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Abstract. Paul Seymour conjectured that any graph G of order » and minimum degree of at
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1. Introduction

1.1. Notations and Definitions

For basic graph concepts see the monograph of Bollobds [1]. + will sometimes be
used for disjoint union of sets. ¥(G) and £(G) denote the vertex-set and the edge-set
of the graph G. (4,B,E) denotes a bipartite graph G = (V,E), where ¥ = 4 + B, and
E C A x B. Fora graph G and a subset U of its vertices, G|y is the restriction to U of G.
N(v) is the set of neighbors of v € V. Hence, |[N(v)| = deg(v) = deg(v), the degree of
v. 8(G) stands for the minimum and A(G) the maximum degree in G. v;(G) denotes the
size of a maximum set of vertex disjoint paths of length i (counting edges) in G. (Thus,
vi(G) = v{G) is the size of a maximum matching.} For 4 C V(G), we write

N(4) = [1NW),

vEA

the set of common neighbors. N(x,y,z,...) is shor for N({x,y,z,...}). When 4,B are
subsets of V' (G), we denote by e(4,B) the number of edges of G with one endpoint in
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A and the other in B. In particular, we write deg(v,U) = e({v},U) for the number of
edges from v to U. For non-empty 4 and B,

_ o(4,B)
A4.B) = Tq1

is the density of the graph between A and B. In particular, we write d(4) = d(4,4) =
20E(Gla)l/14

Definition 1.1. The bipartite graph G = (4,B,E) is e-regular if
XCA,YCB, |X|>¢ldl, |Y|>¢|B| imply |d(X,Y)—d(4,B)| <e,
otherwise, it is e-irregular.
We will often simply say that “the pair (4, B) is e-regular” with the graph G implicit.
Definition 1.2. (4,B) is (¢,8)-super-regular if it is e-regular and

deg(a) > 3|B| Va € 4, deg(b) > 5j4| Yb e B.

1.2. Powers of Cycles

The kth power of a graph G is the graph obtained from G by joining every pair of
vertices with a distance of at most £ in G.

Let G be a graph on n > 3 vertices. A classical result of Dirac [2] (see also [1])
asserts that if 8(G) > n/2, then G contains a Hamiltonian cycle. As a natural generali-
zation of Dirac’s theorem, Pdsa conjectured the following in 1962.

Conjecture 1.3.(P6sa) Let G be a graph on n vertices. If 8(G) > %n, then G contains
the square of a Hamiltonian cycle.

Later, in 1974, Seymour [16] generalized this conjecture.

Conjecture 1.4.[16] Let G be a graph on n vertices. If 8(G) > k+L1” then G contains
the kth power of a Hamiltonian cycle.

Seymour indicated the difficulty of the conjecture by observing that the truth of this
conjecture would imply the notoriously difficult Hajnal-Szemerédi theorem {10] (see
below).

The problem received significant attention lately. In the direction of Conjecture
1.3, Jacobson (unpublished) first showed that if 3(G) > %n, then the conclusion of the
conjecture holds. Faudree, et al. [8] confirmed the conclusion that

3
3(G) > (Z + s) n+C(g).
Later the same authors improved this to 8(G) > 3n. By using a result in [9], Haggkvist

(unpublished) gave a very simple proof for the case §(G) > %n + 1 and » = 0 (mod
4). Fan and Higgkvist [3] lowered the bound to 8(G) > %n. Fan and Kierstead [4]
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improved this further to 8(G) > ’75'—”, and Faudree, Gould and Jacobson [7] to 8(G) >
1%;1. Later, Fan and Kierstead [5] improved the condition to the almost optimal §(G) >
(% +€) n+C(e). They also proved [6] that the same holds with & = C = 0 if one only

requires the square of a Hamiltonian path. Finally, in [13] we proved the conjecture for
sufficiently large n.

For Conjecture 1.4, in [8], it is proved that for any £ > 0 and positive integer &, there
is a C such that, if an n-graph G satisfies

2k-1
>
6(G)_< T +S)n+C,

then G contains the kth power of a Hamiltonian cycle.
In [14], we proved the following improvement of this result. For any £ > 0 and
positive integer k, there is an N(g, k) such that if G has order n with n > N(g, k) and

5(G) > (;;% + e) n,

then G contains the kth power of a Hamiltonian cycle.

Here, the purpose is to prove Conjecture 1.4 for any fixed & and sufficiently large n.
More precisely:

Theorem 1.5. For any positive integer k, there is an N(k) such that, if G has order n
with n > N(k) and

k
8(G) > i (1.1)

then G contains the kth power of a Hamiltonian cycle.

2. The Main Tools

In the proof, the Regularity Lemma of the third author plays a central role. Here we
will use the following variation of the lemma.

Lemma 2.1.(Regularity Lemma — degree form) For every e > 0, there is an M = M(g)
such that, if G = (V,E) is any graph and d € [0,1] is any real number, then there is a
partition of the vertex-set V into | + 1 sets (so-called clusters) Vo, V1, ..., V), and there is
a subgraph G' = (V,E") with the following properties:

o /<M,

o [0l <elv],

o all clusters Vi, i > 1 are of the same size L < [e|V|},

o degy(v) > degg(v) — (d+¢&)|V| forallveV,

o G|y, =0 (V; are independent in G'),

e all pairs G lvixy;, 1 i< j <1 are e-regular, each with a density 0 or exceeding d.
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This form can easily be obtained by applying the original Regularity Lemma (with
a smaller value of &), adding to the exceptional set ¥ all clusters incident to many
irregular pairs, and then deleting all edges between any other clusters where the edges
either do not form a regular pair or they do but with a density of at most d.

