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1. INTRODUCTION

A. Notations and Definitions

For basic graph concepts, see the monograph of Bollobás [1]. V (G) andE(G)
denote the vertex-set and the edge-set of the graphG. N(v) is the set of neighbors
of v ∈ V . Hence, the size ofN(v) is |N(v)| = deg(v) = degG(v), the degree of
v. δ(G) stands for the minimum degree inG. For a vertexv ∈ V and setU ⊂
V − {v}, we write deg(v, U) for the number of edges fromv to U . For a graphG
and a subsetU of its vertices,G|U is the restriction toU of G (or the subgraph of
G induced by the vertices ofU ). Let [k] = {1, 2, . . . , k}.

B. k-Ordered Hamiltonian Graphs

Let G be a graph onn ≥ 3 vertices. AHamiltonian cycle(path) of G is a cycle
(path) containing every vertex ofG. A Hamiltonian graphis a graph containing a
Hamiltonian cycle. A classical result of Dirac [2] asserts that ifδ(G) ≥ n/2, then
G is Hamiltonian. AHamiltonian-connectedgraph is a graph in which every pair of
vertices can be connected with a Hamiltonian path. Note that, by another classical
result (see [1]), ifδ(G) ≥ (n + 1)/2, thenG is Hamiltonian-connected.

The following interesting concept was created by Chartrand: For a positive inte-
ger2 ≤ k ≤ n, and for a sequenceS = v1, v2, . . . , vk of k distinct vertices, a cycle
C in G is called av1 −v2 −· · ·−vk-cycle, or simply anS-cycle, if the vertices ofS
are encountered onC in the specified order. For a Hamiltonian graphG, we say that
G isk-orderedif, for every sequenceS = v1, v2, . . . , vk of k distinct vertices, there
exists a HamiltonianS-cycle. It is not hard to see that every Hamiltonian graph is
both 2-ordered and 3-ordered. Furthermore, a Hamiltonian graphG of ordern is
n-ordered if and only ifG = Kn. Also, if G is k-ordered, thenG is l-ordered for
every2 ≤ l ≤ k (see [5]).

A natural question is whether we can obtain a Dirac-type condition on the min-
imum degree for guaranteeing that the graph is ak-ordered Hamiltonian graph.
Indeed, the first result of this type was obtained in [5]. In this article, it was shown
(among other results) that, if3 ≤ k ≤ n andδ(G) ≥ n

2 + k − 3, thenG is a
k-ordered Hamiltonian graph. The authors raised the question of whether this can
be improved. In this article, our main goal is to determine the best possible bound
under the restriction thatn is sufficiently large in terms ofk. Definef(k, n) as the
smallest integerm for which any graph onn vertices with minimum degree at least
m is ak-ordered Hamiltonian graph. Let

g(k, n) =
⌈
n

2

⌉
+

⌊
k

2

⌋
− 1.

We show thatf(k, n) = g(k, n), if n ≥ 11k − 3. Furthermore, we show that
g(k, n) is always a lower bound for anyn ≥ 2k. Finally, somewhat surprisingly,
we show that sometimesf(k, n) > g(k, n). More precisely, we have the following.
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Theorem 1. For positive integersk, n with n ≥ 2k we have

(a) f(k, n) = g(k, n) for n ≥ 11k − 3,
(b) f(k, n) ≥ g(k, n) for anyn ≥ 2k,
(c) f(k, n) > g(k, n) for 2k ≤ n ≤ 3k − 6.

The rest of the article is organized as follows. We prove (a) in Section 2. In view of
(b), it is enough to show that, ifG is a graph onn vertices withδ(G) ≥ g(k, n) where
n ≥ 11k − 3, thenG is ak-ordered Hamiltonian graph. LetS = v1, v2, . . . , vk

be any sequence drawn fromV (G). First, in Section 2.A we show that anS-cycle
exists and then in Section 2.B we show that a maximumS-cycle is Hamiltonian.
We give the simple proofs of (b) and (c) in Sections 3 and 4. We finish with some
remarks and open problems in Section 5.

