Effective Near-Field Haptics in Virtual Environments

Dr. Robert W. Lindeman

Department of Computer Science
The George Washington University
gogo@gwu.edu
Overview

- **Motivation**
- **Near-field haptic approaches**
- **Our prototype**
- **Empirical studies**
- **Application areas**
Problem Statement

- **Virtual environments are typically limited to visual and audio cues**
 - Do not faithfully recreate reality
 - Sensorially-deprived environments
 - Do not take advantage of human bandwidth capacity
 - Users only receive cues produced by the system
 - Difficult to manipulate objects effectively
Problem Statement (cont.)

- **Virtual contact**
 - What should we do when we know that contact has been made with a virtual object?
 - The output of collision detection is the input to virtual contact
 - Cues for understanding the nature of contact with objects is typically over-simplified
Some Cueing Options

<table>
<thead>
<tr>
<th>Cueing Technique</th>
<th>Modality</th>
<th>Mapped to…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color change</td>
<td>Visual</td>
<td>Location/depth of penetration</td>
</tr>
<tr>
<td>Vector glyphs</td>
<td>Visual</td>
<td>Force and direction of contact</td>
</tr>
<tr>
<td>Texture distortion</td>
<td>Visual</td>
<td>Location/depth of penetration</td>
</tr>
<tr>
<td>Shape distortion</td>
<td>Visual</td>
<td>Location/depth of penetration</td>
</tr>
<tr>
<td>Contact illumination</td>
<td>Visual</td>
<td>Location of collision</td>
</tr>
<tr>
<td>Pitch change</td>
<td>Auditory</td>
<td>Depth of penetration</td>
</tr>
<tr>
<td>Amplitude change</td>
<td>Auditory</td>
<td>Force of collision</td>
</tr>
<tr>
<td>Spatialization</td>
<td>Auditory</td>
<td>Location of collision</td>
</tr>
<tr>
<td>Vibrotactile amplitude</td>
<td>Haptic/Tactile</td>
<td>Location/velocity/depth of penetration</td>
</tr>
</tbody>
</table>
The Nature of Near-Field Haptics

- **Vehicular vs. personal contact**
- **Object properties**
 - Surface (texture)
 - Compliance
 - Physical makeup
- **Contact properties**
 - Velocity
 - Location(s) on the object
 - Location(s) on the person
Active- vs. Passive-Haptic Feedback

- **Active-haptic feedback**
 - Typically, force-reflecting devices under computer control
 - Expensive
 - Cumbersome

- **Passive-haptic feedback**
 - Inherent properties of objects
 - Cheap
 - High fidelity
 - Limited amount and type of feedback
Active-Haptic Feedback: Ex. 1 - SensAble PHANToM

http://www.sensable.com/
Active-Haptic Feedback: Ex. 2 - Immersion CyberGrasp

http://www.immersion.com/
Passive-Haptic Feedback:
Ex. 1 - GW Hand-Held Windows

http://www.seas.gwu.edu/~gogo/
Passive-Haptic Feedback: Ex. 2 - UNC *Being There* Project

http://www.cs.unc.edu/~lowk/beingthere/
Vibrotactile Cueing Devices

Vibrotactile feedback has been incorporated into many devices

- Used for decades for the hearing impaired
- Widely used in cell phones and pagers
 - "Manner" button
- Console controllers from Sony, MS, Nintendo
- PC joysticks from MS, Logitech, etc.
- Research devices from Immersion Corp., Virtual Technologies, etc.
Technologies for Producing Vibrotactile Cues

- **Called tactors**
- **Arm linkages**
- **Pin arrays**
- **Voice coils**
 - Speakers
- **Pager motors**
 - DC motor with an eccentric mass
Vibrotactile Feedback: Ex. 1 - Navy TSAS Project

http://www.namrl.navy.mil/accel/tsas/
Vibrotactile Feedback: Ex. 2 - Purdue *Haptic Vest*

http://www.ecn.purdue.edu/HIRL/projects_vest.html
The GW TactaBoard Design

Design goals
- Low cost
- Low power
- High update rate
- Many form factors
- Scalable
- Different tactors
- Individual control
- Simple Interface
- Wearable