The other main tool is a coloring theorem of Hajnal and Szemerédi which states
that every graph with n vertices and maximum degree A(G) < k is (k+ 1)-colorable
with all color classes of size |n/(k+ 1}] or [n/(k+ 1)]. We have already pointed out
the close connection between Seymour’s problem and the Hajnal-Szemerédi theorem,
namely, the truth of Conjecture 1.4 would imply the latter theorem. We use the theorem
in the following complementary form.

Lemma 2.2.[10] Let G be a graph on n = s{(k+ 1) vertices. If 8(G) > k—k— then G
contains s vertex-disjoint cliques of order k + 1.

In fact, we are going to use the following easy consequence of this lemma.

Lemma 2.3. Let G be a graph on n vertices. If 3(G) > +1n x for some natural

number x, then apart from at most k(k + 1)x + k> exceptional vertices, V(G) can be
covered by vertex-disjoint cliques of order k+ 1.

Indeed, add (k + 1)x extra vertices to G and possibly a few (< &) more to achieve
that the new number of vertices is divisible by k+ 1. Connect the new vertices to all
other vertices. Denote the resuitmg graph by G and the new number of vertices by 7. It
is easy to see that §( G) > w0 +1 71, therefore, using Lemma 2.2, we can cover G by vertex-
disjoint cliques of order £+ 1. The number of vertices in ¥ (G) which are in cliques
containing at least one extra vertex (€ ¥ (G) \ V(G)) is at most k(k+ 1)x + A2

We also use the Blow-up Lemma (see [12, 15]).

Lemma 2.4. Given a graph R of order r and positive parameters 8,1, there exists an
& > 0 such that the following holds. Let N be an arbitrary positive integer, and let us
replace the vertices of R with pairwise disjoint N-sets V1,V3,...,V, (blowing up). We
construct two graphs on the same vertex-set V = \JV;. The graph R(N) is obtained by
replacing all edges of R with copies of the complete bipartite graph Ky, n, and a sparser
graph G is constructed by replacing the edges of R with some (g,8)-super-regular pairs.
If a graph H with A(H) < A is embeddable into R(N), then it is already embeddable
into G.

When using the Blow-up Lemma, we typically need the following strengthened
version: Given ¢ > 0, there are positive functions ¢ = £(8,A,7,¢) and o = a{8,A,r,c)
such that the Blow-up Lemma remains true if, for every i, there are certain vertices
x to be embedded into V; whose images are a priori restricted to certain sets C, C V;
provided that

(i) each C, within a ¥; is of the size at least ¢|Vj,
(ii) the number of such restrictions within a ¥; is not more than |V;.
Finally, we are going to use the following simple facts (see [1, 13]):

Lemma 2.5. In a graph G on n vertices, we have

v(G) > max{8(G),5(G) 4A(G)} and v2(G) > (8(G) — )6!.\’:(?)‘
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3. Outline of the Proof

In a series of papers [11-15] we have developed a general method based on the Reg-
ularity Lemma and the Blow-up Lemma for embedding problems in dense graphs. In
this paper we use this method again, so the proof follows a similar rough outline as the
proofin [13] for example. However, several new ideas are needed.

We will assume throughout the paper that » is sufficiently large. Furthermore, we
may assume that k > 3, since for & = 2, we proved Theorem 1.5 in [13] and, fork =1,
it is just Dirac’s theorem. We will use the following main parameters:

ed €kl 3.H

where a < b means that a is sufficiently small compared to b. For simplicity, we do not
compute the actual dependencies, although it could be done.

We apply Lemma 2.1 for G with ¢ and d as in (3.1). We get a partition of ¥(G)
into clusters Vo, V1, ...,V;. We define the following reduced graph G,: The vertices of
G; are the clusters ¥;, i > 1, and we have an edge between two clusters if they form an
s-regular pair in G’ with density exceeding d. Since in ¢, §(G') > (k_% —(d+¢))n,an
casy calculation shows that in G,, we have

k
8(Gy) > ('1?4—_1 - 3d> I. (.2)

Let us apply Lemma 2.3 for G, to obtain a covering of most of the vertices in G, by
vertex disjoint cliques of size k+ 1. More precisely, we can cover the vertices of G,
apart from an exceptional set of size at most 3k(k+ 1)dl +k* < 4k(k+ 1)dl. Let us put
the vertices of these exceptional clusters into the exceptional set V. For simplicity, ¥
still denotes the resulting set. Then

Vol < 4k(k+ 1)dIL+en < Sk(k+ 1)dn. (3.3)

In the proof first we assume until Sec. 7 that the following extremal condition does
not hold for our graph G:

Extremal Condition (EC): There exists an A C V(G) such that

o )= [g2) and
s d{4) <o

We show later in Sec. 7 that if this condition does hold, then we can find the kth
power of the Hamiltonian cycle. Firstly, in the next section, we show that under the
assumption that EC does not hold, we can slightly modify the clique covering; we can
achieve that a constant proportion of the cliques are (k + 2)-cliques and the rest are
(k+ 1)-cliques. This new idea will significantly simplify the adjustment procedure in
Sec. 6. These cliques will be denoted by K3,K>, ..., K;.

In each clique K;, we take an arbitrary ordering of the £+ 1 (or £+ 2) clusters and
we denote the clusters in this order by ¥{,V4,...,V.; (,¥,). We think of this sequence
as a cycle of length £+ 1 (or £+ 2) , where we have all the possible chords.
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A rough idea of the proof in the non-extremal case is as follows: We find the ith
power of a path in K; by going around the cycle as many times as possible. Then we
connect this path to K, with the use of a few extra vertices, then find the kth power
of a path in K;, etc. However, for technical reasons, we will start by constructing the
connecting paths between the subsequent cliques (for the last one K| the next one is
K3). This will be the first part of the proof in Sec. 5. In Sec. 6, we will take care of
the exceptional vertices and make some adjustments to ensure that the distribution of
the vertices inside each clique is perfect, i.e., there are the same number of vertices in
each cluster of the clique. Finally, using Lemma 2.4, we string the vertices inside each
clique into the kth power of a path.