2. PROOF OF (a)

Let G be a graph onn vertices with

δ(G) ≥ g(k, n) =
⌈
n

2

⌉
+

⌊
k

2

⌋
− 1, (1)

where

n ≥ 11k − 3. (2)

We have to show thatG is ak-ordered Hamiltonian graph. We may assume that
k > 4, since otherwise this is trivial. LetS = v1, v2, . . . , vk be any sequence drawn
from V (G). First, we construct anS-cycle.

A. Construction of an S-Cycle

Call C = (v1, P1, v2, P2, . . . , vk, Pk) a partialS-cycle, if eachPi is either empty
or avi − vi+1 path with at most three internal vertices, and the internal vertices of
thePi are pairwise disjoint and disjoint fromS. So a partialS-cycle is anS-cycle
if all the Pi are nonempty. A partialS-cycleC is optimal, if as many as possible of
thePi are nonempty and subject to thisC has as few vertices as possible. Suppose
for a contradiction thatC is an optimal partialS-cycle, butC is not anS-cycle.
SayPi is empty and setx = vi andy = vi+1. Let X be the vertex set ofC. Let
A = N(x)\X, A′ = (N(A) ∪ A)\X, B = N(y)\X, andB′ = (N(B) ∪ B)\X.

For all nonadjacentu, v ∈ V (G), we have from (1)

|N(u) ∩ N(v)| ≥ 2
(⌈

n

2

⌉
+

⌊
k

2

⌋
− 1

)
− (n − 2) = 2

⌈
n

2

⌉
+ 2

⌊
k

2

⌋
− n. (3)

This last expression is always at leastk − 1, and, unlessk is odd, it is at leastk.
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Note that from (3) we get(N(x) ∩ N(y))\S 6= ∅ and so, by the optimality of
C, |Ph\{vh, vh+1}| ≤ 1, for someh. Also Pi = ∅. So

|X| = k +
k∑

j=1

|Pj\{vj , vj+1}| ≤ k + 3(k − 2) + 1 + 0 ≤ 4k − 5. (4)

Using (1), we get

|A|, |B| ≥
⌈
n

2

⌉
+

⌊
k

2

⌋
− 1 − |X| ≥ n + k − 3

2
− |X|. (5)

By the optimality ofC, A′ andB′ are disjoint, no vertex inV (G)\C is adjacent
to four vertices inPj\{vj+1}, for anyj, and no vertex inV (G)\C is adjacent to
bothx andy. Thus, for any vertexv ∈ V (G)\X,

deg(v, X) ≤ 3k − 3. (6)

Let A′′ = {v ∈ X||N(v) ∩ A′| > 1} andB′′ = {v ∈ X||N(v) ∩ B′| > 1}.
ThenX = A′′ ∪ B′′.

For all nonadjacents ∈ A′, t ∈ A′ ∪ (X\B′′) (and similarly fors ∈ B′ and
t ∈ B′ ∪ (X\A′′)) using (1), (2) (and actually this is the only point where we need
exactly this bound), (4), (5), and (6), we have

|(N(s) ∩ N(t))\X| ≥ 3. (7)

Indeed, sinceN(s) ∩ (B ∪ {s, t}) = ∅ and|N(t) ∩ (B ∪ {s, t})| ≤ 1,

|(N(s) ∩ N(t))\X|
≥ deg(s) + deg(t) − 1 − |V (G)\(B ∪ {s, t})| − |(N(s) ∩ N(t)) ∩ X|

≥ (n + k − 4) −
(

n −
(

n + k + 1
2

− |X|
))

− deg(s, X)

≥ n + 3k − 7
2

− (4k − 5) − (3k − 3)

≥ 3.

We shall obtain a contradiction by finding a better partialS-cycle. We distinguish
two cases.

