theory DOI 10.1002/jgt
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4. PROOF OF THEOREM 4

Proof of Theorem 4. We follow the method of [7]. For the sake of completeness
we give the details. We first prove the following lemma.

Lemma 6. Let k and t ≥ 2 be fixed positive integers and let n > 2(t + 1)tk. Then
a (t + 1)-uniform hypergraph H of order n with at least

( n

t+1

)− kn edges has a
Hamiltonian t-tight Berge-cycle.

Proof. By averaging there exists a vertex x ∈ V (H) contained in at least
(n−1

t

)−
(t + 1)k edges of H. Thus apart from at most (t + 1)k exceptional sets all subsets
of size t on the remaining n − 1 vertices form an edge of H together with x. Let
us denote the union of the vertices in the exceptional subsets by U. Thus |U| ≤
(t + 1)kt. Take a cyclic permutation on the remaining vertices where two vertices
from U are never neighbors. Since n > 2(t + 1)tk, this is possible. But then this
cyclic permutation is actually a t-tight Berge-cycle, that is, C(t+1,t)

n−1 . Indeed, any
set of t consecutive vertices on the cycle contains a non-exceptional vertex and
thus it forms an edge with x. Furthermore, since n > 2(t + 1)tk, there must be two
non-exceptional vertices, denoted by x1 and y1, that are neighbors on the cycle.
Consider the 2t consecutive vertices along the cycle that include x1 and y1 in the
middle, and denote these vertices by xt, . . . , x1, y1, . . . , yt . Consider also a vertex
z along the cycle that is not among these 2t vertices. We claim that x can be inserted
between x1 and y1 on the cycle and thus giving a Hamiltonian t-tight Berge-cycle
in H. Indeed, for those sets of t consecutive vertices which do not include x, we
can add x to get the required edge Ei. If a set of t consecutive vertices includes x,
then it also must include either x1 or y1 (or maybe both), that is, a non-exceptional
vertex. But then we can add z to get the required edge. It is easy to check that all
the used edges are distinct. �

For S ⊆ V (K(g)
n ), |S| < g, let ES = {e|e ∈ E(K(g)

n ) with S ⊆ e}, the set of edges
containing S. Thus |ES| = (n−|S|

g−|S|
)
. It is enough to prove Theorem 4 for r = ct + 1.

Indeed, for r > ct + 1, one can have a color transfer by any injection of the (ct + 1)-
element subsets of the n vertices into their r-element supersets (n ≥ 2r is ensured).
Then Theorem 4 will easily follow from the following stronger theorem where only
a fraction of the edges are colored (although with perhaps fewer colors), and we
can still manage to find a monochromatic Hamiltonian t-tight Berge-cycle.

Theorem 7. Let c, t ≥ 2 and let n ≥ 2(t + 1)tc2. Furthermore let S ⊆ V (K(ct+1)
n )

such that S is of order divisible by t (possibly empty) with |S| ≤ (c − 1)t. Set u =
c − |S|

t
(≥ 1). Colorm ≥ ( n−|S|

ct+1−|S|
)− (c − u)(n + t) > 0 edges ofES with u colors.

Then ES contains a monochromatic Hamiltonian t-tight Berge-cycle.

Proof. Let FS ⊆ ES , |FS| = m, be the set of colored edges in ES . Fix t ≥
2. The proof will be by induction on u, 1 ≤ u ≤ c. If u = 1, then |S| = (c −
1)t so that

( n−|S|
ct+1−|S|

)− (c − 1)(n + t) = (n−(c−1)t
t+1

)− (c − 1)(n + t) ≥ (n−(c−1)t
t+1

)−
c(n − (c − 1)t) when n ≥ tc2. Define the (t + 1)-uniform hypergraph HS with
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V (HS) = V (K(ct+1)
n ) \ S and E(HS) = {e \ S | e ∈ FS}. Therefore since n − (c −

