IMGD 5100: Immersive HCI

Introduction

Robert W. Lindeman
Associate Professor
Interactive Media & Game Development
Department of Computer Science
Worcester Polytechnic Institute
gogo@wpi.edu
Course Goals

- Learn about designing, building, and evaluating immersive interfaces
- Look at how humans function
- Look at application areas
- Look at usage environments
- Understand the main problems/sub-fields
- Build something cool!
Assignments

- 2-3 Assignments
 - Each uses different technologies

- Paper summaries
 - You will write short summaries for several papers

- Final Project
 - Done in groups of two
 - Go deeper into one application/technology
 - Evaluate your system with a user study
Final project

☐ Choose
 ■ User population
 ■ Application
 ■ Usage environment (e.g., mobile)

☐ Choose I/O devices/techniques

☐ Design the application

☐ Design the interface & interaction

☐ Build the system

☐ Assess the result
Assignments

☐ Can be done in teams
 ■ Clearly define what each member will be responsible for

☐ Can use any software/language you like

☐ Samples
 ■ OpenGL, DirectX, Java3D, OpenSceneGraph, OpenSG, FreeVR, Android, iphone
 ■ Game-engine code

☐ Resources
 ■ HIVE has many devices for you to use.
 ■ Field trip later in the semester
 ■ Android phones
What is Virtual Reality?

☐ You tell me!
Virtual Reality Systems

- 1929 – Link Flight Simulator
- 1946 – First computer (ENIAC)
- 1956 – Sensorama
- 1960 – Heileg’s HMD
- 1965-68 – The Ultimate Display
- 1972 – Pong
- 1976 – Videoplace
- 1977 – Apple, Commodore, and Radio Shack PCs
- 1979 – First Data Glove [Sayre] (powerglove -89)
- 1981 – SGI founded
- 1985 – NASA AMES
- 1986-89 – Super Cockpit Program
- 1990s – Boom Displays
- 1992 – CAVE (at SIGGRAPH)
- 1995 – Workbench
- 1998 – Walking Experiment
Link Flight Simulator

- 1929 - Edward Link develops a *mechanical flight simulator*
- Train in a synthetic environment
- Used mechanical linkages
- Instrument (blind) flying

Sensorama

Morton Heilig, 1956

Motorcycle simulator - all senses
- visual (city scenes)
- sound (engine, city sounds)
- vibration (engine)
- smell (exhaust, food)

Extend the notion of a ‘movie’
Heilig's HMD (1960)

Simulation Mask from Heilig’s 1960 patent

- 3D photographic slides
- WFOV optics with focus control
- Stereo sound
- Smell
Ivan Sutherland

- The Ultimate Display (FIPS 1965)
 - Data Visualization: “A display connected to a digital computer...is a looking glass into a mathematical wonderland.”
 - Body Tracking: “The computer can easily sense the positions of almost any of our body muscles.”
Virtual Environments that mimic real environments: “A chair display in such a room would be good enough to sit in. Handcuffs displayed in such a room would be confining, and a bullet displayed in such a room would be fatal.”

VEs that go beyond reality: “There is no reason why the objects displayed by a computer have to follow ordinary rules of physical reality with which we are familiar.”
First HMD-Based VR

1965 - The Ultimate Display paper by Sutherland
1968 - Ian Sutherland’s HMD
Molecular Docking Simulator

- Incorporated force feedback
- Visualize an abstract simulation
Data Gloves

- Light, electrical or metal detectors compute “bend”
- Electrical sensors detect pinches
- Force feedback mechanical linkages
1985 - NASA Ames HMD

- McGreevy and Humphries
 - Wearable immersive HMDs
 - LCD “Watchman” displays
 - LEEP Optics

- Led to VIVID, led by Scott Fisher
FakeSpace Boom Display: Early 1990s
CAVE - 1992
Virtual Workbench-1995
(Responsive Workbench, Immersidesk, etc.)
Current Best VE

- UNC Pit Experiment
- Fear of Heights a Strong Response
- Thousands of visitors
- Compelling Experience
 - Haptics
 - Low Latency
 - High Visual Quality
VPL Founded - 1985

- First VR Company
- VPL Research by Jaron Lanier and Thomas Zimmerman
 - Data Glove
 - Term: Virtual Reality
1995 - Effectiveness of computer-generated (VR) graded exposure in the treatment of acrophobia in *American Journal of Psychiatry*
Major Reinvigoration: Hardware Evolution

- High expense
- PC performance surpasses Graphics supercomputers
 - SGI RealityEngine (300k tris – 1993)
 - XBOX (150 mil tri/sec - 2001)
 - XBOX360 (500 mil tri/sec - 2005)
 - WiiMote/MotionPlus
 - Sony MOVE (SHOW MOVIE!)
 - MS Kinect (SHOW MOVIE!)
- Large LCDs are “cheap”
- 3D displays are here
 - Useful?
Why Study Immersive HCI?