Case 1. There exista ∈ A, b ∈ B, andj ∈ [k] such that bothN(a) ∩ N(b) ∩
(Pj\{vj , vj+1}) 6= ∅ and either{vj , vj+1} ⊂ A′′ or {vj , vj+1} ⊂ B′′. Say
{vj , vj+1} ⊂ A′′ andr ∈ N(a)∩N(b)∩ (Pj\{vj , vj+1}). LetP ′

i = (x, a, r, b, y).
Sincevj , vj+1 ∈ A′′, there exists ∈ (A′ ∩ N(vj))\{a} and t ∈ (A′ ∩
N(vj+1))\{a}. If s is adjacent tot, then letP ′

j = (vj , s, t, vj+1). Otherwise,
by (7), there existsq ∈ (N(s) ∩ N(t))\(X ∪ {a, b}). Let P ′

j = (vj , s, q, t, vj+1).
In either case,P ′

j is a path disjoint fromP ′
i . For h ∈ [k]\{i, j}, let P ′

h = Ph.
Then(v1, P

′
1, v2, P

′
2, . . . , vk, P

′
k) contradicts the assumption thatC is optimal.
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Case 2. Not Case 1. For an evenk, we define a partitionP of C\{vi, vi+1} as

P = {Pi+1\{vi+1}, Pi+2\{vi+2}, . . . , Pi−1\{vi−1, vi}}.

The sets in this partition are denoted byQj , whereQj ⊂ Pj . For an oddk, sincex ∈
A′′ andy ∈ B′′, there existsh ∈ [k] such that{vh, vh+1} ⊂ A′′ or {vh, vh+1} ⊂
B′′. Then, by the case,N(a) ∩ N(b) ∩ (Ph\{vh, vh+1}) = ∅. Without loss of gen-
erality,h < i. Here we define the partitionP of C\({vi, vi+1}∪ (Ph\{vh, vh+1}))
as

P = {Ph+1\{vh+2}, . . . , Pi−1\{vi}, Pi+1\{vi+1}, . . . , Ph−1\{vh−1}}.

Again the sets in this partition are denoted byQj .
The pigeon hole principle and (3) imply for both even and oddk-s that, for every

a ∈ A, b ∈ B, there existsj = j(a, b) such that

|N(a) ∩ N(b) ∩ Qj | ≥ 2.

Since from (2), (4), and (5) we have|A|, |B| ≥ k, there exist distincta1, a2 ∈ A,
distinct b1, b2 ∈ B, andj ∈ [k] such thatj(a1, b1) = j(a2, b2) = j. Let u = vj

andv = vj+1. By the case, we may assume thatu ∈ A′′\B′′ andv ∈ B′′\A′′.
This implies that for one of the pairs we have at least 2 common neighbors, which
are internal vertices ofPj . Then there exist distincts1, s2 ∈ Pj\{u, v} such that
(a1, s1, b1) and(a2, s2, b2) are paths. Assume thatPi starts with(x, s2, s1). (Oth-
erwisePi ends with(s1, s2, v).) Let P ′

i = (x, a1, s1, b1, y). ThenP ′
i is a path.

If b2 is adjacent tov, then letP ′
j = (u, s2, b2, v). Otherwise by (7) there ex-

ists r ∈ N(b2) ∩ N(v)\(X ∪ {a1, b1, b2}). Let P ′
j = (u, s2, b2, r, v). In either

case,P ′
j is a path disjoint fromP ′

i . Let P ′
h = Ph for all h ∈ [k]\{i, j}. Then

(v1, P
′
1, v2, P

′
2, . . . , vk, P

′
k) is a contradiction to the optimality ofC.

B. Maximum S-Cycle is Hamiltonian

Let C be a maximumS-cycle. If C is Hamiltonian, then we are done. Otherwise,
let H = V (G)\C. Let c = |C| andh = |H|. Then no vertexw of H is adjacent to
two consecutive verticesy, y′ ∈ C, since otherwise we could insertw betweeny
andy′. Thus,

δ(G|H) ≥
⌈
n

2

⌉
+

⌊
k

2

⌋
− 1 −

⌊
c

2

⌋
≥

⌈
h

2

⌉
+

⌊
k

2

⌋
− 1. (8)