1)t > 2(t + 1)tc by Lemma 6 HS contains a Hamiltonian t-tight Berge-cycle
C

(t+1,t)
n−(c−1)t . Then we get the corresponding t-tight Berge-cycle C(ct+1,t)

n−(c−1)t in ES . But

each edge ofES contains S and only n − (c − 1)t edges are used on thisC(ct+1,t)
n−(c−1)t so

that it is easy to insert all of S in place of any edge ofC(ct+1,t)
n−(c−1)t giving the monochro-

matic C(ct+1,t)
n . Indeed, insert all the vertices of S in arbitrary order between two

consecutive vertices on the cycle. Consider a set T of t consecutive vertices on the
new cycle. If T does not contain a vertex from S, then we can use the edge Ei from
E(C(ct+1,t)

n−(c−1)t). If T does have at least one vertex from S, then it has at most (t − 1)
vertices outside S, and thus at least ct + 1 − |S| − (t − 1) = 2 more vertices are
“free”, so in ES the number of edges containing T that we can still use (not missing
or not used on the cycle yet) is at least

(
n − |S ∪ T |

2

)
− (c + 1)(n − (c − 1)t) ≥ (n − ct)2

2
− (c + 1)(n − (c − 1)t).

Thus we can select a distinct edge Ei for each such T if

(n − ct)2

2
− (c + 1)(n − (c − 1)t) ≥ ct,

which is certainly true for n ≥ 2(t + 1)tc2.
Therefore assume the theorem holds for u − 1 colors with c ≥ u ≥ 2 and color

the m edges ofES by u colors,m ≥ ( n−|S|
ct+1−|S|

)− (c − u)(n + t) > 0, |S| = (c − u)t.
In FS select a maximum length monochromatic t-tight Berge-cycle. Suppose first
that this is C

(ct+1,t)
� = (z1, z2, . . . , z�) in color 1, with 2t − 2 ≤ � < n. We will

handle the case � < 2t − 2 later. Let z ∈ V (K(ct+1)
n ) \ V (C(ct+1,t)

� ). Consider the
vertices {z1, z2, . . . , z2t−2} (using 2t − 2 ≤ �) and the t subsetsT1, . . . , Tt consisting
of t − 1 consecutive vertices in this interval. If for each i, 1 ≤ i ≤ t the set Ti ∪ {z}
is contained in at least t distinct edges in ES \ E(C(ct+1,t)

� ) in color 1, then clearly
we could insert z into the cycle between zt−1 and zt , a contradiction. Hence we
may assume that for some Ti (say T1 without loss of generality) apart from at most
(c − u)(n + t) + t exceptional edges all edges inES∪T1∪{z} \ E(C(ct+1,t)

� ) are in color
2, 3, . . . , u.

Assume now the second case, � < 2t − 2. Consider arbitrary vertices
{z1, z2, . . . , z2t} ∈ V (K(ct+1)

n ) \ S in a cyclic order and the 2t subsets T1, . . . , T2t

consisting of t consecutive vertices in this cyclic order. If for each i, 1 ≤ i ≤ 2t
the set Ti is contained in at least 2t distinct edges in ES in color 1, then we would
have a t-tight Berge-cycle of length 2t in color 1 in FS , a contradiction. Hence we
may assume that for some Ti (say T1 without loss of generality) apart from at most
(c − u)(n + t) + 2t exceptional edges all edges in ES∪T1 are in color 2, 3, . . . , u.
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Let S′ be any set of |S| + t = (c − u + 1)t vertices containing S ∪ T1 ∪
{z} in the first case and S ∪ T1 in the second case. Thus in both cases at
least |ES′ | − (c − u + 1)(n + t) edges of ES′ are colored by at most u − 1
colors. But |ES′ | − (c − u + 1)(n + t) = ( n−(|S|+t)

ct+1−(|S|+t)

)− (c − (u − 1))(n + t) > 0,

1 ≤ u − 1 = c − |S′|
t

, and |S′| = (c − u + 1)t, so by the induction assumption ES′

contains a monochromatic Hamiltonian t-tight Berge-cycle, C(ct+1,t)
n , contradicting

the assumption that ES contains no monochromatic C(ct+1,t)
n . Therefore for any

u, 1 ≤ u ≤ c, ES contains a monochromatic C(ct+1,t)
n . �

Now the proof of Theorem 4 is concluded by applying Theorem 7 with
S = ∅. �
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