Design decisions
- Use COTS
- Use PWM
- Low number of tactors
- Flexible design
- Communication bus
- External power supply
- Multiple PWM signals
- ASCII command set
- Small footprint
Current TactaBoard Prototype

http://www.vibrotactile.org/tactaboard/
System Structure

Host

Serial Line

CAN Bus

TactaBoard$_1$

Tactor$_1$

Tactor$_2$

Tactor$_n$

TactaBoard$_2$

Tactor$_1$

Tactor$_2$

Tactor$_n$

TactaBoard$_m$

Tactor$_1$

Tactor$_2$

Tactor$_n$
Pulse-Width Modulation (PWM)

- **Shortening the duty cycle reduces the output voltage**

![Diagram of Pulse-Width Modulation](image)
Varying the Cues

- **Individual tactors**
 - Frequency
 - Amplitude
 - Temporal delay
 - Pulses

- **Groups of tactors**
 - Waveform
 - Tactor placement
 - Interpolation method
Empirical Studies

- 21 subjects
- 3 seated tasks
 - Location Discrimination
 - Visual Search
 - Intensity Matching
- 6 cm spacing
- Mouse input
Experiment 1: Location Discrimination Task
Experiment 1: Experimental Design

- **Independent variable**
 - Each row/column combination
 - Thirty-six trials
- **Dependent variable**
 - Perceived vs. actual location
- **One-second, vibrotactile pulse at 91 Hz**
Exp. 1 - Results:
Mean Accuracy (percent)

<table>
<thead>
<tr>
<th>Stimulus Row</th>
<th>Stimulus Column</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>Left</td>
<td>0.83</td>
<td>0.37</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Center</td>
<td>0.70</td>
<td>0.46</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Right</td>
<td>0.82</td>
<td>0.39</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Row Total</td>
<td>0.79</td>
<td>0.41</td>
<td>252</td>
</tr>
<tr>
<td>Middle</td>
<td>Left</td>
<td>0.83</td>
<td>0.37</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Center</td>
<td>0.88</td>
<td>0.33</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Right</td>
<td>0.88</td>
<td>0.33</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Row Total</td>
<td>0.87</td>
<td>0.34</td>
<td>252</td>
</tr>
<tr>
<td>Lower</td>
<td>Left</td>
<td>0.88</td>
<td>0.33</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Center</td>
<td>0.80</td>
<td>0.40</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Right</td>
<td>0.95</td>
<td>0.21</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Row Total</td>
<td>0.88</td>
<td>0.33</td>
<td>252</td>
</tr>
<tr>
<td>Column Totals</td>
<td>Left</td>
<td>0.85</td>
<td>0.36</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Center</td>
<td>0.79</td>
<td>0.41</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Right</td>
<td>0.88</td>
<td>0.32</td>
<td>252</td>
</tr>
<tr>
<td>Overall Total</td>
<td></td>
<td>0.84</td>
<td>0.36</td>
<td>756</td>
</tr>
</tbody>
</table>

- **119 mis-idents.**
- Mostly vertical
- Mostly downward

![Diagram]
Experiment 2: Visual Search Task
Experiment 2: Experimental Design

- **Within-subjects design**
- **Independent variables**
 - Visual cue type
 - Vibrotactile waveform
- **Dependent variables**
 - Trial time
 - Correct letter identified
- **Fifty trials per treatment**
Experiment 2: Treatments

- **Seven treatments**
 - None-None
 - None-Square
 - Single-Square
 - Multi-Square
 - Multi-None
 - Multi-Sawtooth
 - Multi-Triangle