SoG|H is Hamiltonian-connected andh ≥ k.
Let N = {y ∈ C|y is adjacent to a vertex inH}. No two verticesy, y′ ∈ N are

consecutive inC, sinceG|H is Hamiltonian-connected andC is maximum. So

0 = min{deg(y, H)|y ∈ C} ≥
⌈
n

2

⌉
+

⌊
k

2

⌋
− 1 − (c − 1),
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and, thus,

c ≥
⌈
n

2

⌉
+

⌊
k

2

⌋
and h ≤

⌊
n

2

⌋
−

⌊
k

2

⌋
. (9)

Furthermore,

min{deg(w, C)|w ∈ H} ≥ δ(G) − (h − 1). (10)

Thus, from the above, we have

k ≤ h ≤
⌊
n

2

⌋
−

⌊
k

2

⌋
.

Again letPi be thevi − vi+1 path onC whose intersection withS has size 2.
We show first that we cannot have ani ∈ [k] and verticesy, y′, w, w′ such that

y, y′ ∈ Pi, w, w′ ∈ H, y 6= y′, w 6= w′, (y, w), (y′, w′) ∈ E(G). (11)

Assume indirectly that there arey, y′, w, w′ satisfying (11), and subject to this,
choosey andy′ as close as possible. Letw, P, w′ be a Hamiltonian path inG|H .
By the choice ofy andy′, w′ is not adjacent to any vertex on the pathQ strictly
betweeny andy′ onC. Let q = |Q|. Thus,

n

2
+

⌊
k

2

⌋
− 1 ≤ deg(w′) ≤ (h − 1) +

c − q + 1
2

,

n + 2
⌊
k

2

⌋
≤ 2h + c − q + 1,

q + 2
⌊
k

2

⌋
≤ h + 1,

q < h.

But then(C − Q) + (w, P, w′) is a longerS-cycle thanC, a contradiction. Hence,
we may assume that we do not havey, y′, w, w′ satisfying (11).

Based on the size ofh, we distinguish the following cases.

Case 1. k ≤ h ≤ bn
2 c − bk

2c − 1. In this case, (1) and (10) imply that we have

min{deg(w, C)|w ∈ H} > k.

Then for eachw ∈ H, there existiw ∈ [k] and distincty < y′ ∈ N(w) ∩ C such
thatviw , . . . , y, Qw, y′, . . . , viw+1 is a path inC. If k < h, there existi ∈ [k] and
distinct w, w′ ∈ H such thatiw = i = iw′ . It follows that there exist vertices
y, y′, w, w′ satisfying (11), a contradiction. Thus, we may assume thath = k and,
furthermore, for alli ∈ [k] there exists awi ∈ H such thatNG|C (wi) ⊂ Pi.
However, in this case from (2) and (10), we get

|C| ≥ k(δ(G) − k) ≥ k
n − k − 3

2
> n,

a contradiction.
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Case 2. bn
2 c − bk

2c − 1 ≤ h ≤ bn
2 c − bk

2c.
We have

min{deg(w, C)|w ∈ H} ≥ k − 1. (12)

Furthermore, from (9) for every vertexy ∈ C\N , we have

deg(y, C) = deg(y) ≥
⌈
n

2

⌉
+

⌊
k

2

⌋
− 1 ≥ c − 2. (13)

Thus, for each vertexy ∈ C\N we have at most one vertex inC that is not adjacent
to y, and each vertex inH has at leastk − 1 neighbors inC. Again we may assume
that we have no verticesy, y′, w, w′ satisfying (11). However, then there existi ∈
[k], y ∈ Pi\{vi, vi+1}, y′ ∈ Pi+1\{vi+1, vi+2}, y′′ ∈ Pi+2\{vi+2, vi+3}, w, w′,
w′′ ∈ H such that(y, w), (y′, w′), (y′′, w′′) ∈ E(G). Let z, z′, z′′ precedey, y′, y′′
onC. We may assume thatz′ is adjacent toz (otherwisez′ is adjacent toz′′) and let
P be a Hamiltonian path inG|H connectingw andw′. Then we get a Hamiltonian
S-cycle by

z, z′, part ofC from z′ back toy, w, P, w′, y′, rest ofC,

a contradiction. This finishes Case 2 and the proof of (a).

