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Generalizing a result of Erdo� s, Gya� rfa� s and Pyber we show that there exists a
constant c such that for any integers r, k�2 and for any coloring of the edges of
a complete graph with r colors, its vertices can be partitioned into at most
rc(r log r+k) connected monochromatic k-regular subgraphs and vertices. We also
show that the same result holds for complete bipartite graphs, generalizing a result
of Haxell. � 2000 Academic Press

1. INTRODUCTION

When A, B are disjoint subsets of V(G), we denote by e(A, B) the
number of edges of G with one endpoint in A and the other in B.

Definition 1. The bipartite graph G=(A, B, E ) is (=, $) super-regular if

X/A, Y/B, |X |>= |A|, |Y |>= |B| imply e(X, Y )>$ |X | |Y |

and furthermore,

deg(a)�$ |B| for all a # A,

deg(b)�$ |A| for all b # B.

We will often say simply that ``the pair (A, B) is (=, $) super-regular'' with
the graph G implicit.

For any r, k�2, let f (r, k) denote the minimum number of connected
monochromatic k-regular subgraphs and vertices which suffice to partition
the vertices of any complete graph whose edges are r-colored. It is not
obvious that f (r, k) is a well-defined function. That is, it is not obvious that
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there is always a partition whose cardinality is independent of the order of
the complete graph. Gya� rfa� s in [2] conjectured the existence of f (r, 2), and
indeed Erdo� s, Gya� rfa� s and Pyber in [1] proved that there exists a c such
that f (r, 2)�cr2 log r. The generalization of this problem for k-regular
graphs was initiated by Pyber, Ro� dl and Szemere� di in [8] who proved that
in any r-coloring of the edges of the complete graph Kn there is a mono-
chromatic k-regular subgraph for any 1�k�crn where cr is a constant
depending on r. In our main theorem instead of just finding one mono-
chromatic k-regular subgraph, we partition the vertex set into connected
monochromatic k-regular subgraphs. This answers a question raised by
Herman Servatius [10].

Theorem 2. There exists a constant c such that f (r, k)�rc(r log r+k), i.e.,
for any r, k�2 and for any coloring of the edges of a complete graph with
r colors, its vertices can be partitioned into at most rc(r log r+k) connected
monochromatic k-regular subgraphs and vertices.

The necessity of including isolated vertices in the partition follows from
a coloring in which there is a vertex v and a color red such that an edge
is red if and only if it is incident with v.

Erdo� s, Gya� rfa� s and Pyber in [1] conjectured that f (r, 2)=r, where an
edge and a vertex are degenerate cycles. Recently this conjecture was
proved for r=2 and n�no by 4uczak, Ro� dl and Szemere� di [7].

Similarly as above we can define fb(r, k) for complete bipartite graphs
Kn, n instead of complete graphs. In [1] they also raised the question
whether fb(r, 2) is also independent of n. This was proved recently by
Haxell in [3] who showed that there exists a c such that fb(r, 2)�
c(r log r)2. Our second theorem generalizes this result as well.

Theorem 3. There exists a constant c such that fb(r, k)�rc(r log r+k), i.e.,
for any r, k�2 and for any coloring of the edges of the complete bipartite
graph Kn, n with r colors, its vertices can be partitioned into at most
rc(r log r+k) connected monochromatic k-regular subgraphs and vertices.

2. PROOF OF THEOREM 2

Let K be an r-colored copy of Kn . Generalizing the proofs in [1] and
[3], we establish the bound on f (r, k) in two steps.

v Step 1. We find a sufficiently large monochromatic super-regular
pair (A1 , B1) in K. After removing the pair (A1 , B1) from K, we continue
in this fashion. We greedily remove a number (which depends upon r and
k) of super-regular pairs (Ai , Bi), i�2 from the remainder in K and we find
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connected monochromatic k-regular spanning subgraphs in these super-
regular pairs (Ai , Bi), i�2.

v Step 2. We combine the remaining vertices with some vertices of
(A1 , B1) and we find a connected monochromatic k-regular spanning
subgraph in the remainder of (A1 , B1).

Here in this proof method, the greedy technique was introduced in [1].
The idea to make (A1 , B1) super-regular comes from [3]. For our
purposes we had to make (Ai , Bi) super-regular for every i�1.