4. Modifying the Clique Cover

We remove 3 Hl (for simplicity we assume that this number is an integer) (k+ 1)-
cliques from the clique cover. Let us denote the number of remaining (k+ 1)-cliques
by s. Our goal in this section is to show that by slightly changing the remaining cliques
and by redistributing the removed clusters, we can obtain a new clique cover in which
k‘_/; I(k+1) = +/dl of the cliques are (k+ 2)-cliques and the remaining s — /d! cliques
are {(k+ 1)-cliques.

Let us consider an arbitrary removed cluster C. If there is a (k+ 1)-clique X in
the current cover {C might not be the first cluster we redistribute) such that we have
(C,C") € E(G,) for every C' € K, then we just add C to K, we have one more (k+2)-
clique and we can move to the next removed cluster. Thus, we may assume that there
is no (k+ 1)-clique K with this property. Using this fact, (3.2), (3.3), and an easy
calculation shows that the number of (k + 1)-cliques X, for which

{C'|C' €K, (C,C') € E(G))}| =k,

is at least (1 —d'/3)s. We consider only these (k+ 1)-cliques where the (k+ 1)st cluster
that is not a neighbor of C is called a C-exchangable cluster. Indeed, these clusters are
exchangable with C. Let us denote the set of C-exchangable clusters by S. Assume first
that we have a C' € S and (k+ 1)-cliques K, K’ such that C' € K and (C',C") € E(G,)
for every C” € K'. Then again we are done since we remove C’ from K and add it to K7,
we add C to K and thus, we have one more (k + 2)-clique. Hence, we may assume that
there is no C' with this property.

However, in this case the fact that EC does not hold, (3.1), (3.2) and some compu-
tation imply that we can find cliques K, K’ with €} = KNS, C; = K’ NS such that

L] (C],Cz) € E(Gr);
o there exists a cluster C; € K\ C; with {(2,C3) € E(G,);
e NG (C)NK =K\ G, Ng, (G)NK' =K'\ C.

Here, we also use the fact that (5 is C-exchangable in two steps. Indeed, we remove
from K’ and add C to it, we remove C3 from K and add C; to it, and now Cj plays the
role of C.

But then we exchange C> and C; among K and K’ and add C to K’, thus creating one
more (k + 2)-clique again. By repeating this procedure, we obtain a clique sequence
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Ki,K»,..., K, where the first s’ = /dl cliques are (k + 2)-cliques and the others are
(k+ 1)-cliques.

5. Connecting the Cliques

To connect the cliques, first we will use only the (k+ 1)-clique V1, ¥j,..., V[ | even if
1 <i < s’. For simplicity, we keep the notation Ky, K>, ..., K; for these cliques.

We construct the connecting path between K; and Kipy for 1 <i<s(fori=s,
K11 = K). Firstly, we determine the sequence of clusters from which the connecting
path will use vertices. This sequence will be the square of a path in G, (however, it will
not be a simple path).

We will repeatedly use the following fact, which is a consequence of (3.2).

Fact 5.1. Let V1,12, ...,Vy be k arbitrary clusters in G,. Then
1
> e —3kd | 1.
iNGr(VhVZs ;V}c)} = (k+1 )

In other words, every set of & clusters has a common neighborhood set of a size of
roughly ;ﬁ
Firstly, our goal is to define a sequence of (k + 1)-cliques in G,

K%K, ... K (5.1
with the following properties:
hd KO = I<i7 K= I<i+1’

o |[KIHINKI|=kforevery 0< j<t—1,
. t:O(kz).

For this purpose, if K and K’ are two (k+ 1)-cliques, for every cluster C'in G, \ (KUK")
we determine a label £g x(C) = (a,b), 0 < a < k+1,0 < b < k+1 in the following
way.

a=degg, (C,K) and b=degg, (C,K').

We are going to construct the sequence in (5.1) in two steps. Firstly, we will con-
struct two sequences of (k+ 1)-cliques

Ay, Az, ..., 4y and By, By, ..., By, 5.2)
with the following properties:
(@ A4 =K, B1 =Kizi;
(b) |45 41NA45| =k, |Bjyp1NBy| =k forevery 0< j1 <11 —~1,0< o<t —1;

{c) either
degg,(C,4,,) >k forevery C€ By, 5.3

or
deg, (C',By,) > k forevery C € 4y; (5.4
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(dy h+t= O(kz)

Assume first that we have already constructed the two sequences in (5.2). Then in
the second step of the construction of the clique sequence in (5.1), we construct a clique
sequence

DO: Dy, ..., DIH-])

which forms a gradual transition between 4;, and B,. More precisely, first we assume
that (5.3) holds in (c). We denote the clusters in By, by 11,¥3,...,V41. Then we will
have D; C 4;, UB;, and |D; N B, | =i. The construction is the following. Dy is just
Ay To get Dy, we add ¥} to Dy and we remove the cluster from Dy = 4, which is
not adjacent to ¥; (if there is any). If all the clusters in Dy are adjacent to V7, then we
remove an arbitrary cluster from Dy. In general, to obtain D;..y from D;, 0 <i <k, we
add V;41 to D; and remove the cluster from D; N Dy which is not adjacent to ¥y (if there
is any). If all the clusters in D; "M Dy are adjacent to V11, then we remove an arbitrary
cluster from D; " Dy. If (5.4) holds in (c), then we reverse the same procedure; we
construct the gradual transition backwards from B,, (starting with D) to 4, (ending
at Dy).
The desired clique sequence in (5.1) is obtained in the following way.

