IMGD 5100: Immersive HCI

Augmented Reality

Robert W. Lindeman
Associate Professor
Interactive Media & Game Development
Department of Computer Science
Worcester Polytechnic Institute
gogo@wpi.edu
Motivation

- **Augmented Reality**
 - Mixing of real-world (RW) and computer-generated (CG) stimuli
 - Graphical overlays on the real world
 - Adding information to real experiences

- Much work on visual sense

- Can be extended to auditory sense
 - Other senses?

- For the user to merge RW and CG, attributes must be matched
 - Visual: Lighting & shadows, level of fidelity
 - Audio: CG and RW sound occlusion and reflection
Real-World Stimulus Paths

- **Direct**

Real-World Signal → Environment → Sensory Subsystem → Nerves → Brain

- **Captured/Mediated**

Real-World Signal → Environment → Capture Device → Post-Processing → Captured Signal
Visual Sense

- Projection
 - Mixing in the environment (far)
Visual Sense (cont.)

- Optical-see-through AR
 - Mixing in the environment (near)
Visual Sense (cont.)

- Video-see-through AR
 - Mixing in the Computer
Video-See-Through HMD

Video-See-Through HMD (cont.)

Video-See-Through HMD (cont.)

- NVIS: nVisor MH60-V (2010)

Using Visual AR: SDKs

- ARToolKit
 - Earliest usable kit
 - Now Open Source (free)
 - Commercial versions for iPhone & Android

- Studierstube ES & Tracker
 - http://studierstube.icg.tu-graz.ac.at/handheld_ar/
 - ES sits on top of Tracker
 - Not free
Using Visual AR: SDKs Examples

- ARToolKit
 - http://www.youtube.com/watch?v=5M-oAmBDcZk
 - (local clip)

- Studierstube ES
 - http://www.youtube.com/watch?v=JwluCuVKO9c
 - (local clips)
Using Visual AR: Tools

- Google SketchUp + ARMedia Plugin
 - http://www.youtube.com/watch?v=wsQ-YGgVUT0
 - (local clip)
 - (live demo)
 - http://sketchup.google.com/

- Layar for mobile devices
 - Layering tool for layar browser
 - "Like HTML for AR"
 - (local clip)
Using Visual AR: Tools (cont.)

- Cereal?
 - http://www.youtube.com/watch?v=jGdSslAJRwM
 - (local clip)

- Slot Cars?
 - http://www.youtube.com/watch?v=WMWEYqYPDfc
 - (local clip)

- Magic Tricks?
 - http://www.youtube.com/watch?v=Mk1xjbA-ISE
 - (local clip)

- Heads-up Display in Cars (play GE clip)
- Mobile AR (play Nokia clip)
- Mobile 3rd Party
 - http://news.bbc.co.uk/2/hi/technology/8193951.stm
Sound Paths & Mixing Points

- Typical VR/AR systems use speakers (1) or headphones (2a)
- Our approach performs the mixing at the cochlea (2b)
Auditory Sense

- Acoustic-Hear-Through AR (Speakers)
 - Mixing in the environment (far)
Auditory Sense (cont.)

- Mic-Through AR
 - Mixing in the computer
Auditory Sense (cont.)

- **Hear-Through AR**
 - Bone conduction
 - Mixing at the sensory subsystem
Bone-Conduction Example

The sound of your own voice is a combination of:
- Sound reaching your ears through the air
- Vibrations reaching your cochlea through your head

Example
- Sound heard through the air
- Sound heard through the head
- Combined sound

Mauldin & Scordilis, 2004
Research Questions

☐ How well can people localize sound using bone conduction?

☐ What types of sound works best?
 ■ Ambient sound
 ■ Spoken voice
 ■ Sound FX
 ■ Music

☐ We looked at basic sounds (sine waves) of various frequencies
 ■ Stationary and moving sounds
Design of the User Study

- 24 Computer science students (22 male)
- 3 Main treatments (Audio Devices)
 - Speakers, Headphones, Bone-Conduction Device
- Each subject performed 63 trials with each device
 - 3 Frequencies
 - Low (200Hz), Medium (500Hz), High (1kHz)
 - 7 sound samples (5 sound locations + 2 directions)
 - Left, Center-Left, Center, Center-Right, Right
 - Moving, right-to-left moving
 - 3 repetitions of each combination
 - \(3 \times 7 \times 3 = 63\)
User Study

- Physical/Virtual sound locations

Diagram:
- CENTER
- CENTER-LEFT
- CENTER-RIGHT
- LEFT
- RIGHT

θ = 45°
r = 1m
User Study (cont.)

- Each sample was played for 1 second
- Subjects wore a blindfold
- No HRTFs used
- Subjects had to identify location/direction
Results

- Accuracy for **Stationary** Sounds
 - Speakers > headphones > bone conduction
 - High-Freq. == Low Freq., both > Medium Freq.

- Accuracy for **Moving** Sounds
 - Speakers == Bone conduction
 - Bone Conduction == Headphones
 - Speakers > headphones \((\alpha = .05)\)

<table>
<thead>
<tr>
<th>Audio Device</th>
<th>Stationary</th>
<th>Moving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>HIGH</td>
<td>LOW</td>
</tr>
<tr>
<td>Interaction</td>
<td>(ns)</td>
<td>(ns)</td>
</tr>
</tbody>
</table>
Results (cont.)

Problems with the "in-between" locations

- Center-Left/Center-Right
Analysis

- Real-world sound
 - High fidelity
 - Low control

- Computer-generated sound
 - Low(er) fidelity
 - Complete control

- Later mixing point = Closer to the brain
 - More personalized, but
 - More processing for transforming and mixing
Analysis (cont.)

- Bone-conduction/headphone approaches
 - Require head tracking for CG sound
 - Require processing for spatialization (e.g., HRTF or BRTF)

- Speaker-based
 - Allows for shared experience (like projection systems in visual field)
Haptic Sense

Mixing in Computer (teleoperation) or in Environment
(Immersion CyberGrasp)

Mixing at Sensory Subsystem
(Novint Falcon)
Haptic Sense (cont.)

Mixing in the Environment (Lindeman, VRST 2004)
Olfactory Sense

Mixing in the Environment (far)
[AirCanon (Yanagida et al., 2004)]

Mixing in the Computer
(Hirose et al. 1997)
Olfactory Sense (cont.)

Mixing in the Environment (mid)
[AirCanon (Yanagida et al., 2004)]

Mixing in the Environment (near)
(Nakamoto & Min, 2007)
Gustatory Sense

- Bite interface
 - Really haptics (near)

Iwata, 2004
(photos: Sid Fels)
Gustatory Sense (cont.)

- Edible bits
- Straw-like interface
 - Mixing in the env.

(Maynes-Aminzade, 2005)
(Nakamoto, 2007)
Gustatory Sense (cont.)
Final Thoughts

- What about a 3D printer+robot arm?
- RW stimuli
 - High fidelity / low control
- CG stimuli
 - Low(er) fidelity / complete control
- Later mixing point = more "personal" stimuli
 - Closer to the brain
- Multi-sensory approaches are interesting
 - Compensate for weaknesses in one sense with another sense
 - Use speakers for environmental, bone-conduction for virtual characters