2.1. Tools

In this section we list our main tools. First we are going to use the
following lemma of Komlo� s ([4], see also [3]).

Lemma 4. There exists a constant =0 such that if =�=0 , t=(3�=) log(1�=)
and Gn is a graph with n vertices and cn2 edges, then Gn contains an (=, $)
super-regular subgraph (A1 , B1) with

|A1|=|B1|=m�(2c)t \n
2� and $�c.

We also use the following very special case of the Blow-up Lemma ([5],
see also [3] and [9]).

Lemma 5. Given an =>0, if (A, B) is an (=, $) super-regular pair with
|A|=|B|=m�1�= and $>7=, then (A, B) is Hamiltonian.

This lemma has the following consequence.

Lemma 6. Given an =>0 and an integer k�2, if (A, B) is an (=, $)
super-regular pair with |A|=|B|=m�k�=2 and $>9=, then (A, B) contains
a connected k-regular spanning subgraph.

Proof. Note that here it is not sufficient just to refer to the general
Blow-up Lemma, since it gives the result only for sufficiently large m and
for = that is sufficiently small compared to $. However, here we need these
explicit estimations to get the numeric bound in Theorem 2. Thus instead,
we remove the edges of the Hamiltonian cycle guaranteed by Lemma 5 and
we apply the lemma again in the remainder, etc. We apply the lemma
wk�2x times, and if k is odd once more to find a perfect matching. The
conditions of Lemma 5 are always satisfied since after removing at most
wk�2x Hamiltonian cycles, the pair (A, B) is still (=, $$) super-regular with
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$$=$&2=>7=. Indeed, for every a # A after the removals (and similarly for
b # B) we have

deg(a)�$m&k=\$&
k
m+ m�($&=2) m>$$m

Furthermore, if

X/A, Y/B, |X |>=m�
k
=

, |Y |>=m�
k
=

,

then we have

e(X, Y )>$ |X | |Y |&k( |X |+|Y | )=\$&\ k
|Y |

+
k

|X |++ |X | |Y |>

>($&2=) |X | |Y |=$$ |X | |Y |.

2.2. Step 1

Let Hi be the subgraph of K with all edges of color i. Let i1 be a color
for which e(Hi1

)�e(K)�r. Let =0 be as in Lemma 4 and ===0 �50r. Applying
Lemma 4 to Hi1

there is a $1�1�4r and a pair (A1 , B1) in color i1 such that

v |A1|=|B1|=m1�(1�2r)t n where t=(3�=) log(1�=), and

v (A1 , B1) is (=, $1) super-regular.

Let K1=K"(A1 , B1). Using Lemma 4 again in K1 , there is a color i2 , a
$2�1�4r and a pair (A2 , B2) in color i2 such that

v |A2 |= |B2 |=m2�(1�2r)t (n&2m1), and

v (A2 , B2) is (=, $2) super-regular.

Removing (A2 , B2) and continuing in this fashion always removing at
least the fraction 2(1�2r)t of the remaining vertices, after p steps the number
of remaining vertices is at most

n \1&2 \ 1
2r+

t

+
p

. (1)

Defining

x=2r2(2er)Wk�2X and x$=max \m1

x2 ,
(2r)t k

=2 + , (2)
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we stop with the procedure when no more than x$ vertices remain. Denote
the last chosen super-regular pair by (Ap$ , Bp$). Note that we may apply
Lemma 6 for a pair (Ai , Bi), 1�i� p$, since |Ai |=|Bi |�k�=2.

In case x$=(2r)t k�=2 (in other words we run out of room before com-
pleting our goal), we do not even need Step 2. The remaining vertices are
going to be isolated vertices in the partitioning, and by using Lemma 6 in
(Ai , Bi), 1�i� p$, the rest of K is partitioned by p$ connected monochromatic
k-regular graphs.

In the other case when x$=m1�x2 holds, we apply Lemma 6 only in
(Ai , Bi), 2�i� p$, so K consists of (A1 , B1), a set of p$&1 connected
monochromatic k-regular graphs, plus a set Y of fewer than m1�x2 vertices
and we go to Step 2.

Note, that it follows from (1) that in either case we have

p$��
(2r)t

2
(2 log x+t log(2r))| . (3)

2.3. Step 2

We may make |Y | even by removing an isolated vertex. We find an
arbitrary partition Y=Y $ _ Y" with |Y $|=|Y"|. The following theorem
will help to combine the vertices in Y $ with some vertices in B1 and the
vertices in Y" with some vertices in A1 .

