
Extracting Camera-Control Requirements and Camera
Movement Generation in a 3D Virtual Environment

Hirofumi Hamazaki1, Shinya Kitaoka1, Maya Ozaki1,
Yoshifumi Kitamura1, Robert W. Lindeman2, Fumio Kishino1

1 Graduate School of Information Science and Technology, Osaka University
2-1 Yamada-oka, Suita, Osaka, 565-0871, JAPAN

{hamazaki.hirofumi | kitaoka.shinya | ozaki.maya | kitamura | kishino}@ist.osaka-u.ac.jp

2 Department of Computer Science, Worcester Polytechnic Institute
100 Institute Road, Worcester, MA 01609, USA

gogo@wpi.edu

ABSTRACT
This paper proposes a new method to generate smooth cam-
era movement that is collision-free in a three-dimensional
virtual environment. It generates a set of cells based on
cell decomposition using a loose octree in order not to in-
tersect with polygons of the environment. The method de-
�nes a camera movement space (also known as Con�guration
Space) which is a set of cells in the virtual environment.
In order to generate collision-free camera movement, the
method holds a path as a graph structure which is based
on the adjacency relationship of the cells, and makes the
camera move on the graph. Furthermore, by using a poten-
tial function for �nding out the force that aims the camera at
the subject and a penalty function for �nding out the force
that restrains the camera on the graph when the camera
moves on the graph, we generate smooth camera movement
that captures the subject while avoiding obstacles. Several
results in static and dynamic environments are presented
and discussed.

Categories and Subject Descriptors
H.5.4 [Information Interfaces And Presentation]:
Hypertext/Hypermedia

General Terms
Algorithms, Design, Human Factors

Keywords
video game, virtual reality, camera control, path planning,
octree, interactive system

1. INTRODUCTION
In recent years, applications like games and Second Life
which allow a user to explore a three-dimensional (3D) vir-
tual environment have emerged. These applications create
camera movement such as translation, rotation, and zoom
according to the character's movement. Also as in tradi-
tional camera movement, the camera is manipulated to keep
following the character in a 3D virtual environment. This
gives the character manipulator a deeper realistic sensation.
But if the camera just keeps following the character, it some-
times may penetrate a building or go under the ground in
the virtual environment, or it may not capture the character
due to obstacles which exist between it and the character.
In order to avoid these cases, we have to set control require-
ments relating to camera movement, depending on the goal
of the virtual environment.

On the other hand, the study of avoiding collisions with ob-
stacles has been carried out in robotics, for example, PRM
(Probabilistic Roadmap Method) [1, 2] and RRT (Rapidly
exploring Random Trees) [3, 4]. Also, The cell decomposi-
tion methods which create a roadmap graph to avoid colli-
sions with obstacles are famous ones. The cell decomposition
methods divide an environment into equal-sized cells [5, 6]
or varying-sized cells based on an octree [7, 8], and pick a
set of cells which is collision-free with the obstacles. Then,
these cells are connected with nearby cells, and the roadmap
graph is created. By moving on the roadmap graph, robot's
movements become collision-free.

Therefore, we propose methods for e�ciently automating
the process of determining legal camera movement based on
camera-control requirements by extending the cell decompo-
sition methods. By automatically creating a roadmap graph
that is a collision-free space between the camera and the ob-
stacles from the virtual environment based on hierarchical
cell decomposition using a loose octree [9] not just an octree,
then making the camera follow the subject smoothly in this
space, we can automatically generate the camera movement
that ful�lls the control requirements.

Figure 1: Procedure of creating a camera movement space in the case of a maximum octree depth of two. (a) Make a cell that
contains the obstacle; (b) Create four more new cells by evenly dividing the cell (actually create eight new cells). New cell's
colors are di�erent (the top left is red, the top right is blue, the bottom left is yellow, the bottom right is pink); (c) Enlarge
the new cells respectively; (d) Detect the intersection between each cell and the obstacle, add the cell to the roadmap graph
when the cell does not intersect with the obstacle, and restore the size of the cell when the cell intersect with the obstacle;
(e) Create four new cells again by evenly dividing the cell that intersect with the obstacle; (f) Enlarge new cells again; (g)
Remove the cells that intersect with the obstacle because depth of division reaches the maximum octree depth.

2. A CAMERA CONTROL METHOD
In the camera movement generation process, it is important
to �gure out the camera movement space. However, because
this space changes depending on the user's intention, we
de�ne a camera movement space which is a collision-free
space between the camera and obstacles in the environment.
This prevents the situation in which the camera penetrates
obstacles and captures neither the subject nor the positional
relationship between the subject and the environment. We
de�ne camera-control requirements as :

• The camera does not penetrate obstacles.

• The camera keeps following the subject.