A1, Ay, ..., 4y, D1, Dy, ..., D, By, ..., Bi.

For this sequence we use the notation in (5.1), so t =t + o +k = O(k?).

Thus, we only have to construct the two sequences in (5.2) in the following way.
Ay =K, By = K;;| and assume that 41,45, ...,4;, and By,B,,...,Bj, are already con-
structed, but (c) does not hold for 4;, and B;,. Our goal is to define a few more terms
of the two sequences in such a way that we strictly increase the number of edges in G,
between the two cliques, so that we get closer to (c). We repeat this procedure until {c)
holds. It follows that in at most O(k?) steps, we can achieve (c), thus ¢; + £, = O(k?).

We may assume that there exists a C; € 4;, with deg(Cy,B,) <k—landa (€
Bj, with deg((>,4;,) < k— 1, otherwise (c) holds. Denote A = Ng,(4;, \ C1) and
B = Ng,(Bj, \ C2). Fact 5.1 implies that |4|,|B| > (g7 — 3kd) . For simplicity, we

may assume that |4],|B| < EI—'T by removing some extra clusters.

Let us consider first the case where thereis a C € G\ (4, UBj,) with
ly;,,8,(C) = (a,b) with a+b>2k+1. (5.5)

In this case, either a =k + 1 or b = k+ 1 (or both), say, a = k+ 1 (similar in the
other case). To obtain 4,1, we remove C; from 4;, and add C. We strictly increase
the number of edges between the two cliques, thus we achieved our goal. Thus, we
may assume that there is no cluster C satisfying (5.5). However, in this case an easy
computation using (3.2) shows that for most clusters C € G, \ (4, UB},) we have

La;,, 5, (C) = (a,b) with a+b=2k. (5.6)

Indeed, the number of exceptional clusters for which (5.6) does not hold is < 7{k- 1)d!.
We delete these exceptional clusters from 4 and B and denote the resulting sets by 4’
and B'. If we have a cluster C € 4’ (similarly for B') with £4, , p; (C) = (k. k), then we
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obtain 4, 11 by removing C; from 4;, and adding C. Again we increased the number
of edges between the two cliques.

Thus, we may assume that €4, 5, (C) = (k+1,k—1) foreveryCe 4, Ly, B, (C)=
(k—1,k+1) forevery C' € B' and

{ 1
— >4, |B| > | —— ~10(k+1)d | L.
T 2 MLIB12 (g - 106+ 1)a)
This implies that we may also assume that deg(Cy,Bj,) = k— 1 and deg(C,4;,) =
k—1.

Next, we show that we may assume that G,|» and G,|p are almost complete graphs
with an almost empty bipartite graph between them. In fact, firstly, forevery C € 4', we
have degg (C,4') < 7(k+ 1)dI (and similarly for B'). Otherwise, we obtain 4,1 by
removing C; and adding C, and we would have more than 7(k + 1)d/ clusters C' with
C4;,, B, (C") = (k,k— 1) which is impossible. Furthermore, in case

dg,(4',B") > V4, (.7
it is not hard to see that there exist clusters
{C,C,...,C* Y c 4 and {CH2,CF3 . Py c B

such that these 2(k + 1) clusters induce a 2(k+ 1)-clique in G,. Then similarly as above
we form a gradual transition from 4, to the (k+ 1)-clique {C',C?,...,C**1} and this
is Ay, . This is similar for B, and clearly (c) is satisfied.

Next, we show that we may assume that for most of the clusters in B, the k— 1
clusters in 4;, are precisely the same. For this purpose we show first that we may
assume that for most clusters in B’, the k£ — 1 neighbors are in 4;, \ C|. Indeed, we
take a cluster C in 4’ with degg, (C,B') < V/d|B'| (the fact that (5.7) does not hold
implies that C exists). Then we define 4;, .1 = (4;, \ C1) UC, and indeed for at least
(1—+/d)|B'| clusters in B, the k — 1 neighbors are in 4,41 \ C (C plays the role of C;
now). For simplicity of notation, let us assume that this is already true for 4;, and B'.
So for at least (1 —/d)|B'| clusters C € B/, Ng,(C) N4}, is a set of k— 1 clusters in
4;,\ C;. Among the possible ( k’_‘ ,) sets, we consider the one which occurs the most
often as Ng, (C) N4, for these clusters C € B'. We show that this set (denoted by E)
occurs as Ng, (C) N4}, for at least (1 —d'/3)|B| clusters C € B'. Assume indirectly that
this is not the case. Denote the clusterin 4;, \ (EUC1) by C}, s0 4, = EUC, UC}. We
consider Ng, (E). We know that

2
e () > (g =30} 1, A € Mgy (B)
and ;

NG (E)NB| < (1-d'A)|B| < (1-d'F) . (5.8)
We find clusters Xj,X2,Y with the following properties:

(1) X; € N, (E)\ (4'UB'), X, € 4', Y € B'\Ng, (E);
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(2) (X1,X%),X,Y),X,C), (X1, € E(Gy);
(3) deg(X1,B),) > k.

(3.1), (3.2), (5.8) and the fact that (5.7) does not hold imply that we can easily achieve
(1) and (2). If we could not achieve (3), then we would have a set 4” of clusters such that
A" C A" CNg,(E)\B', for every cluster C € A", we have £y, , 5, (C) = (k+ 1,k— 1)

and [4”] > (1+ 4) L. But this implies that dg, (4",B') > V/d, and similar to the
case when (5.7) holds, we get the desired clique sequence.

Thus, we may assume that we can pick clusters X;, X5, ¥ satisfying (1), (2), and (3).
In this case

Ajpr1=UA\C)UXs, 4j12= (4,11 \C))UX; and 4j 13 = (4;,12\ X2) UY.

