
IMGD 4000
Technical Game Development II

Advanced Pathfinding

Robert W. Lindeman
Associate Professor

Interactive Media & Game Development
Human Interaction in Virtual Environments (HIVE) Lab

Department of Computer Science
Worcester Polytechnic Institute

gogo@wpi.edu

2

A* Pathfinding Search
 Covered in detail in IMGD 3000
 See pseudo-code and links to reference

code at
http://web.cs.wpi.edu/~gogo/courses/
imgd3000_2011c/slides/imgd3000_08_AI_A_Star.pdf
 Basic A* is what you should use for

Ghoulie movement (if you choose that
option)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

3

Practical Path Planning
 Just raw A* is often not enough
 Also need:

 Navigation graphs
 points of visibility (POV)
 Navigation mesh (NavMesh)

 Path smoothing
 Compute-time optimizations
 Hierarchical pathfinding
 Special case methods

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Basic Navigation Graph
Construction (cont.)
 Downside:

 Modest 100x100 cell map has 10,000 nodes
and 78,000 edges

 Can burden CPU and memory, especially if
multiple AI’s calling in

Rest of lecture is a survey about how to do better...

4	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

5

Point of Visibility (POV)
Navigation Graph

 Place graph nodes (usually by hand) at
important points in environment, such
that each node has line of sight to at least
one other node

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

6

POV Navigation

  Find closest visible node (a) to current location
  Find closest visible node (b) to target location
 Search for least cost path from (a) to (b), e.g., A*
 Move to (a)
  Follow path to (b)
 Move to target location note “backtracking”	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

7

Blind Spots in POV

 No POV point is visible from red spots!
 Easy to fix manually in small graphs
 A problem in larger graphs
R.W. Lindeman - WPI Dept. of Computer Science

 Interactive Media & Game Development	

8

POV Navigation
 Advantage

  Obvious how to build and expand

 Disadvantages
  Can take a lot of developer time, especially if design is

rapidly evolving
  Problematic if random or user generated maps
  Can have “blind spots”
  Can have “jerky” (backtracking) paths

 Solutions
1.  Automatically generate POV graphs
2.  Make finer grained graphs
3.  Path smoothing

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

9

Automatic POV by
Expanded Geometry
1.  Expand geometry by

amount proportional
to bounding radius of
agents

2.  Connect all vertices
3.  Prune non-line-of-

sight points

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

10

NavMesh
 Partition open space
 into a network of
 convex polygons
 Why convex?
 Guaranteed to be path from
 any point to any point inside

 Very efficient to search
 Can be automatically generated from

arbitrary polygons
 Becoming very popular

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

11

Finely Grained Graphs

 Improves blind spots and path smoothness
 Typically generate automatically using “flood

fill”
 Back to similar performance issues as tiled

graphs
R.W. Lindeman - WPI Dept. of Computer Science

 Interactive Media & Game Development	

12

Flood Fill

 Same algorithm
as in “paint”
programs

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

13

Path Finding in
Finely Grained Graph

 Use A* or Dijkstra depending on whether
looking for one or multiple targets

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

14

Problem: Kinky Paths

The solution: Path smoothing

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

15

Simple Smoothing Algorithm

 Check for “passability” between adjacent edges

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

16

Smoothing Example

E1	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

17

Methods to Reduce CPU Overhead

shortest path table
(next node)	

path cost table	

time/space tradeoff	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

18

Hierarchical Path Planning

 Reduces CPU overhead
  Typically two levels, but can be more
  First plan in high-level, then refine in low-level

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

19

Getting Out of Stuck Situations

•  Bot gets “wedged” against wall	

•  Looks really bad!	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

20

Getting Out of Stuck Situations
 Heuristic:

 Calculate the distance to bot’s current
waypoint each update step

 If this value remains about the same or
consistently increases
 then it’s probably wedged, so backup and replan

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Time Slicing -- Sketch
 When there are many NPC’s making calls on

the pathfinding module at the same time,
the CPU can get dragged down...

 Solution?
 Evenly divide fixed CPU pathfinding budget

between all current callers
  Implies that caller may have to wait for answer

 What should NPC do while it is waiting for
path?
 Do not just “block”
 Start moving in “general direction” of target

21 R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Time Slicing and Smoothing

22

without smoothing	

 smoothed	

Smoothing is really needed if doing time slicing:	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

23

Advanced Pathfinding Summary
 You would not necessarily use all of these

techniques in one game

 Only use whatever your game demands
and no more

 For reference C++ code see
http://samples.jbpub.com/9781556220784/Buckland_SourceCode.zip

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Thanks Chuck!
 Thanks to Chuck Rich for this material!

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

24	

