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1. INTRODUCTION

A. Notations and Definitions

For basic graph concepts, see the monograph of Badigh]. V' (G) and E(G)
denote the vertex-set and the edge-set of the gtapti(v) is the set of neighbors
of v € V. Hence, the size dV (v) is|N(v)| = degv) = deg,(v), the degree of
v. 6(G) stands for the minimum degree @. For a vertexo € V and setU C
V' — {v}, we write degv, U) for the number of edges fromto U. For a graptG
and a subsdl’ of its vertices G|y is the restriction td/ of G (or the subgraph of
G induced by the vertices @f). Let [k] = {1,2,...,k}.

B. %-Ordered Hamiltonian Graphs

Let G be a graph om > 3 vertices. AHamiltonian cycleg(path) of G is a cycle
(path) containing every vertex ¢f. A Hamiltonian graphis a graph containing a
Hamiltonian cycle. A classical result of Dirac [2] asserts tha({&) > n/2, then

G is Hamiltonian. AHamiltonian-connectedraph is a graph in which every pair of
vertices can be connected with a Hamiltonian path. Note that, by another classical
result (see [1]), iD(G) > (n + 1)/2, thenG is Hamiltonian-connected.

The following interesting concept was created by Chartrand: For a positive inte-
ger2 < k < n, and for a sequence = vy, v, . .., v Of k distinct vertices, a cycle
CinGiscalled as; —ve — - - - — vi-cycle or simply anS-cycle if the vertices ofS
are encountered ati in the specified order. For a Hamiltonian graghwe say that
G is k-orderedif, for every sequencd = vy, v9, . . ., v;, Of k distinct vertices, there
exists a Hamiltoniarb-cycle. It is not hard to see that every Hamiltonian graph is
both 2-ordered and 3-ordered. Furthermore, a Hamiltonian geaphordern is
n-ordered if and only iiG = K,,. Also, if G is k-ordered, thert  is [-ordered for
every2 <1 < k (see [5]).

A natural question is whether we can obtain a Dirac-type condition on the min-
imum degree for guaranteeing that the graph is@dered Hamiltonian graph.
Indeed, the first result of this type was obtained in [5]. In this article, it was shown
(among other results) that, < k¥ < n andd(G) > § + k — 3, thenG is a
k-ordered Hamiltonian graph. The authors raised the question of whether this can
be improved. In this article, our main goal is to determine the best possible bound
under the restriction that is sufficiently large in terms of. Define f(k,n) as the
smallest integem for which any graph om vertices with minimum degree at least
m is ak-ordered Hamiltonian graph. Let

g(k,n) = WQL—‘ + V;J -1

We show thatf(k,n) = g(k,n), if n > 11k — 3. Furthermore, we show that
g(k,n) is always a lower bound for any > 2k. Finally, somewhat surprisingly,
we show that sometime&k, n) > g(k, n). More precisely, we have the following.
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Theorem 1. For positive integerg, n with n > 2k we have

@ f(k,n)=g(k,n)forn>11k — 3,
(b) f(k,n) > g(k,n)foranyn > 2k,
(©) f(k,n)> g(k,n)for2k <n <3k —6.

Therestofthe article is organized as follows. We prove (a) in Section 2. In view of
(b), itis enough to show that,d is a graph om vertices withy (G) > g(k,n) where
n > 11k — 3, thenG is ak-ordered Hamiltonian graph. L&t = vy, vo, ..., v
be any sequence drawn froWf(G). First, in Section 2.A we show that &ficycle
exists and then in Section 2.B we show that a maximfiseycle is Hamiltonian.
We give the simple proofs of (b) and (c) in Sections 3 and 4. We finish with some
remarks and open problems in Section 5.

2. PROOF OF (a)

Let G be a graph om vertices with

5(G) > g(k,n) = H + H 1, )
where
n > 11k — 3. (2)

We have to show that’ is a k-ordered Hamiltonian graph. We may assume that
k > 4, since otherwise this is trivial. L&t = vy, v, . .., v be any sequence drawn
from V(G). First, we construct ag-cycle.