It is easy to check that this construction is good and that we strictly increase the number
of edges between the two cliques.

We define B” = B' N NG, (E), so by the above, we have [B”] > (1 —d'/?)|B|. n E
we consider the cluster C} for which deg (C{’,B ', ) is the smallest. Put £ = E\ C]. We

consider Ng, (E'). We have NG, (E")| > (21 — 3kd) I (using k > 3), s0

ING,(E')\ (4 UB")| > (k—jj - 3kd> 1. (5.9)

We find clusters X;,X>, 17, Y2, Y3 with the following properties:

* X1,X; € N, (E")\(4'UB"), 11, 12,13 € B”;
o X1,X,11,1», 13 form a 5-clique in Gy;
* X1,X2,Cy,C} form a 4-clique in G,.

Using (3.1), (3.2), (5.9) and the fact that EC does not hold, we can indeed choose these
clusters with these properties. Then

Aj1 = (A \CH)UXa, Ajir2 = (4j+1\CYUXL, 4143 = (4 42\ C1) UL,

Ajira=(4j;3\X1)U Yy, and 445 = (4, 44\ X2) U L3

Again, the construction is good and we strictly increase the number of edges between
the two cliques.

Thus, we may assume that we have the desired clique sequence in (5.1). Given
this clique sequence, we obtain the sequence of clusters from which the connecting
path will use vertices in the following way. We start by going around K° = K;, so by
ViV, Vi, We start a second cycle and stop at the last cluster before the cluster
in K%\ X'. The next cluster is the cluster in X' \ K°, then we go around X! once and
in the second cycle we stop at the last cluster before the cluster in X! \ K?. The next
cluster is the cluster in K2\ K, etc. We continue in this fashion to obtain a sequence of
clusters (note that this sequence contains repetitions)

G, Gy, Gy
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where C; = V] for 1 < j < k+1; the last k+ 1 clusters are the clusters yirlyiet
Vit in some permutation and #' = O(K?).

However, for technical reasons we would like to end the sequence with ¥/,
V{“,...,V,fﬂ in this order. For this purpose it is sufficient to show that if

V1,Va,..., Vi1 is an arbitrary permutation of ¥}, 75+ .. VZt], then we can change
the order to

Vl’ tres Vj—h V}’y V:f—i-!: ERRE Vj}"-l? Vj7 I/j’—{»l, srey Vk—i—l
forany 1 < j < j' <k+ 1. We separate two cases depending on whether K, is a
(k+2)-clique or a (k+ 1)-clique.
Case]. 1 <i+1<s’,50 K41 is a (k+ 2)-clique. In this case we will use V,éié The
sequence of clusters is as follows:

i+1 i+1
Vl; teey Vk+17 Vl? reey Vj—la V]é.{.za Vri—i-—h reey V;€+17 V17 vy Vj—17 V]é+27 Vj+17 sy Vj’—~17

. i+1
Vj) Vj’+17 "'7)7}(-{—1; ST Vj—l; V];+2’ V_}+15 s I/:;"—b Vj Vj’+l: ceey %’H—l)
Vi, ..., Vi, If}f, Vit oo Vj’-—-ls Vi, Vj’-’rb ey Vi1 (5.10)
as desired.
Thus, we may assume in this case that we have a sequence of clusters

a1, G, ..., Cor, (5.11)

which form the square of a path in G, and where C; = VJ’ for 1 <j<k+landCn_;=

V(";;ll)_j for 0 < j < k with ¢t = O(k?). We also define

Co=Vip, Coa=Viy, Co=V, ., Cpp=WV

{or G = Vlf-i-l? Ci=V, Co=Viy oy Copp1=V5 f Kir1=Kj 80 i=5)
and similarly,
Gt =V, Gz =V, oy Guag =Vt
Now we choose a vertex p; from each cluster C;, 1 < j <", such that p; is con-

nected to all py with 1 < |j’ — j| < k. They will also have the following additional
properties forall j, 1 < j <k

IN(P1,p2, -, 0j) NCj| > (d — )L,

IN(Dyt, 11, weer P 31— ) OV Cpr 104 > (d — €)1, (5.12)
which ensure that they can later be extended to the kth power of a Hamiltonian cycle of
G.

We will select them one-by-one with a greedy procedure. We maintain that ¢” + 2k

sets H;  from which the points will be selected. We start with Hy y =Cp, 1 =k < j' <
'+ k.
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Then, when selecting the point p; from H;_1 ;, 1 < j <t”, we choose one with the
following property:

deg(p;, Hi1 ) > (d—g)|H;_y p| forall /' #j,|j/ = jl <k

This holds for all but at most 2ke|C;| vertices in Hj.1,j, so we can choose such a
pj € Hi_y ;. (Here, we used (d —&)* > &)
Then we update the sets H as follows.

Hj 1 yNN(py), 1<) -/]<k
P Hi_y s\ {p;},  otherwise.

Note that we did not choose any points from the sets Hy » for j/ < 1 and j' > ¢";
this selection will be done later. We will refer later to this point selection procedure
described above as the standard greedy procedure.

Case 2. s' <i+1<s,s0 Ky is a (k+ 1)-clique. The main idea is the same but in
(5.10), we have to replace V,S[;_ with something else. Fact 5.1 and the fact that EC does
not hold guarantee that in G there exists a complete bipartite graph, say, between sets
Uj and W; such that |U;| = |W;| = f(k) (where f(k) is sufficiently large compared to
k). Also, for all the k clusters C € {V1,%2,...,Vj-1,Vj41,- .., Vi1t We have

ING(U; UT)| > VE(Cl.