- Relevant to real-world tasks
 - Can use familiarity to ease adaptation
 - Can increase realism of experience

- Mature technology
 - Cheap, robust solutions
 - Need to create interface mappings

- 3D interaction is difficult
 - Many VR/gaming systems lack necessary cues
 - Adapting WIMP techniques is not adequate
Why Study Immersive HCI? (cont.)

- Current approaches are either too simple or unusable
 - Since users have problems, dumb it down!
 - Need to be able to perform all actions though!

- Ripe area for study
 - Very hot area of HCI
 - We know *a lot* about doing things in 2D
 - And also about doing things in the real world
 - Mobile wearable systems emerging
A Brief History (cont.)

- HCI draws on
 - Perception
 - Cognition
 - Linguistics
 - Human factors
 - Ethnography
 - Graphic design
 - Computer science
 - ...

A Brief History (cont.)

- Technology developments also drove growth
 - Flight simulators
 - 3D Graphics
 - Augmented Reality (AR)
 - Virtual Reality (VR)
 - Flight
Basic Interaction Tasks in VR (Bowman et al.)

- **Object Selection**
 - What do I want to manipulate?

- **Object Manipulation**
 - How can I manipulate it?

- **Navigation**
 - Wayfinding: How do I know where I am, and how to get where I am going?
 - Travel: How do I get there? (locomotion)

- **System Control**
 - How do I change system parameters?

- **Symbolic Input**
 - Inputting text and numbers
World Builder (Bruce Banit)

- Concept film
- Can you spot the different tasks?
Dealing with Objects

- Problems
 - Ambiguity
 - Distance

- Selection Approaches
 - Direct / enhanced grabbing
 - Ray-casting techniques
 - Image-plane techniques

- Manipulation Approaches
 - Direct position / orientation control
 - Worlds in miniature
 - Skewers
 - Surrogates

Courtesy: D. Bowman
Navigation: Wayfinding

- People get lost/disoriented easily

- Traditional tools
 - Maps (North-up vs. Forward-up)
 - Landmarks
 - Spoken directions

- Non-traditional
 - Callouts
 - Zooming

Images: http://vehand.engr.ucf.edu/handbook/Chapters/Chapter28/Chapter28.html
Navigation: Travel

- Problems
 - Limited physical space, unlimited virtual space
 - Cables

- Approaches
 - Fly where you point/look
 - Treadmills
 - Walking in place
 - Big track ball

Image: www.virtusphere.com
System Control

- Need to manipulate widgets
 - Lighting effects
 - Object representation
 - Data filtering

- Approaches
 - Floating windows
 - Hand-held windows
 - Gestures
 - Menus on fingers
System Control Examples

Courtesy: R. Lindeman

Courtesy: D. Bowman
User, Task & Environment

- The "optimal" interface will depend on the capabilities of the user, the nature of the task being performed, and the constraints of the environment.

- User
 - Dexterity, level of expertise

- Task
 - Granularity and complexity of task

- Environment
 - Stationary, moving, noisy, etc.
Direct Manipulation
Can We Do WIMP in VR?

specifications
- Shell 5, 1Basem 15' x 15'
- Space (x x y z h): 29.3, 13.8, 9.7
- Copies x(-2 - 4) y(0 - 4) z(-1 - 4)
- W(4.3) V(4.6) D(4.8)
Desktop Interaction: SensAble PHANTom
Wearable Interaction with Haptics: Immersion CyberGrasp

http://www.immersion.com/
Wearable Interaction: Rob's *Hand-Held Windows*
How Do We Do Menus?
Interface Devices
Augmented Reality (AR)
AR (cont.)

- Wearable mobile systems emerging
 - Google Glass
 - Epson Moverio
 - Just Android phones with special modifications
 - iPhone 6?
Google Project Glass

- Concept videos
- How does the user interact?