A. Construction of an S-Cycle

Call C = (vy, P1,ve, Py, ..., v, Py) a partialS-cycle, if eachP; is either empty
or av; — v;+1 path with at most three internal vertices, and the internal vertices of
the P; are pairwise disjoint and disjoint frosl. So a partialS-cycle is anS-cycle
if all the P; are nonempty. A partig-cycleC' is optimal, if as many as possible of
the P; are nonempty and subject to tliishas as few vertices as possible. Suppose
for a contradiction tha€” is an optimal partialS-cycle, butC is not anS-cycle.
Say P; is empty and set = v; andy = v;11. Let X be the vertex set of’. Let
A= N(z)\X,A' = (N(A)U A\X, B = N(y)\X, andB' = (N(B) U B)\ X.

For all nonadjacent, v € V(G), we have from (1)

IN(u) N N(w)| > 2 <m 4 VSJ —1) (=2 =2 m +9 V;J —n (3

This last expression is always at le&st 1, and, unlesg is odd, it is at leask.
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Note that from (3) we getN(z) N N(y))\S #

# () and so, by the optimality of
C, |Pi\{vn,vns1}| < 1, for someh. Also P; = §). So

\X\:k+Z\Pj\{vj,vj+1}\Sk+3<k—2>+1+os4k—5. 4)
Using (1), we get

n k n+k—3
LB 2 3]+ 5] -1z P2 @)

By the optimality ofC, A’ and B’ are disjoint, no vertex i (G)\C is adjacent
to four vertices inP;\{v;,1}, for anyj, and no vertex i/ (G)\C is adjacent to
bothx andy. Thus, for any vertex € V(G)\ X,

degv, X) < 3k — 3. (6)

Let A” = {v € X||N(v)nA| > 1} andB” = {v € X||[N(v) N B'| > 1}.
ThenX = A" U B”.

For all nonadjacent € A’,t € A’ U (X\B") (and similarly fors € B’ and
t € B'U(X\A")) using (1), (2) (and actually this is the only point where we need
exactly this bound), (4), (5), and (6), we have

[(N(s) N N($)N\X] = 3. ()
Indeed, sinceV(s) N (BU {s,t}) = 0and|N(t) N (BU{s,t})| <1,
[(N(s) NN (#)\X]
> deg(s) + degt) — 1 — |[V(G)\(BU {s,})| - [(N(s) N N()) N X|

> (k= 4) = (n= (55 - 1x1) ) - degis, )
Z%H—(4k—5)—(3k—3)
> 3,

We shall obtain a contradiction by finding a better paigiadycle. We distinguish
two cases.

Case 1. There existu € A,b € B, andj € [k] such that bothV(a) N N(b) N
(Pj\{vj,vj+1}) # 0 and either{v;,v;11} < A” or {vj,vj11} C B". Say
{vj,vj;1} € A”andr € N(a) NN (b) N (P;\{vj,vj+1}). LetP! = (z,a,r,b,y).
Sincev;,v;y1 € A”, there exists € (A" N N(v;))\{a} and ¢ e (4 n
N(vj+1))\{a}. If s is adjacent ta, then letP] = (vj,s,t,vj41). Otherwise,
by (7), there existg € (N(s) N N(t))\(X U {a,b}). Let P; = (v}, s,q,t,vjt1).
In either casepP] is a path disjoint frompP/. For h € [k]\{i,j}, let P, = P.
Then(vy, P{,v2, Py, ..., vy, P}) contradicts the assumption th@tis optimal.
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Case 2. Not Case 1. For an evén we define a partitiorP of C\{v;,v;+1} as

P ={P1\{vit1}, Pira\{vis2}, s Pioi\{vie1,vi}}.

The sets in this partition are denoted®y, where); C P;. Foran odd:, sincer €
A" andy € B”, there existg € [k]| such that{vy,, vp11} C A” or {vp, vp41} C
B”. Then, by the caséy (a) N N (b) N (Pr\{vn,vn+1}) = 0. Without loss of gen-
erality,h < i. Here we define the partitioR of C'\ ({v;, vi+1} U (P, \{vpn, va+1}))
as

P ={Ppi\{vnt2}, ... P \{vi}, P \{via }, o, P \{vn—1}}

Again the sets in this partition are denoted®y.
The pigeon hole principle and (3) imply for both even and bddhat, for every
a € A b€ B, there existg = j(a, b) such that

IN(a) "N ()N Q; > 2.