Then we add U; to V; and W; will play the role of V,éi% in (5.10) (although it is not a
cluster). Hence, in (5.11), some of the C;-s are not clusters but they come from these
complete bipartite graphs. In this case, we define

Co=Viy, Ca=V, Coo=Viy, «, Con =V

or
' / ' ro. ,
CO = V]f_'_z, C...] = V/f-’r]’ C_2 = Vlf g eeey C.._k+1 = Vég 1f 1=85

and similarly,
Cop1 =V, Cria =Wt ., Cry=Vi
It is not hard to see that with minor modifications the greedy procedure in Case 1 goes

through in this case as well.

6. Adjustments and the Handling of the Exceptional Vertices

We already have an exceptional set Vg of vertices in G. We add some more vertices to
Vp to achieve super-regularity. From a cluster V; in a clique K, we remove all vertices
v for which there exists an j' with 1 < j/ <k+1(k+2if1 <i<s"), j/ # jsuch that

deg(v, V1) < (d—8)|V-

e-regularity guarantees that at most {(k -+ l)aW}i < (k+ 1)eL of such vertices exist in
each cluster V.
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We may have a small discrepancy in the number of remaining vertices in each clique
K; (we removed some form the connecting paths and some from the last step). By
removing extra vertices from certain clusters (and put them into the exceptional set 75),
we achieve that each cluster has exactly L' vertices. (We will still use the notation ¥;
for the enlarged exceptional set.) We still have {V5] < 6k{k+ 1)dn.

Next, we take care of the vertices in V. For each vertex v € ¥, we find all X;’s such
that if i > s/, then

deg(v,C) > d|C| forall C€XK;,

and if 1 <i<s’', then there exist (k+ 1) clusters C € K; such that
deg(v,C) > d|C|. {6.1)

Inequality (1.1) easily shows that we have at least d3/*s such cliques for each v € V.
We assign each v € F} to one of these cliques in such a way that we do not assign too
many vertices to a particular clique. It is easy to see that an assignment is possible in
which no clique is assigned more than d'/3L’ vertices.

Now let us take the first vertex v € ¥ and let us assume first that it is assigned to
K; with i > s’. We will add v to the connecting path between K;_; and K; by also using
some vertices from X; in such a way that the extended path is still extendable to the
kth power of a Hamiltonian cycle, and we use the same number of vertices from each
cluster in K; (in fact exactly three from each cluster).

Let us denote the connecting path between K;_; and K by p1, p2, ..., pr. We extend
this path in essentially the same way as in the previous section by using the standard
greedy procedure with vertices py .y, praz, - pur, Where &/ =k +3(k+ 1)+ 1. We
go around the clusters of the clique three times. The only change in the procedure
described in the previous section is that the new points p;, &' + 1 < j < & should have
the additional property

VNN (N(p;) K +1<j <K', p; ¢ Vi}| > d@P*TUFIL foreach ¥, € K;.

This guarantees that the new vertex v can be added as py j(x+1)+1, and the previous
and next & vertices can be chosen from N(v).

In case v is assigned to K; with 1 < i < s, we perform the following. We denote the
clique of the (k+ 1) clusters C for which (6.1) holds for v by X and put C' = K; \ K.
We can extend the connecting path between K;_; and X so that now it ends with the
clusters in K]. Just as above we go around K] 3 times such that we can include v on the
path. The only problem is that we created a small discrepancy among the number of
remaining vertices in the clusters in K;. To avoid this complication we use the cluster C’
as well. Indeed, we extend the path so that now it ends with V,j 11 and we go around K;
a few times, skipping the cluster with the smallest number of remaining vertices until
we have the same number of remaining vertices in each cluster.

Finally, because |V}) is quite large, we cannot just repeat this procedure for all ver-
tices in Fp, since we might hurt the super-regularity. Note that we never hurt the &-
regularity. Therefore, we perform the following. We define x as e K k K d. We
maintain another set Q beside /y. Initially Q = @. After handling |kn] vertices from
Vo, we update Q in the following way. From a cluster VJ’ in a clique X;, we remove
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all vertices v and add them to Q for which there exists a // with 1 < j' <k+1 (k+2
if 1 <i<s"), j' # jsuch that deg(v, VJ?,’) <(d- 8)|V},|. Here, we only consider the
remaining vertices in a cluster. We also remove some extra vertices to make sure that
we have the same number of vertices remaining in the clusters in K;. e-regularity guar-
antees that we added at most (k+ 1)en vertices to Q. Then we handle the vertices in Q
exactly the same way as the exceptional vertices above. Next we handle the next |xn]
vertices of V. After this we update O and we handle the new vertices in 0, etc.

Thus, we are left with the following situation: In each clique K; we have the same
number of remaining vertices in each cluster (including V,j o fl1<i< s’). On the
connecting path between K;; and K, the last £ vertices have many common neighbors
in ¥{ (in V{_, if 1 <i<s'), the last k — 1 vertices have many common neighbors in
Vi(in Vi if 1 <i<s'"), etc., and finally the last vertex has many neighbors in V,f (in
Vi_;if 1 <i<s'). On the connecting path between K; and K;; 1, the first & vertices
have many common neighbors in V7, (in ¥/, if 1 <i <s'), the first k£ — 1 vertices
many common neighbors in ¥ (in V£, , if 1 <i <s’), etc., and finally the first vertex
has many neighbors in ¥J (in V3’ if 1 <i<s'). These properties guarantee that by using
Lemma 2.4 we can close the kth power of a Hamiltonian cycle inside each clique.