Theorem 7. If the edges of the complete bipartite graph (S, Y ) are
colored with r colors, |S |=m and |Y |<m�x2 (where x is given by (2)), then
the vertices of Y can be covered by at most rx(1+Wk�2X)+2r2Wk�2X

vertex-disjoint connected monochromatic k-regular graphs and vertices.

Proof. For each y # Y and 1�i�r, we define

Ni ( y)=[s # S | (s, y) has color i],

and for Y $/Y we define Ni (Y $)=�y # Y $ N i ( y). Clearly Y can be parti-
tioned into classes Y1 , Y2 , ..., Yr such that |Ni ( y)|�m�r for each y # Yi .

Lemma 8. For each Yi , there is an ai such that Yi can be partitioned into
classes Yi0 , Y i1 , ..., Yiai

where

v |Yi0 |<2r Wk�2X,

v |Yij |=Wk�2X for 1� j�a i , and

v |Ni (Yij)|�rm�x for 1� j�ai .
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Proof. If |Yi |<2r Wk�2X, the proof is trivial. Let Hi be the subgraph
S_Yi with all edges of color i. If |Yi |�2r Wk�2X, then we have

:

degHi
(s)�Wk�2X

s # S

degHi
(s)�

m
r

|Yi |&�
k
2| m�

m
2r

|Yi |.

We are going to count with multiplicity the number of subsets of Yi of size
Wk�2X with a common neighbor in S. Using Jensen's inequality,

:

degHi
(s)�Wk�2X

s # S \
degHi

(s)

+�
m
2r \

|Y i |
2r

�
k
2|+�

m
2r \

|Y i |

+
Wk�2X

.

�
k
2| 2r �

k
2|

But there are only

\
|Yi |

+�\e |Yi |
Wk�2X+

Wk�2X

�
k
2|

subsets of Yi of size Wk�2X. Thus there must be a Yi1 /Yi such that

|Yi1|=�
k
2| and |N i (Y i1)|�

m
2r
\ |Y i |

2r Wk�2X+
Wk�2X

\e |Yi |
Wk�2X+

Wk�2X
=

m
2r(2er)Wk�2X

=
rm
x

.

Replacing Yi by Yi "Yi1 we repeat the procedure until for the leftover we
have |Yi0 |<2r Wk�2X. We denote the number of repetitions by ai . This
completes the proof of Lemma 8.

For each Yi we define an auxiliary graph Gi with vertices [Yi1 , Yi2 , ..., Yiai
]

and edges

{(Y ij , Yil) } |Ni (Yij) & Ni (Yil)|�
m
x2>|Y |= .

Lemma 9. The size of a maximum independent set of Gi is less than x.

Proof. Assume indirectly that [w1 , w2 , ..., wx]/[Yi1 , Yi2 , ..., Yiai
] is an

independent set of vertices of Gi . If wj=Yij , then we define N i (wj)=
Ni (Yij). Hence we have |N i (wj)|�rm�x for 1� j�x. But then
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m� } .
1� j�x

Ni (wj)}�rm& :
1� j<l�x

|Ni (w j) & Ni (wl)|�

�rm&
x2

2
m
x2=\r&

1
2+ m>m.

By contradiction, Gi can not have an independent set of x vertices, finishing
the proof of Lemma 9.

By Lemma 9 and a theorem of Po� sa [6], the vertices of Gi can be
partitioned into at most x cycles (and edges and vertices), and thus the
vertices of �1�i�r G i can be partitioned into at most rx cycles (and edges
and vertices). The vertices in this partitioning will be isolated vertices
(Wk�2X vertices of Y for each) and the edges are considered cycles of length
2. Between every adjacent pair of vertices on these cycles, we insert disjoint
sets from S. Between adjacent vertices Yij and Yil , we insert Sij /S such
that |Sij |=Wk�2X and Sij_(Yij _ Yil) is monochromatic in color i. Insert-
ing these sets (from S) between the corresponding pairs of sets (from Y )
on a cycle yields a new ``cycle'', Z1 , Z2 , ..., Z2p of sets of vertices of size
Wk�2X. The graph with vertices �1� j�2p Zj and edges �1� j<2p (Zj_Zj+1)
_ (Z1_Z2p) is a connected monochromatic k+(k mod 2)-regular graph.
For odd k, removing a perfect matching in each of Z2j+1_Z2j+2 for
0� j< p yields a connected monochromatic k-regular graph. Hence the
vertices of S_Y can be partitioned into at most rx connected
monochromatic k-regular graphs plus at most rx Wk�2X+2r2 Wk�2X

