

IMGD 5100: Immersive HCI

Output Devices - Visual

Robert W. Lindeman

Associate Professor Interactive Media & Game Development Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu

2

Overview

 Here we are concerned with technology for stimulating the senses

Motivation

- We need to display the state of the world to the user
 - Display: a method of presenting information to any of the senses
- □ We need to display the user to the user (maybe)
- We need to feed each sense appropriately
- □ We need to feed multiple senses in concert
 - Display for one sense shouldn't get in the way of display for another sense
- □ May need to quickly don/doff displays

Some Things to Remember

- Humans are animals, and hence, have evolved over time.
- Evolutionary forces have guided the development of our senses.
- Displays that leverage this fact have a better shot of being effective.

General Types of Displays

□The senses

- Visual
- Auditory
- Haptic
- Olfactory
- Gustatory
- Display anchoring
 World-fixed displays
 - View-fixed displays
 - Body-worn displays
 - Hand-held displays

Visual Display Types

- World-fixed displays
 Fishtank VR
 - Projection VR
- Body-worn displays
 - Opaque HMDs
 - Transparent HMDs
- Hand-held displays
 - Palm VR
 - Boom-mounted screens
 - Mobile devices

Visual Display Types

- Monitors
 - CRT, Plasma, LCD
- □ Surround-screens (e.g., CAVEs)
- Tabletops
- Hemispheric displays
- Head-mounted displays (HMDs)
- Arm-mounted displays
- Virtual retinal displays
- Autostereoscopic displays
- □ 3D displays

Visual Displays

CAVEs

Visual Displays (cont.)

CAVE

Head-Mounted Displays (HMDs)

Visual Cues

- Depth is the main thing added by VR to more-traditional displays
 - How do we perceive depth?
- Monoscopic cues
- □ Stereoscopic cues
- □ Motion-depth cues
- Physiological cues

Monoscopic Cues

- Overlap (Interposition)
- □Shading & shadows
- Size
- □ Linear perspective
- Texture gradient
- Height in the image
- Atmospheric effects

Brightness

Stereoscopic Cues

- This is based on the parallax of objects appearing in two images.
- Camera 1 / camera 2 effect
- Only good within about 5 meters of viewer

Motion Depth Cues

- Changing relative position of head and objects
- □ Can be user and/or object moving
 - Train leaving a station
 - Use proprioception to disambiguate

http://www.youtube.com/watch?v=1AZAbSXmeoI

Motion Depth Cues (cont.)

Head movement

Physiological Cues

The eye changes during viewing

- Accommodation
 - Muscular changes of the eye

Convergence

Movements to bring images to same location on both retinas

Properties of Visual Displays

- Color
- □ Spatial resolution
- Contrast
- Brightness
- Number of channels
- Focal distance
- Opacity
- Masking
- □ Field of view
- □ Field of Regard

- Head position info
- □ Graphics latency
- □ Frame rate

Number of Display Channels

- Spatial multiplexing
 - Different image in front of each eye
- Temporal multiplexing (time interlacing)
 Use shutter glasses
- Polarization multiplexing
 Use polarized glasses
- Spectral multiplexing
 Red/blue left-eye/right-eye images
- Binocular monoscopic

Stereo takes twice the resources!

Masking

- How physical objects block virtual ones
- □CAVE: Hands can break effect
- □ HMD: Not at all
- Fishtank: Display edges/bezel can break effect

http://www.youtube.com/watch?v=Jd3-eiid-Uw&fmt=18

WPI

Field of View vs. Field of Regard

□ Field of view (FOV)

How much of the scene (in degrees) is visible at any given time

□ Field of regard (FOR)

Amount of space (in percent) of the virtual world is currently surrounding the user

Examples

CAVE: 200° FOV facing forward, 75% FOR
 HMD: 100° FOV, 100% FOR

Change Blindness

- □ There is so much information for the brain to process, we need to filter
- □Change blindness is when we miss things that change from one instant to another
 - http://www.youtube.com/watch?v=mAnKvo-fPs0

□ A public service announcement:

http://www.youtube.com/watch?v=Ahg6qcgoay4&NR=1

□ Next example from:

http://www.psych.ubc.ca/~rensink/flicker/

Show Movie

Change Blindness

24

Change Blindness (answer)

Change Blindness (answer)