7. The Extremal Case

In this section we assume that the extremal case (EC) is satisfied so we have an 4 C
V(G) with |4| = | {5 ] and d(4) < a.. Let us assume first that we have the following
special case: There exists a partition

V(G)=A1UA2U...Udpqy

with |4, = | g3 ] for 1 <i< kand d(4;) <afor 1 <i<k+1.Ineach4;, we can have
at most o>/3|4;| exceptional vertices v € 4; for which we have

deg(v,4;) > /3|4y (7.1

We call these exceptional vertices in 4; i-bad. For simplicity, let us assume first that
we have no i-bad vertices for any 1 <i < £+ 1. In this case the only problem is that
A1 could be slightly larger than the other A4;-s, otherwise Lemma 2.4 would find the
kth power of a Hamiltonian cycle. For this purpose, using Lemma 2.5, we can find a
matching of size |4y.1] — [%—"ﬁj in Agy1. Indeed, from (1.1), we have

n

8(Glag) 2 Min| ~ Ly )-
We contract these edges into vertices, where the neighbors of a new vertex are the
common neighbors of the two endpoints of the corresponding edge. Since every (4;,4;)
pair is (g,8) super-regular with the appropriate choice of parameters (say, £ = o!/¢,8 =
1 — a!/3) and we have the same number of vertices in each 4;, by using the Blow-up
Lemma (Lemma 2.4), we can find the kth power of a Hamiltonian cycle.

When we have bad vertices satisfying (7.1), the main idea is the same but we have
to handle the bad vertices first. More precisely, we have to eliminate a special type of
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bad vertices. For a vertex v € 4;, we say that it is j-exceptional (j # i), if

ol/3
deg(v,4;) < ~—2—|Ajf-
Note that if a vertex v € 4; is j-exceptional for some j # i, then it is i-bad. Firstly,
we have to eliminate the i-exceptional vertices for every 1 <i < k+ 1. The other bad
vertices do not cause any further complications.

We may assume that for every 1 <i < k+ 1, there are either no i-bad vertices or no
i-exceptional vertices in the other 4;-s (j # 7). Otherwise, we could exchange an i-bad
vertex in 4; with an i-exceptional vertex in 4;. In this way we decrease the number of
i-bad vertices. By iterating this procedure, there are either no more i-bad vertices or no
more j-exceptional vertices left.

If {Ag1] > [ f57]. then similarly as above, we have to find a matching to adjust
the differences in the sizes of the sets 4;. However, if 4;,; contains a j-exceptional
vertex for some j # k+ 1, then we have to be careful since one of the endpoints of an
edge could be a j-exceptional vertex. Then the endpoints do not have a large common
neighborhood set in 4;. For this purpose we perform the following. We remove a j-
exceptional vertex from A, and we add it to A; (we still keep the notation 4;,4>, ...,
Ap+1). We iterate this procedure; if there exists an 4; with |4;] > sz’.ﬂ and a j-
exceptional vertex for some j # i, then we remove the vertex from A4; and we add it
to 4;. Since we always decrease the number of j-exceptional vertices, eventually this
process has to stop. Thus, we may assume that if |4,] > | 75 | bolds for 4, then 4; does
not contain j-exceptional vertices for j s i. For each such 4;, we choose a matching
M; of size |4;] — | 7] in 4; as above. Indeed, we can always choose the edges in the
matching M; in such a way that, for an edge in the match, the two endpoints are either
both good (not i-bad) or one of them is good and the other is i-bad but with a com-

mon neighborhood of size at least %’%A ;| in every A; for j # i. Before we contract
these edges into vertices and finish with the Blow-up Lemma as above, we first have to
eliminate the i-exceptional vertices for every 1 <i<k+1.

Consider an 1 <i < £+ 1. By the above remark if there exist i-exceptional vertices
in other A4;’s (say, we have x; of them), then we do not have i-bad vertices. If possible
we take a set P; of x; paths of length 2 which are vertex-disjoint from each other and
from all the matchings M;, where the 2 endpoints are in 4; and the middle point is either
in 4; or it is i-exceptional in some 4, j # i. Using (1.1), Lemma 2.5 and the fact that
there are no i-bad vertices, it is not hard to see that the only case when it is not possible
to find these x; paths of length 2 is when x; = 1 (say, this exceptional vertex in 4; is
denoted by v;).

Let us assume first that x; > 1 for every 1 <i < k+ 1 so that we can find these
sets of paths P. Taking the natural ordering 41,43,..., 41, We can start building
the kth power of the Hamiltonian cycle by the standard greedy strategy (see Sec. 5)
going around the cycle. Consider a 1 < i < k+ 1. If the middle point of one such
path in A is an i-exceptional vertex in some A;, after a few cycles we can easily put
this path (or more precisely the three vertices on the path) with the greedy strategy on
the kth power of the Hamiltonian cycle being built. Furthermore, the part of the kth
power of the Hamiltonian cycle that we construct is always vertex-disjoint from all the
matchings M; and all the other remaining paths in U;P;. If the middle point is in 4;, then
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we exchange this middle point with an arbitrary i-exceptional vertex in some 4;, j # i
(different ones for different paths). Again, we put this path of length 2 on the kth power
of the Hamiltonian cycle being built. Iterating this for all 1 <i < k+ 1, we eliminate
all i-exceptional vertices. Then we contract the edges into vertices in the matchings M;
and we finish with the Blow-up Lemma.

