
IMGD 4000
Technical Game Development II
Procedural Content Generation

Robert W. Lindeman
Associate Professor

Interactive Media & Game Development
Human Interaction in Virtual Environments (HIVE) Lab

Department of Computer Science
Worcester Polytechnic Institute

gogo@wpi.edu

Procedural Content Generation
 The algorithmic creation of game content

with limited or indirect user input1

 or
 Computer software that can create game

content on its own, or together with one
or many human players or designers1

2

1Togelius, J., Kastbjerg, E., Schedl, D., Yannakakis, G.N., What is procedural content generation?: Mario on the
borderline. Proc. of the 2nd Workshop on Procedural Content Generation in Games (2011)	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Game Content?
 Levels, tracks, maps, terrains, dungeons,

puzzles, buildings, trees, grass, fire, plots,
descriptions, scenarios, dialogue, quests,
characters, rules, boards, parameters,
camera viewpoint, dynamics, weapons,
clothing, vehicles, personalities...

 Wow! Just about anything!
 Except NPC behavior (this is AI)
 More on this later!

3	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

History:
Runtime Level Generation
 Rogue (1980)

4	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

History:
Runtime Level Generation
 Tribal Trouble (2005)

5	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

History:
Runtime Level Generation
 Civilization IV (2005)

6	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

History:
Runtime Level Generation
 Dwarf Fortress (2007)

7	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

History:
Runtime Level Generation
 Diablo (2008)

8	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

History:
Runtime Level Generation
 AaaaaAAaaaAAAaaAAAAaAAAAA (2009)

9	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

History:
Foliage Generation
 SpeedTree (Oblivion, 2009)

10	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Terrain Generation:
Can be Based on Physics

11	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

The Future?
 Can we drastically cut game development

costs by creating content automatically from
designers’ intentions?

 Can we create games that adapt their game
worlds to the preferences of the player?

 Can we create endless games?
 Can the computer circumvent or augment

limited human creativity and create new
types of games?

12	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Procedural Dungeon Generation
 In general

 PCG > Randomness

 Can think of approaches as
 Online vs. Offline
 Necessary vs. Optional
 Random seed vs. Parameter vectors
 Stochastic vs. Deterministic
 Constructive vs. Generate-and-test

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

13	

Online vs. Offline
 Online

 As the game is being played
 What could be the downside of this?
 What is the upside?

 Offline
 During development/building of the game
 What could be the downside of this?
 What is the upside?

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

14	

Necessary vs. Optional
 Necessary content

 Content the player needs to pass in order to
progress

 Move the story along, solve a puzzle, etc.

 Optional content
 Can be discarded, or bypassed, or exchanged

for something else
 Background things, like terrain, forest, non-

essential characters, etc.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

15	

Stochastic vs. Deterministic
 Deterministic

 Given the same starting conditions, always
creates the same content

 Stochastic
 The above is not the case

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

16	

Random Seeds vs.
Parameter Vectors
 Also known as Dimensions of Control
 Can we specify the shape of the content in

some meaningful way?

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

17	

Constructive vs.
Generate-and-test
 Constructive

 Generate the content once, and be done with
it

 Generate-and-test
 Generate, test for quality, tweak, and re-

generate until the content is good enough

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

18	

Search-based Paradigm
 A special case of generate-and-test

 The test function returns a numeric fitness
value (not just accept/reject)

 The fitness value guides the generation of new
candidate content items

 Usually implemented through evolutionary
computation
 Genetic Algorithms

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

19	

Evolutionary Computation?
 Keep a population of candidates
 Measure the fitness of each candidate
 Remove the worst candidates
 Replace with copies of the best (least bad)

candidates
 Mutate/crossover the copies

 Can use all genetic operations (and some you
can make up!)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

20	

Procedural Dungeon Generation
 In general

 PCG > Randomness

 Space-Partitioning Algorithms
 Macro approach

 Agent-Based Dungeon Growing
 Micro approach

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

21	

Space-Partitioning
Approaches: Quad Trees
 Can partition the space, and choose how

to fill each leaf

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

22	

Space-Partitioning
Approaches: K-D Trees
 Special case of BSP Trees

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

23	

Space-Partitioning
Approaches: K-D Trees
 Add rooms and corridors

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

24	

Space-Partitioning
Approaches: K-D Trees
 Add a theme to the resulting dungeon

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

25	

Agent-Based Dungeon Growing
 Agent chooses what to do based on

different probabilities
 Keep going, turn, build a room, etc.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

26	

Agent-Based Dungeon Growing:
“Blind” Digger Code
1.  initialize chance of changing direction Pc=5
2.  initialize chance of adding room Pr=5

