CS 4120 Analysis of Algorithms
A term 2018
Solutions for the Midterm Exam

1. Use the Master Theorem to find the asymptotic solution for the following recurrence:
 \[T(n) = 16T\left(\frac{n}{4}\right) + n^2. \]

 Solution: We have \(a = 16, \ b = 4, \)
 \[f(n) = n^2 = \Theta(n^{\log_4 16}) = \Theta(n^2), \]
 we get Case 2, and thus \(T(n) = \Theta(n^2 \log_2 n). \) (20 points)

2. A **dodecahedral die** has 12 faces that are numbered 1 through 12. Suppose that we roll 12 fair dodecahedral dice simultaneously. What is the expected number of dice that come up with 1?

 Solution: Let
 \[X_i = \begin{cases}
 1 & \text{if the } i\text{th die comes up with 1} \\
 0 & \text{otherwise}
 \end{cases} \]
 Then by the linearity of expectation
 \[E(X) = E\left(\sum_{i=1}^{12} X_i\right) = \sum_{i=1}^{12} E(X_i) = \sum_{i=1}^{12} \frac{1}{12} = 1. \]
 (20 points)

3. The input is a sequence \(x_1, x_2, \ldots, x_n \) of integers in an arbitrary order, and another sequence \(a_1, a_2, \ldots, a_n \) that is a permutation of the integers from 1 to \(n. \) Both sequences are given as arrays. Design an \(O(n \log n) \)-time in-place algorithm to order the first sequence according to the order imposed by the permutation. In other words, for each \(i, \) \(x_i \) should appear in the output in the position given in \(a_i. \) Show that your algorithm is optimal apart from the constant in the big-\(O \) notation.

 Solution: The permutation \(a_1, a_2, \ldots, a_n \) defines a total order on the sequence \(x_1, x_2, \ldots, x_n, \) that’s what we have to find. That is, we can
“compare” any pair of elements x_i and x_j by comparing a_i and a_j. Therefore, any sorting algorithm that sorts according to the values of the a_i’s and moves both x_i and a_i together will lead to the desired outcome. Since we want an in-place algorithm, we can use, for example, HEAP-SORT. There are $n!$ possible outputs, so by the decision tree lower bound method, any algorithm solving this problem must have worst-case running time
\[
\Omega(\log (n!)) = \Omega(n \log n).
\]

(20 points)

4. Describe a $O(n)$ worst-case time algorithm that, given a set S of n distinct numbers and a positive integer $k \leq n$, determines the k numbers in S that are closest to the median of S in the sorted order of S (for simplicity we assume that both n and k are odd, so there is one median).

Solution: Let $m = \frac{n+1}{2}$ (the rank of the median). Using the worst-case linear time Selection algorithm twice, we find the two elements x_1, x_2 with ranks $m - \frac{k-1}{2}$ and $m + \frac{k-1}{2}$. Then we go through S and find all elements x for which $x_1 \leq x \leq x_2$, these are the solutions. The total worst-case running time is $O(n)$. (20 points)

5. Give an $O(n)$-time dynamic programming algorithm for the maximum subarray problem. That is, given an array of real numbers a_1, a_2, \ldots, a_n, your algorithm must compute the maximum sum $\sum_{i=j}^{k} a_i$, where $1 \leq j \leq k \leq n$. Draw the subproblem graph. How many vertices and edges are in the graph?

Solution: Here is the algorithm:

Maximum-subarray(n)
let $M[1..n]$ be a new array
$M[1] = a_1$
for $i = 2$ to n
 $M[i] = \max(M[i-1] + a_i, a_i)$
we find the maximum M of $M[i], 1 \leq i \leq n$
return M
Each number in the sequence is computed from the previous number in the sequence. The running time is clearly $O(n)$. The subproblem graph consists of n vertices, v_1, \ldots, v_n. For $i = 2, \ldots, n$, vertex v_i has one leaving edge: to vertex v_{i-1}. No edge leaves vertex v_1. Thus, the subproblem graph has $(n - 1)$ edges. (20 points)