3. PROOF OF (b)

Let n ≥ 2k. We consider the graphG with vertices

{u1, . . . , ub n
2 c, w1, . . . , wd n

2 e}
such thatU = {u1, . . . , ub n

2 c} andW = {w1, . . . , wd n
2 e} induce complete sub

graphs ofG. The edges ofG betweenU andW are

(U × {w1, . . . , wb k
2 c}) ∪ (W × {u1, . . . , ub k

2 c−1}).

It is easily seen that

δ(G) = g(k, n) − 1 =
⌈
n

2

⌉
+

⌊
k

2

⌋
− 2,

as required. Furthermore,G does not contain a Hamiltonian cycle which encounters

ub k
2 c − wb k

2 c+1 − ub k
2 c+1 − wb k

2 c+2 − · · ·

− u2b k
2 c−1 − w2b k

2 c(−u2b k
2 c if k is odd)

in this order. This follows from the fact that everyui −wi+1 andwi −ui transition
uses at least one vertex from the vertices

{w1, . . . , wb k
2 c} ∪ {u1, . . . , ub k

2 c−1}.
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However, the number of transitions is always more than the number of vertices
in this set. Here we also used the fact that we have enough vertices inU andW ,
sincen ≥ 2k. Thus,G is not ak-ordered Hamiltonian graph, finishing the proof
of (b).

4. PROOF OF (c)

Let

2k ≤ n ≤ 3k − 6. (14)

Here letG consist of four parts. First, thek special vertices{v1, v2, . . . , vk} are
all adjacent to each other, except thatvi is not adjacent tovi−1 andvi+1 (for i = 1,
we putvi−1 = vk and fori = k, vi+1 = v1). There are four (or five ifn 6≡ k mod 2)
vertices{y1, y2, y3, y4(, y5)} that are adjacent to all other vertices, including each
other. There are two setsV1 andV2 such that

|V1| = |V2| =
n − k − 4

2
if n ≡ k mod 2,

and

|V1| = |V2| =
n − k − 5

2
if n 6≡ k mod 2.

Furthermore, the vertices inV1 ∪ V2 are adjacent to all other vertices with the
exception thatvi for an oddi is not adjacent to any vertex inV2, andvi for an even
i is not adjacent to any vertex inV1.

We have

deg(vi) = k − 3 + 4 +
n − k − 4

2
=

n

2
+

k

2
− 1 = g(k, n) if n ≡ k mod 2,

deg(vi) = k − 3 + 5 +
n − k − 5

2
=

n

2
+

k

2
− 1

2
≥ g(k, n) if n 6≡ k mod 2,

and, from (14),

deg(z) ≥ n −
⌈
k

2

⌉
≥ g(k, n) for all z ∈ V1 ∪ V2.

Let the sequenceS bev1, v2, . . . , vk. Clearly, there is noS-Hamiltonian cycle,
since

n − k − 4
2

< k − 4 and
n − k − 5

2
< k − 5

(here we used (14) again). This finishes the proof of (c).
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5. REMARKS AND OPEN PROBLEMS

In an earlier version of this article, we used the Regularity Lemma, Blow-up Lemma
method (see, e.g., [3] and [4]) to obtain (a) forn ≥ ck, where the constantc is very
large. Then, as it happens in many applications of the Regularity Lemma, we found
the more exact approach of this article to yield a much better constant. However,
one advantage of the Regularity Lemma approach is that it gives a pancyclicity-type
result as well, namely we can find anS-cycle of lengths for any 4k ≤ s ≤ n.
Furthermore, it has a fast parallel algorithmic implementation as well.

The obvious open problem is to determinef(k, n) for every2 ≤ k ≤ n.
Another open problem is to determine the best possible Ore-type condition. In

[5], it is shown that, if3 ≤ k ≤ n and deg(u) + deg(v) ≥ n + 2k − 6 for every
pairu, v of nonadjacent vertices ofG, thenG is ak-ordered Hamiltonian graph.
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