For each i with x; = 1, we choose a path p; of length 2 which is vertex-disjoint from
all the matchings M; and all other paths and where v; is the middle vertex, one endpoint
u; is in 4; and the other endpoint 7; is good in 4;. We can put this path p; on the
kth power of the Hamiltonian cycie being built, but unfortunately, this will change the
patural 41,42,...,4p1 ordering. In order to change the ordering back to the original,
we will need an edge {w;, ;) inside 4; that is vertex-disjoint from ali the matching edges
and all other paths. We shall perform the following. Assuming i < j, first we put »; and
v; on the kth power of the Hamiltonian cycle in the natural 41,43,...,44; ordering.
However, in the next cycle we jump over 4;,4;41,...,4;-1; from 4; we pick 7; (and
we use the (v;,%;) edge for the necessary connection), then we have 4;..1,4;.2,... ,4;.
Then we pick 441 and we continue in the natural ordering. More precisely, in the
second cycle we pick one vertex from each set in the following sequence (#; from 4 ;):

Ay, oo Ay, Ay Ajey o Aip, Aiy At - At

After a few cycles in this ordering, we can change back the ordering to the original
using the edge (w;, w;).

We repeat this procedure for all 1 <i < k+ 1 with x; = 1. Then we eliminate the
exceptional vertices for all 1 < i < k+ 1 with x; > 1 with the above procedure. Then
we contract the edges into vertices in the matchings M; and we finish with the Blow-up
Lemma.

In the general extremal case, we first have an 4; C V(G) with |41 = | z77] and
d(4;) < a. If possible, we take an 4, C ¥ (G) \ 4) in the leftover with |4>| = | ;77| and
d(42) < o.. We may continue this process unless there isno Ay CV(G)\ (41U...U4;)
with |411] = [ ] and d(4141) < o Put B=V(G)\ (4iU...U4)). If I = k, we get
back the special extremal case just discussed (with somewhat worse o). Assume first
that / < k— 2. We define i-bad vertices in 4;,1 <i </ justasin (7.1). In B, the bad
vertices are vertices v with

deg(v, 41 U...U4)) < (1—a!®)|41U...u4]. (7.2)

Again let us assume first that there are no bad vertices and that |B| = (k— 1+ 1)| g5 ]-
Since there is no 4 C B with |4| = [ 5] = L;?:%;cﬂBU and d{4) < a, G|p does not
satisfy the extremal condition for k£ — /. Therefore, the method described in the previous
sections succeeds in finding the (k— /)th power of a Hamiltonian cycle H in B. Actually,
the method in this paper only works for £ —/ > 3, but the same result is proved in [13]
with k—1=2. Denote H = p1,p2,...,pi3|-

The main idea is to insert [ vertices from 4y U... U4, after every k— [+ 1 ver-
tices in H such that we get the kth power of a Hamiltonian cycle. For this purpose,
we define B' = {by,bs,...,b; 2 1} in the following way: by corresponds to the points

P1,D2,- - P2(k—141)> b2 corresponds to the points pr—i42, Pk—143;- -+, P3(k-i+1)» €C.,
andbLEth corresponds to ﬂlepomtsp(tﬁj_])(k_l,{_l)ﬂ,...,p!Bl,pl,pz,...,pk_Hl. We
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also define G’ on 4 U...UA;UB as Gl4u..u4, and every b; € B is connected to
the common neighbors of all its corresponding points in B. Thus, in G/, we have
|41 = |42| = ... = |4)| = |B'| = |5 ]- At this point, it seems that all we have to
do is to find a covering of G’ by vertex-disjoint (I + 1)-cliques by using Lemma 2.4.
However, if I > 1, we require certain connections between the cliques of b; and b;y; in
order to get the th power of a Hamiltonian cycle. To avoid this complication, we do the
following. We cover every other b; with a (/+ 1)-clique in ¢’ with the greedy procedure
(for simplicity, we assume that |B'] is even, otherwise we cover three consecutive b;’s).
Furthermore, in the process of this greedy procedure we always eliminate the arising
exceptional vertices which do not have enough neighbors in the remaining part of one
of the other sets in 4,...,4;,B". These cliques provide an obvious restriction on the
neighborhoods of the remaining b;’s. For example, if / = 2, then the vertex in 4, in
the clique of b;;1 must be connected to the vertex in 4; in the clique of b;. Taking
into account these restrictions, we can find the cliques for the remaining b;’s by Lemma
2.4. We get the kth power of a Hamiltonian cycle by inserting between p;(—;1) and
Di(i—1+1)+1 the other / vertices in the clique of b; in the order 4;,4;—1,...,41.

In case |B| > (k—1+1)| ¢}y ], we do the following. As we construct the (k— /)th
power of a Hamiltonian cycle in B with the method described in the previous sections,
by utilizing the (k— I+ 2)-cliques, a short part of this Hamiltonian cycle is actually the
(k— 14 1)st power of a path. Then on this part of the path we can contract |B| — (k—
I+ 1)| ] edges into vertices so that the resulting graph still contains the (k — [)th
power of a Hamiltonian cycle. We do the above procedure for this Hamiltonian cycle
and then by substituting the edges for the contracted vertices, we still get the kth power
of a Hamiltonian cycle in G.

The handling of the bad vertices is very similar to the above special extremal case
and the details are left to the reader.

Finally, let / = k— 1. We may also assume that there is a partition B = B1UB;
with |By| = | 37| and d(B1,B;) < a, otherwise our method in [13] and the above
inserting technique finishes the proof. Again for simplicity, we assume that there are no
exceptional vertices. We find two vertex-disjoint edges e; = (u1,v1), €2 = (u2,v2) such
that uy,u» € By and v1,v; € B;. We take a matching of size |B;| — [ ;] in B, that is
vertex-disjoint from e; and e;, and we collapse these edges into vertices. We still denote
the resulting set by B, s0 |By| = | ¢} . We find Hamiltonian paths in G5, connecting
u1 with u, and in G|, connecting v; with v,. Denote the resulting Hamiltonian cycle
in G| by H. With the above inserting technique we insert / vertices from 41 U... U4,
after every 2 vertices in A such that we get the kth power of a Hamiltonian cycle. This
finishes the extremal case and the proof of Theorem 1.5.
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