Since from (2), (4), and (5) we hay4|, | B| > k, there exist distinct;, as € A,
distinctby, b, € B, andj € [k] such thatj(ai,b1) = j(az,b2) = j. Letu = v,
andv = vj;1. By the case, we may assume that A”\B” andv € B"\A".
This implies that for one of the pairs we have at least 2 common neighbors, which
are internal vertices aP;. Then there exist distinet;, s2 € P;\{u, v} such that
(a1, s1,b1) and(aq, s, ba) are paths. Assume th#& starts with(z, sq, s1). (Oth-
erwise P, ends with(sy, s9,v).) Let P/ = (z,a1,s1,b1,y). ThenP/ is a path.
If by is adjacent tov, then IetPJf = (u, s, by,v). Otherwise by (7) there ex-
istsr € N(b2) N N(v)\(X U {a1,b1,b2}). Let P; = (u, s2,b2,7,0). In either
case,P’; is a path disjoint fromP/. Let P, = P, for all h € [k]\{4,j}. Then
(vi, P{,v2, Py, ..., vk, P}) is a contradiction to the optimality @F'.

B. Maximum S-Cycle is Hamiltonian

Let C be a maximunt-cycle. If C' is Hamiltonian, then we are done. Otherwise,
let H =V (G)\C. Letc = |C| andh = |H|. Then no vertexw of H is adjacent to
two consecutive verticeg, y' € C, since otherwise we could insertbetweeny
andy’. Thus,

n k c h k
> | = —|—-1-|=|>|= —| -1
st@in 2 5]+ 5] -1-[5] 2 [5] +[3] -1 ®)
SoG| g is Hamiltonian-connected arid> k.

Let N = {y € C|y is adjacent to a vertex iff }. No two verticesy,y’ € N are
consecutive irC, sinceGG| g is Hamiltonian-connected and is maximum. So

0 = min{degy, H)|y € C} > m + m S (e—1),
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R sl [

min{deqw, C)|w € H} > §(G) — (h—1). (10)

Thus, from the above, we have

cons 3|2

Again let P; be thev; — v;11 path onC whose intersection witl$ has size 2.
We show first that we cannot have ag [k] and vertices, v, w, w’ such that

v,y € Pyw,w' € Hyy#y',w#w, (y,w),(y,w) e E(G).  (11)

Assume indirectly that there argy’, w,w’ satisfying (11), and subject to this,
choosey andy’ as close as possible. Let P, w’ be a Hamiltonian path 6| .
By the choice ofy andy/, w’ is not adjacent to any vertex on the pépstrictly
betweeny andy’ onC. Letq = |Q|. Thus,

and, thus,

Furthermore,

c—q—+1

Z#—{kJ—lgdegw’)g(h—l)Jr —

2

k
n+2M <2h+c—q+1,

k
q+2{2J < h+1,

q < h.

But then(C — Q) + (w, P, w’) is a longerS-cycle thanC, a contradiction. Hence,
we may assume that we do not hane/, w, w’ satisfying (11).
Based on the size df, we distinguish the following cases.

Casel. k< h < [Z]—|%] - 1. Inthis case, (1) and (10) imply that we have
min{deqw,C)|lw € H} > k.

Then for eachv € H, there exist,, € [k] and distincty < v’ € N(w) N C such
thatvi,,...,y, Qu, ¥, ..., vi,+1 s apathinC. If k£ < h, there exist € [k] and
distinctw,w’ € H such thati,, = ¢ = i,,. It follows that there exist vertices
y,y',w,w’ satisfying (11), a contradiction. Thus, we may assume/thatk and,
furthermore, for alli € [k] there exists av; € H such thatNg, (w;) C P;.
However, in this case from (2) and (10), we get

n—k—3

C1 2 K(3(G) — k) 2 K=" >,

a contradiction.
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Case2. 3] — | —1<n<[3]— 4]
We have

min{deqw,C)|lw € H} >k — 1. (12)

Furthermore, from (9) for every vertexe C\ N, we have

deqy, C) = dedy) > Bﬂ + m 1>e-2. (13)

