1. Suppose we want to find the k smallest numbers in a list of n numbers, where $k = \sqrt{n}$. Design an algorithm that solves this task in worst-case time that is linear in n. How far can you increase k so that you still have a worst-case linear time algorithm?

Solution: We apply the worst-case linear time selection algorithm to select the k-th smallest element and then we partition around it to find the k smallest numbers. The total running time is linear in n and this works for ANY k, $1 \leq k \leq n$. (20 points)

2. In class we showed using an adversary argument that any algorithm to compute the MAX and the MIN of a set of n distinct numbers simultaneously using pairwise comparisons must, in the worst-case, use at least $\lceil \frac{3n}{2} \rceil - 2$ comparisons.

 (a) Use the decision tree argument (finding a lower bound on the number of possible responses, which is a lower bound on the number of leaves, and using this as a bound on the height of the tree) to develop a worst-case lower bound on the number of pairwise comparisons.

 (b) If this bound is different than $\lceil \frac{3n}{2} \rceil - 2$, explain how seemingly contradictory bounds can both be correct.

Solution:

 (a) There are $n(n-1)$ possible responses, and hence every decision tree must have at least $n(n-1)$ leaves. This implies that the depth of any tree (corresponding to the worst-case number of comparisons) must be at least

 $$\log (n(n-1)) \geq \log n.$$
(b) Bounds can be different without contradicting each other. The optimal worst-case number of comparisons, $\lceil 3n/2 \rceil - 2$, is indeed greater than or equal to both lower bounds. (15 points)

3. The input is two sets S_1 and S_2 containing n real numbers in total, and a real number x.

(a) Find a $O(n \log n)$-time algorithm that determines whether there exists an element from S_1 and an element from S_2 whose sum is exactly x.

(b) Suppose now that the two sets are given in sorted order. Find a $O(n)$-time algorithm solving this problem.

Solution: (a) Sort the set S_2. Then for each element $z \in S_1$, perform binary search for the number $x - z$ in S_2.

(b) Assume S_1 and S_2 are both sorted in increasing order. Consider the smallest element from S_1 and the largest element from S_2 and let y be their sum. If $y = x$, then we are done. If $y > x$, the clearly the largest element of S_2 cannot be part of the solution. Therefore, we can eliminate it from consideration and continue in the remainder. If $y < x$, then by a similar argument, we can eliminate the smallest element of S_1. Thus with one comparison we can eliminate one element. (15 points)

4. Show that the second largest element can be found with $n + \lceil \log n \rceil - 2$ comparisons in the worst case.

Solution: We will find MAX first by using the tournament method. Elements are paired off and compared in rounds. In each round after the first one, the winners from the preceding round are paired off and compared. (If at any round the number of keys is odd, then one of them simply waits for the next round.) We can describe this tournament by a tree, each leaf contains an element, and at each subsequent level the parent of each pair contains the winner. The root contains MAX. We have $n - 1$ comparisons in total.

In the process of finding MAX, every element except MAX loses in one comparison. The second largest element must lose directly to MAX. Since MAX is involved in at most $\lceil \log n \rceil$ comparisons, the second
largest must be one of at most ⌈log \(n \)⌉ elements. We find the maximum of these by ⌈log \(n \)⌉ – 1 comparisons, that’s the second largest element. Thus the total number of comparisons is \(n + \lceil \log n \rceil - 2 \). (15 points)

5. In our linear-time selection algorithm, the inputs are divided into groups of 5. What if you used groups of 3 instead? What if used groups of 7 or larger (odd integers)?

Solution: It does not work for groups of 3 because we get the following recursion:

\[
T(n) \leq T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3} + 4\right) + O(n).
\]

Indeed, if we try similarly to prove \(T(n) \leq cn \) with substitution, it doesn’t work for any constant \(c \):

\[
T(n) \leq \frac{cn}{3} + \frac{2cn}{3} + 4c + an = cn + 4c + an \not\leq cn
\]

However, it works for groups of 7 or larger with a slightly worse constant. Say we use groups of size \(2k + 1 \) with an arbitrary integer \(k \geq 3 \). Then we get the following recursion which has a linear solution for each fixed \(k \):

\[
T(n) \leq T\left(\frac{n}{2k+1}\right) + T\left(\frac{(3k + 1)n}{2(2k+1)} + 2(k + 1)\right) + O(n).
\]

Indeed, as for groups of 5 we can prove \(T(n) \leq cn \) by substitution if \(c \) is large enough compared to \(k \). We get

\[
T(n) \leq cn - \frac{c(k-1)n}{2(2k+1)} + 2c(k + 1) + an \leq cn,
\]

if \(c \) is large enough compared to \(k \) and \(a \). (15 points)

6. Show that \(2n - 1 \) comparisons are necessary in the worst case to merge two sorted lists containing \(n \) elements each.

Solution: When the sorted order perfectly interleaves the two lists, each element in the final order must have been compared to its neighbors, which both come from the other list. So consider the two sorted lists \(a_1 < \ldots < a_n \) and \(b_1 < \ldots < b_n \) such that

\[
a_1 < b_1 < a_2 < b_2 < \ldots < a_n < b_n.
\] (1)
We claim that in order to correctly merge the two lists, we must make the following \(2n - 1\) comparisons

\[(a_1 : b_1), (b_1 : a_2), (a_2 : b_2), \ldots, (a_n : b_n).\]

Indeed, if for example \((b_1 : a_2)\) is not made, then the configuration

\[a_1 < a_2 < b_1 < b_2 < \ldots < a_n < b_n\]

is indistinguishable from (1), since all other results are the same, so our algorithm cannot be correct. (20 points)