IMGD 5100:
Immersive HCI

Immersion & Game Play

Robert W. Lindeman
Associate Professor
Interactive Media & Game Development
Department of Computer Science
Worcester Polytechnic Institute
gogo@wpi.edu
What *is* Immersion?

- “Being There”
- Being in *Flow*
- Natural interaction that recedes into the background
- Tapping into personal experience
Being There: Remote Physical Environment

- Phone
- Video conference
- Teleoperated robots
Being There: Virtual Environment

- Video game
- Immersive learning environment
 - Immersive chemistry
- Surgical simulation
- MMO
Being There: Real Environment

- Hand-held mobile device
 - iPhone/iPad/Android
 - DS/PSP

- In-vehicle system
 - Navigation
 - Traffic

- Augmented Reality (AR)
Being There:
Described Environment

☐ Books
☐ Movies
☐ Phone sex
What Makes a Good Game?

- "A great game is a **series** of *interesting* and *meaningful choices* made by the player in pursuit of a *clear* and *compelling goal.*" - Sid Meier

- "Natural Funativity"
 - Survival-skill training
 - Need to have player develop a set of skills with increasing levels of difficulty
 - Putting them to the test = mission, quest, level, *etc.*
 - Prize at the end (or in the middle)
Structure of Games

- Movies have linear structure
 - No choice by viewer

- Games must provide "interesting and meaningful choices"
 - Otherwise, user is not in control

- Random death is frustrating!
Being in Flow

- Introduced by Mihály Csíkszentmihályi
 - Heightened sense of perception
 - Highly focused on primary task
 - In the "sweet spot" between frustration and boredom

- Athletes often report this
- Video gamers too
Getting the balance right is the key to success

Flow

M. Csikszentmihalyi, "Flow, The Psychology of Optimal Experience"

Figure 2.1.8 A better flow.

Chapter 2.1, Introduction to Game Development
Convexity of Game Play

- Need to provide choices

FIGURE 2.1.6 *A series of convexities.*
Flow: Sample Game

- flOw
- Game written by Jenova Chen
- Research into adaptive difficulty
 - How can we keep people in flow?
 - Player doing poorly, make it easier
 - Player doing well, make it harder
- Play Demo
- http://www.jenovachen.com/
Convexity + Flow

Utilizing both can lead to a great game

![Ideal Game Difficulty Progression](image)

FIGURE 2.1.9 Better flowing through convexities.
Characterizing Flow

- A challenge activity that requires skills
- The merging of action and awareness
- Clear goals
- Direct feedback
- Concentration on the task at hand
- The sense of control
- The loss of self-consciousness
- The transformation of time
Natural Interaction

- Recedes into the background
 - Low cognitive load for interaction techniques
 - Visual (and other) feedback can be easily digested
 - Low cumber
The Role of Personal Experience

- We all filter our senses
- Variations in sight, hearing, etc.
- My childhood versus yours
- My mood
- Can we harness this?
Deconstructing **Petrified**

- First-person, multi-player, team-based horror/survival game
- Two teams
 - Humans (*Mortals*):
 - People trapped in the cemetery
 - Need to survive until dawn
 - Statues (*Watchers*):
 - Tombstones
 - Need to convert Humans to Statues
Deconstructing *Petrified* (cont.)

- Main game mechanics
 - Watchers (Statues) can
 - Move when not being looked at by Mortals
 - Occupy another unoccupied statue anytime
 - Swipe at Mortals (short-range attack)
 - Mortals (Humans) can
 - Look at Watchers
 - Move freely
 - Work together
Petrified: Walkthrough (1/6)
Petrified: Walkthrough (2/6)
Petrified: Walkthrough (3/6)
Petrified: Walkthrough (4/6)
Petrified: Walkthrough (5/6)
Petrified:
Walkthrough (6/6)
Petrified: Watcher Movement
Petrified:
Watcher “Swapping”
Question for Discussion:
Is *Petrified* Balanced?

☐ Does one team have an advantage?
☐ If you were a Mortal, how would you play?
☐ If you were a Watcher, how would you play?
☐ What improvements/changes could you make to the game?
Petrified Modifications:

Flashsticks
Petrified Modifications: Balancing the Mortals

- Flashstick compensates for weak Mortals
- Skilled Mortal can survive forever
Petrified Modifications: Balancing the Watchers

- Range Attack Balances Watchers
 - Mortals cannot “camp out”

- Provides incentive for Watchers to move about/chase Mortals

- (Show Clip)
Different Level Flow Models

- Linear
- Bottlenecking
- Branching
- Open
- Hubs and Spokes
Level Flow Model: Linear

- Start on one end, end on the other
- Challenge in making a truly interesting experience
 - Often try with graphics, abilities, etc.
 - Ex: *Half-life*, ads great story
- Used to a great extent by many games
Level Flow Model: Bottlenecking

- Various points, path splits, allowing choice
 - Gives feeling of control
 - Ex: Choose stairs or elevator

- At some point, paths converge
 - Designer can manage content explosion
 - Ex: must kill bad guys on roof
Level Flow Model: Branching

- Choices lead to different endings
- User has a lot of control
- Design has burden of making many interesting paths
 - Lots of resources

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development
Level Flow Model: Open

- Player does certain number of tasks
 - Outcome depends upon the tasks.

- Systemic level design
 - Designer creates system, player interacts as sees fit

- Sometimes called “sandbox” level. (Ex: GTA)
Level Flow Model: Hub and Spokes

- Hub is level (or part of a level), other levels branch off
 - Means of grouping levels
- Gives player feeling of control, but can help control level explosion
- Can let player unlock a few spokes at a time
 - Player can see that they will progress that way, but cannot now
Designing a Level: Brainstorming

- An iterative process
 - You did it for the initial design, now do it for levels!
- Create wealth of ideas, on paper, post-it notes, whatever
 - Can be physical sketches
- Can include scripted, timed events (not just gameplay)
- Output
 - Cell-diagram (or tree)
Designing a Level: Cell Diagram

- String out to create the player experience
- Ordered, with lesser physical interactions as connectors (i.e., hallways)
QuakeII-DM1: An Example

- Video (Q2DM1_Layerout.avi)
 - level layout
QuakeII-DM1: Architecture

- Two major rooms
- Connected by three major hallways
- With three major dead-ends
- No place to hide
- Forces player to keep moving
 - Camping is likely to be fatal
QuakeII-DM1: Item Placement

- Cheap weapons are easy to find
- Good weapons are buried in dead ends
- Power-ups require either skill or exposure to acquire
- Sound cues provide clues to location
 - Jumping for power-ups
 - Noise of acquiring armor
- Video (Q2DM1_Weapons.avi)
 - Weapon placement
QuakeII-DM1: Result

- A level that can be played by 2-8 players
- Never gets old
- Open to a variety of strategies