Thus, for each vertex € C'\ N we have at most one vertexdnthat is not adjacent
toy, and each vertex il has at least — 1 neighbors irC'. Again we may assume
that we have no verticeg v/, w, w’ satisfying (11). However, then there exist

k],y € P\{vi,vis1}, ¥ € Pipi\{vig1,vi42},¥" € Pipa\{vig2, vig3}, w, ',
w” € H such thaf(y, w), (v, w), (v, w") € E(G). Letz, 2, 2" precedey, v, y"
onC. We may assume thatis adjacent ta (otherwise:’ is adjacent ta”’) and let
P be a Hamiltonian path it¥| ; connectinge andw’. Then we get a Hamiltonian
S-cycle by

2,7, part of C from 2’ back toy, w, P,w',y’, rest ofC,

a contradiction. This finishes Case 2 and the proof of (a).

3. PROOF OF (b)

Letn > 2k. We consider the grapfi with vertices
{ul,...,utgj,wl,...,w(%]}

such thatU = {ul,...,uL%J} andW = {wl,...,w@} induce complete sub
graphs ofG. The edges ofr between/ andWW are

(U x {wl,...,wtgj}) U (W x {ul,...,uL%Jil}).
It is easily seen that

0(G)=yg(k,n)—1= [n"‘ + VﬂJ -2,

2 2
as required. Furthermor€&,does not contain a Hamiltonian cycle which encounters
YIE T s T Y T s 2 T
— uQng_l — wﬂgj(—u?tgj if kis OdG)

in this order. This follows from the fact that every— w; 1 andw; — u; transition
uses at least one vertex from the vertices

{wl,...,ngj}U{ul,...7uL§J_1}.
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However, the number of transitions is always more than the number of vertices
in this set. Here we also used the fact that we have enough vertiéesund 11/,
sincen > 2k. Thus,G is not ak-ordered Hamiltonian graph, finishing the proof

of (b).

4. PROOF OF (c)
Let
2k < n < 3k — 6. (14)

Here letG consist of four parts. First, thespecial verticegvy, v, . .., v} are
all adjacent to each other, except thais not adjacent te;_; andv;; (for: =1,
we putv;_; = v and fori = k, v;11 = v1). There are four (or five it Z k£ mod 2)
vertices{y1, y2, y3,y4(, y5)} that are adjacent to all other vertices, including each
other. There are two set§ andV; such that

n—k—4

“/1|2W2‘:fifnzkmod2,
and
Vil = o = " i £k mod 2.

Furthermore, the vertices i, U V5 are adjacent to all other vertices with the
exception that; for an odd: is not adjacent to any vertex iy, andv; for an even
1 is not adjacent to any vertex ir.

We have
—k—14 k .
degyi):k:—3+4+nT:g+§—1:g(k,n) if n=kmod 2,
—k— k1 .
deg(vi):k—3+5+nT5=g+§—§Zg(k,n) if nZkmod 2,

and, from (14),
k
degz) >n— {2-‘ >g(k,n) forall zeViuUVs.

Let the sequencs bewvy, vs, ..., vg. Clearly, there is n&-Hamiltonian cycle,
since

k—5

w<k—4and%<k—5

2
(here we used (14) again). This finishes the proof of (c).
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5. REMARKS AND OPEN PROBLEMS

Inan earlier version of this article, we used the Regularity Lemma, Blow-up Lemma
method (see, e.g., [3] and [4]) to obtain (a) fob> ck, where the constantis very
large. Then, as it happens in many applications of the Regularity Lemma, we found
the more exact approach of this article to yield a much better constant. However,
one advantage of the Regularity Lemma approach is that it gives a pancyclicity-type
result as well, namely we can find dcycle of lengths for any 4k < s < n.
Furthermore, it has a fast parallel algorithmic implementation as well.

The obvious open problem is to determifige, n) for every2 < k < n.

Another open problem is to determine the best possible Ore-type condition. In
[5], it is shown that, if3 < k£ < n and degu) + degv) > n + 2k — 6 for every
pair u, v of nonadjacent vertices @f, thenG is ak-ordered Hamiltonian graph.
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