<table>
<thead>
<tr>
<th>Visual Cue Levels</th>
<th>Vibrotactile Cue Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td>X</td>
</tr>
<tr>
<td>Single</td>
<td></td>
</tr>
<tr>
<td>Multi</td>
<td>X</td>
</tr>
</tbody>
</table>
Exp. 2 - Results: Mean Trial Time (seconds)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>By Visual Cue Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None-None</td>
<td>1924.30</td>
<td>984.54</td>
<td>1050</td>
</tr>
<tr>
<td>None-Square</td>
<td>1693.51</td>
<td>702.45</td>
<td>1050</td>
</tr>
<tr>
<td>Single-Square</td>
<td>1336.76</td>
<td>349.54</td>
<td>1050</td>
</tr>
<tr>
<td>Multi-Square</td>
<td>1301.46</td>
<td>342.33</td>
<td>1050</td>
</tr>
<tr>
<td>Total</td>
<td>1564.01</td>
<td>701.45</td>
<td>4200</td>
</tr>
<tr>
<td>By Vibrotactile Cue Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None-None</td>
<td>1924.30</td>
<td>984.54</td>
<td>1050</td>
</tr>
<tr>
<td>Multi-None</td>
<td>1338.64</td>
<td>375.68</td>
<td>1050</td>
</tr>
<tr>
<td>Multi-Square</td>
<td>1301.46</td>
<td>342.33</td>
<td>1050</td>
</tr>
<tr>
<td>Multi-Sawtooth</td>
<td>1337.26</td>
<td>423.55</td>
<td>1050</td>
</tr>
<tr>
<td>Multi-Triangle</td>
<td>1308.05</td>
<td>381.31</td>
<td>1050</td>
</tr>
<tr>
<td>Total</td>
<td>1441.94</td>
<td>607.17</td>
<td>5250</td>
</tr>
<tr>
<td>Overall Total</td>
<td>1462.85</td>
<td>601.14</td>
<td>7350</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Square</td>
<td>1301.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-Square</td>
<td>1336.76</td>
<td>1693.51</td>
<td>1924.30</td>
</tr>
<tr>
<td>None-Square</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None-None</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Square</td>
<td>1301.46</td>
<td></td>
</tr>
<tr>
<td>Multi-Triangle</td>
<td>1308.05</td>
<td></td>
</tr>
<tr>
<td>Multi-Sawtooth</td>
<td>1337.26</td>
<td></td>
</tr>
<tr>
<td>Multi-None</td>
<td>1338.64</td>
<td>1924.30</td>
</tr>
<tr>
<td>None-None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exp. 2 - Results:
Discussion

- **Visuals dominated**
- **Vibrotactile helped in the absence of visuals**
- **Latency of our apparatus**
- **No difference for different waveforms**
Experiment 3: Intensity Matching Task
Experiment 3: Experimental Design

- **Eighty-one trials**
- **Independent variables**
 - Frequency
 - Location
- **Dependent variable**
 - Numerical difference between the actual and perceived intensity
- **Ten frequencies (Hz)**
 - 38, 54, 65, 68, 69, 72, 75, 78, 81, 83
Exp. 3 - Results: Mean Difference (Hz)