vertices. This finishes the proof of Theorem 7.
Applying Theorem 7 for S=B1 and Y$, we obtain a set of at most

rx(1+Wk�2X)+2r2 Wk�2X connected monochromatic k-regular graphs and
vertices that partition the vertices in Y$ and a subset of B$ of B1 . Similarly
we have a set of at most rx(1+Wk�2X)+2r2 Wk�2X connected monochromatic
k-regular graphs and vertices that partition the vertices in Y" and a subset
of A$ of A1 . Assuming |A$|<|B$|, we add |B$|&|A$| additional isolated
vertices from A1 to A$, thus now |A1"A$|=|B1"B$|. Finally we apply
Lemma 6 for Hi1

| (A1"A$) _ (B1"B$) . It is not hard to check that the conditions
of Lemma 6 are still satisfied.

Thus, using (2) and (3), in all cases altogether in our covering the
number of connected monochromatic k-regular graphs and vertices we
used is at most

p$+3 \rx \1+�
k
2|++2r2 �

k
2|++

(2r)t k
=2 +1�rc(r log r+k)

with some constant c.
The proof of Theorem 3 is almost identical and is omitted.
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3. CONCLUDING REMARKS

The obvious open problem is to determine f (r, k) and fb(r, k). As we
mentioned above Erdo� s, Gya� rfa� s and Pyber in [1] conjectured that
f (r, 2)=r, where an edge and a vertex are degenerate cycles. With a some-
what more tedious calculation we can get c=200 in Theorems 2 and 3,
however, since we think that it is still far from optimal, we omit the details.
Furthermore, it would be an interesting problem to find other families of
graphs for which the partition number is independent of n.

4. ACKNOWLEDGEMENT

We thank one of the referees for helpful remarks.

REFERENCES

1. P. Erdo� s, A. Gya� rfa� s, and L. Pyber, Vertex coverings by monochromatic cycles and trees,
J. Combin. Theory B 51 (1991), 90�95.

2. A. Gya� rfa� s, Covering complete graphs by monochromatic paths, in ``Irregularities of
Partitions,'' Algorithms and Combinatorics, Vol. 8, pp. 89�91, Springer-Verlag, 1989.

3. P. Haxell, Partitioning complete bipartite graphs by monochromatic cycles, J. Combin.
Theory B 69 (1997), 210�218.

4. J. Komlo� s and M. Simonovits, Szemere� di's Regularity Lemma and its applications in
graph theory, in ``Combinatorics, Paul Erdo� s is Eighty'' (D. Miklo� s, V. T. So� s, and
T. Szo� nyi, Eds.), Bolyai Society Mathematical Studies, Vol. 2, pp. 295�352, Ja� nos Bolyai
Mathematical Society, Budapest, 1996.

5. J. Komlo� s, G. N. Sa� rko� zy, and E. Szemere� di, Blow-up Lemma, Combinatorica 17 (1)
(1997), 109�123.

6. L. Lova� sz, ``Combinatorial Problems and Exercices,'' p. 56, North�Holland, Amsterdam,
1979.

7. T. 4uczak, V. Ro� dl, and E. Szemere� di, Partitioning two-colored complete graphs into two
monochromatic cycles, Probability, Combinatorics and Computing 7 (1998), 423�436.

8. L. Pyber, V. Ro� dl, and E. Szemere� di, Dense graphs without 3-regular subgraphs,
J. Combin. Theory B 63 (1995), 41�54.

9. G. N. Sa� rko� zy, Fast parallel algorithms for finding Hamiltonian cycles and trees in
graphs, Technical Report 93�81, DIMACS, Rutgers University.

10. H. Servatius, private communication.

122 SA� RKO� ZY AND SELKOW


	1. INTRODUCTION 
	2. PROOF OF THEOREM 2 
	3. CONCLUDING REMARKS 
	4. ACKNOWLEDGMENT 
	REFERENCES 