To ful�ll this requirements, we extract a camera movement
space from the environment. Here, we describe a method
of extracting camera-control requirements and a method of
generating camera movement that meets the control require-
ments.

Also, we support 3D virtual environments as follows :

• The number of cameras is one.

• The number of subjects is one.

• The subject's movement is unknown.

• The subject's orientation is not considered.

• The environment is constructed from polygon data
only.

This enables us to focus on the movement of a chase camera.

2.1 Extracting Camera-Control Requirements
We represent a camera movement space as a set of axis-
aligned cells based on cell decomposition, and then create
a camera roadmap graph using the adjacency relationship
of the cells. In this way, when a subject is contained in or

intersecting with a cell, we are assured of seeing the subject
if the camera reaches the cell because a cell is a convex hull.
The method's procedure (Figure 1) is described as follows :

1. De�ne a maximum octree depth.

2. Make an axis-aligned cell that contains all obstacles.
This cell is the octree's root.

3. Create eight new cells by evenly dividing the cell in the
x-axis, y-axis, and z-axis (eight octants). Because the
cell contains obstacles, we need to �nd out the cells
that do not contain any obstacles.

4. Enlarge the new cells respectively. As a result, over-
lapped regions of cells arise.

5. In each cell, detect the intersection between the cell
and the obstacles.

• Intersection case
� If depth of division has not reached the max-
imum octree depth, restore the size of the
cell, create eight new cells by dividing the cell
again, and go to step 4.

� If depth of division reaches the maximum oc-
tree depth, stop.

• Non-intersection case
� The cell is added to the roadmap graph.

In this way, a camera movement space based on hierarchical
cell decomposition using a loose octree is created. A loose
octree does not only divide the region into eight cells but also
enlarges each cell and creates overlapped regions of each cell.
With overlapped regions, the cells are mutually adjacent and
we can create a camera movement space as a roadmap graph.

In addition, to speed up the intersection detection between
the cells and obstacles, we preliminarily manage the obsta-
cles using an AABB (Axis Aligned Bounding Box) tree [10].

Figure 2: Shrine architecture (model by Marko Dabrovic)

2.2 Generating Camera Movement
When the cell that overlays the camera is di�erent from the
cell that overlays the subject, we de�ne these cells as the
starting point and the ending point. By making the cam-
era move from the starting point to ending point on the
roadmap graph, we generate camera movement that ful�lls
the camera-control requirements. For �nding the path on
the roadmap graph, we use the A∗ algorithm [11] because
we can arbitrarily con�gure a cost function used for path
�nding, and also can de�nitely �nd a path which has mini-
mum cost. In this paper, we con�gure the cost function as
the Euclidean distance between the subject and the cells in
the camera movement space. Also, the A∗ algorithm is only
used when the cell that overlays the subject changes due to
movement of the subject for reducing the cost of the path
�nding.

The camera moves along the path that was found by the
A∗ algorithm. However, the path is not composed of line
segments but a cell range, so we have to create a trajectory
for the camera. In this paper, we obtain a trajectory which
is pursuant to Hooke's law by using a potential function for
�nding out the force that aims the camera at the subject and
a penalty function for �nding out the force that restrains
the camera on the graph. This way, we generate camera
movement that is smooth and collision-free.

2.3 Resulting Camera Movement
We applied the proposed method to an environment with a
shrine architecture (Figure 2). In this environment, we cre-
ated a camera movement space, and then generated camera
movement that captures a moving subject in the environ-
ment.

In Figure 3, we show the camera movement space that was
created in the environment. The set of cells represented
by the green line segments is the camera movement space.
Figure 4 shows a camera trajectory created in the architec-
ture. The purple cell is the ending cell of path �nding. The
green cell range represents a path in the camera movement
space, which was found by the A∗ algorithm. The red line
that extends to the side of the subject is the camera trajec-
tory. In this example, using the Euclidean distance between
the subject and the cells of the camera movement space as
a cost function, we sought a path which has the shortest
movement distance of the camera. Also, the camera trajec-
tory shows that we did �nd the trajectory within the cells
of the camera movement space.

Figure 3: A created camera movement space in the environ-
ment

Figure 4: Camera trajectory when the subject goes behind
a pillar

3. DYNAMIC ENVIRONMENTS
Thus far, we have considered a static virtual environment
without movable obstacles. Next we describe how to adapt
our proposed method to a virtual environment with mov-
able obstacles (a dynamic virtual environment). We add
the constraints below for a dynamic environment.

• The number of obstacles ranges from dozens to hun-
dreds.

• Obstacle movement is unknown.

• Obstacle shape is a rectangular solid.

In Figure 5, we show a dynamic virtual environment. The
orange objects are moving obstacles. To adapt our method,

Figure 5: Dynamic virtual environment

Figure 6: Camera trajectory in the dynamic environment

we slightly modify the method for extracting camera-control
requirements and the method for generating camera move-
ment.