<table>
<thead>
<tr>
<th>Stimulus Comparison</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>By Location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper-Left</td>
<td>12.84</td>
<td>9.87</td>
<td>189</td>
</tr>
<tr>
<td>Upper-Center</td>
<td>24.76</td>
<td>18.67</td>
<td>189</td>
</tr>
<tr>
<td>Upper-Right</td>
<td>20.18</td>
<td>17.12</td>
<td>189</td>
</tr>
<tr>
<td>Middle-Left</td>
<td>14.80</td>
<td>10.75</td>
<td>189</td>
</tr>
<tr>
<td>Middle-Center</td>
<td>16.68</td>
<td>12.85</td>
<td>189</td>
</tr>
<tr>
<td>Middle-Right</td>
<td>16.73</td>
<td>12.89</td>
<td>189</td>
</tr>
<tr>
<td>Lower-Left</td>
<td>13.23</td>
<td>10.65</td>
<td>189</td>
</tr>
<tr>
<td>Lower-Center</td>
<td>20.96</td>
<td>16.86</td>
<td>189</td>
</tr>
<tr>
<td>Lower-Right</td>
<td>13.80</td>
<td>10.51</td>
<td>189</td>
</tr>
<tr>
<td>By Reference Frequency (Hz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38 (1)</td>
<td>16.92</td>
<td>15.56</td>
<td>105</td>
</tr>
<tr>
<td>54 (2)</td>
<td>19.03</td>
<td>9.94</td>
<td>231</td>
</tr>
<tr>
<td>65 (3)</td>
<td>26.20</td>
<td>16.58</td>
<td>147</td>
</tr>
<tr>
<td>68 (4)</td>
<td>19.11</td>
<td>14.94</td>
<td>168</td>
</tr>
<tr>
<td>69 (5)</td>
<td>15.10</td>
<td>12.47</td>
<td>231</td>
</tr>
<tr>
<td>72 (6)</td>
<td>19.05</td>
<td>15.69</td>
<td>168</td>
</tr>
<tr>
<td>75 (7)</td>
<td>16.95</td>
<td>15.07</td>
<td>168</td>
</tr>
<tr>
<td>78 (8)</td>
<td>13.14</td>
<td>13.95</td>
<td>189</td>
</tr>
<tr>
<td>81 (9)</td>
<td>14.05</td>
<td>13.34</td>
<td>210</td>
</tr>
<tr>
<td>83 (10)</td>
<td>10.70</td>
<td>8.50</td>
<td>84</td>
</tr>
<tr>
<td>By Row</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Row</td>
<td>19.26</td>
<td>16.42</td>
<td>567</td>
</tr>
<tr>
<td>Middle Row</td>
<td>16.07</td>
<td>12.21</td>
<td>567</td>
</tr>
<tr>
<td>Lower Row</td>
<td>16.00</td>
<td>13.46</td>
<td>567</td>
</tr>
<tr>
<td>By Column</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left Column</td>
<td>13.62</td>
<td>10.45</td>
<td>567</td>
</tr>
<tr>
<td>Center Column</td>
<td>20.80</td>
<td>16.61</td>
<td>567</td>
</tr>
<tr>
<td>Right Column</td>
<td>16.90</td>
<td>14.00</td>
<td>567</td>
</tr>
<tr>
<td>By Reference/Adjustable Relationship</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same Tactor</td>
<td>6.72</td>
<td>6.63</td>
<td>189</td>
</tr>
<tr>
<td>Same Column</td>
<td>17.77</td>
<td>13.73</td>
<td>378</td>
</tr>
<tr>
<td>Same Row</td>
<td>17.26</td>
<td>14.50</td>
<td>378</td>
</tr>
<tr>
<td>Other</td>
<td>19.30</td>
<td>14.60</td>
<td>756</td>
</tr>
<tr>
<td>By Euclidean Distance (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance of 0.00</td>
<td>6.72</td>
<td>6.72</td>
<td>189</td>
</tr>
<tr>
<td>Distance of 6.00</td>
<td>18.03</td>
<td>14.35</td>
<td>504</td>
</tr>
<tr>
<td>Distance of 8.49</td>
<td>19.11</td>
<td>14.50</td>
<td>336</td>
</tr>
<tr>
<td>Distance of 12.00</td>
<td>16.49</td>
<td>13.60</td>
<td>252</td>
</tr>
<tr>
<td>Distance of 13.42</td>
<td>18.86</td>
<td>14.29</td>
<td>336</td>
</tr>
<tr>
<td>Distance of 16.97</td>
<td>21.80</td>
<td>16.04</td>
<td>84</td>
</tr>
<tr>
<td>Overall Total</td>
<td>17.11</td>
<td>14.22</td>
<td>1701</td>
</tr>
</tbody>
</table>
Exp. 3 - Results: Discussion

- **Complex relationship**
 - Location and frequency
 - 7 Hz difference at the same location is encouraging
 - No clear mapping from one location to another

- **Higher frequencies seem to lead to better performance**

- **Close to spine was worse**
 - Vertical confusion
Applications

- **Data perceptualization**
 - Map variables to tactors

- **Spatial awareness**
 - Driver warning system (vibrotactile Bott's dots)

- **Navigational aid**
 - Firefighter guidance

- **Non-verbal communication**
 - Map hand signals to vibrotactile patterns
Acknowledgments

- ONR VIRTE project
- DARPA
- ATR, Japan

For more info. on the TactaBoard:
- http://www.vibrotactile.org/