First, to change the method for extracting camera-control
requirements, we add the following processes.

• By detecting the intersections between the camera move-
ment space created in a static environment and mov-
able obstacles, cells intersected with the obstacles are
excluded from the camera movement space.

• If excluded cells no longer intersect with movable ob-
stacles, the cells are restored to their previous camera
movement space.

Also, we perform the intersection detections in real time.
By changing the camera movement space as a result of the
intersection detections, a new camera movement space is
created. However, if there exist many movable obstacles
in the environment, the cost for intersection detection for
all obstacles is high. Therefore, we surround the camera
with a bounding box. Intersection detection between the
obstacle and the camera movement space is performed when
the obstacle intersects with this bounding box.

Next, we modify the method for generating camera move-
ment. Because the camera movement space is changed in
real time to adapt to a dynamic environment, we have to
re�ect this change in camera movement generation process.
In a static environment, we use the A∗ algorithm only when
the cell which overlays the subject changes. However, in a
dynamic environment, we use the A∗ algorithm at regular
intervals. Also, because the camera movement space is rep-
resented as a set of cells, there are margins for moving the
camera in the path. We therefore center a sphere with a
certain size around a movable obstacle, and generate a re-
pulsive force along the normal of the sphere's surface. In
this way, every time the obstacle gets close to the camera, a
camera movement is re�ected and avoiding obstacles is more
smoothly performed. We show a camera trajectory created
in the dynamic environment in Figure 6.

4. CONCLUSIONS AND FUTURE WORK
In this paper we have described the method to generate
camera movement based on camera-control requirements.
First, we de�ned a camera movement space as a collision-free
space between a camera and obstacles in an environment,
and camera-control requirements as the camera movement

space. Next we extracted the camera movement space as a
roadmap graph that is created by hierarchical cell decompo-
sition using a loose octree. We then found the path between
the camera and the subject within the camera movement
space. By controlling the camera on the path by a poten-
tial function and a penalty function, we generated camera
movement that captures the subject while avoiding obsta-
cles. We also adapted the methods to an environment with
movable obstacles.

In this paper, we have considered chase camera movement.
In the future we will try to make a camera movement space
by using a K-D tree and compare a K-D tree with an Octree
to examine which one is more suitable for environments. In
addition, we plan to generate cinemagraphic camera move-
ments which include panning that rotates the camera and
cutaways that change the camera position. Our future work
also includes other camera-control requirement investiga-
tion.

5. REFERENCES
[1] L. E. Kavraki, P. �vestka, J. C. Latombe and M. H.

Overmars. Probabilistic roadmaps for path planning
in high-dimensional con�guration spaces. Robotics
and Automation, IEEE, Vol. 12, Num. 4, pp. 566-580,
1996.

[2] L. K. Dale and N. M. Amato. Probabilistic
roadmaps-putting it all together. Robotics and
Automation, IEEE, Vol. 2, pp. 1940-1947 2001.

[3] J. J. Ku�ner, Jr and S. M. LaValle. RRT-connect : an
e�cient approach to single-query path planning.
Robotics and Automation, IEEE, Vol. 2, pp. 995-1001,
2000.

[4] S. M. LaValle, M. S. Branicky and S. R. Lindemann.
On the relationship between classical grid search and
probabilistic roadmaps. Journal of Robotics Research,
Vol. 23, Num. 7-8, pp. 673-692, 2004.

[5] C. W. Warren. Fast path planning using modi�ed A∗

method. Robotics and Automation, IEEE, Vol. 2, pp.
662-667, 1993.

[6] K. Azarm and G. Schmidt. Integrated mobile robot
motion planning and execution in changing indoor
environments. Intelligent Robots and Systems, IEEE,
Vol. 1, pp. 298-305, 1994.

[7] M. Herman. Fast, three-dimensional, collision-free
motion planning. Robotics and Automation, IEEE,
Vol. 3, pp. 1056-1063, 1986.

[8] J. Rosell, C. Vázquez and A. Pérez. C-space
decomposition using deterministic sampling and
distances. Intelligent Robots and Systems, IEEE, pp.
15-20, 2007.

[9] M. Deloura, ed. Section 4.11: Game programming
gems I. Charles River Media, 2000.

[10] G. van den Bergen. E�cient collision detection of
complex deformable models using AABB trees.
Journal of Graphics Tools, Vol. 2, Num. 4, 1997.

[11] P. E. Hart, N. J. Nilsson and B. Raphael. A formal
basis for the heuristic determination of minimum cost
paths. Systems Science and Cybernetics, IEEE, Vol. 4,
Num. 2, pp. 100-108, 1968.