3.  place the digger at a dungeon tile and randomize its direction
4.  dig along that direction

5.  roll a random number Nc between 0 and 100
6.  if Nc below Pc:

7.  randomize the agent’s direction
8.  set Pc=0

9.  else:
10.  set Pc=Pc+5

11.  roll a random number Nr between 0 and 100
12.  if Nr below Pr:

13.  randomize room width and room height between 3 and 7
14.  place room around current agent position

15.  set Pr=0
16.  else:

17.  set Pr=Pr+5
18.  if the dungeon is not large enough:

19.  go to step 4

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

27	

Agent-Based Dungeon Growing:
“Look Ahead” Digger Code
1.  place the digger at a dungeon tile
2.  set helper variables Fr=0 and Fc=0
3.  for all possible room sizes:

4.  if a potential room will not intersect existing rooms:
5.  place the room

6.  Fr=1
7.  break from for loop

8.  for all possible corridors of any direction and length 3 to 7:
9.  if a potential corridor will not intersect existing rooms:

10.  place the corridor
11.  Fc=1

12.  break from for loop
13. if Fr=1 or Fc=1:

14.  go to 2

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

28	

Cellular Automata
 A discrete computational model

 An n-dimensional grid
 E.g., two-dimensional grid

 A set of states
 Simplest: ON/OFF

 A set of transition rules
 Decide what to do based on neighborhood

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

29	

Moore	

Neighborhood	

von Neumann	

Neighborhood	

Cellular Automata
 Number of possible configurations of a

neighborhood?
 Possible_StatesNumber_of_Cells

 E.g., for a two-state automata and a Moore
neighborhood of size 2,
 225 = 33,554,432

 Small neighborhoods usually use a lookup
 Each neighborhood configuration leads to a state

 Large neighborhoods usually use a proportion
of cells of each state

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

30	

Example: Infinite Caves*
  Each room is a 50x50 grid, where each cell can be

either empty or rock (2 states)
  Initially, each cell has a probability r (e.g., 0.5) that

it is rock
  Leads to relatively uniform rock distribution

 Apply a single rule to the grid for n (e.g., 2) steps
  A cell turns into rock in the next step if at least T (e.g., 5)

neighbors are rock, otherwise, it turns into free space

  For looks, rock cells that border empty space are
designated as “walls”, but function like rock

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

31	

*Johnson, L., Yannakakis, G.N., Togelius, J.: Cellular Automata for Real-time Generation of Infinite
Cave Levels. In: Proceedings of the ACM Foundations of Digital Games. ACM Press (2010)	

Example: Infinite Caves*
 Random vs. Cooked

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

32	

CA params: n =4, M=1, T=5	

Red=Wall White=Rock, Other=Floor clusters	

Example: Infinite Caves*
 Need to connect rooms, and smooth

 Drill at thinnest points, then run two more
iterations

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

33	

34	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Controlled Procedural
Terrain Generation

Using Software Agents

Adapted by Julian Togelius from
Jonathon Doran and Ian Parberry
Published in IEEE TCIAIG, 2010

35	

Five Agent Types
 Apply each of these agents in succession

 Coastline agents
 Smoothing agents
 Beach agents
 Mountain agents
 River agents

 Agent Rules
  Each agent has a number of “tokens” to spend on actions
  Each agent is allowed to see the current elevation around it,

and allowed to modify it
  Agents don’t interact directly

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

36	

In the beginning...
 ...there was a vast ocean.

 Then came the first coastline agent.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

37	

Coastline Agents
 Multiply until they cover the whole coast

 About 1000 necessary for this size map

 Move out to position themselves right at
the border of land and sea

 Generate a repulsor and an attractor point
 Score all neighboring points according to

distance to repulsor and attractor points
 Move to the best-scoring points, adding

land as they go along
R.W. Lindeman - WPI Dept. of Computer Science

 Interactive Media & Game Development	

38	

Coastline Agent Code

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

39	

Coastline Agents
 Varying action sizes (number of tokens)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

40	

Smoothing Agents
 Take random walks on the map
 Change the elevation of each visited point

to (almost) the mean of its extended von
Neumann neighborhood

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

41	

Smoothing Agent Code

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

42	

Beach Agents
 Select random position along the coast,

where coast is not too steep
 Flatten an area around this point (leaving

small variations)
 Move randomly a short direction away

from the coast, flattening the area

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

43	

Beach Agent Code

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

44	

Beach Agents
 Varying beach width

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

45	

Mountain Agents
 Start at random positions and directions
 Move forward, continuously elevating a

wedge, creating a ridge
 Turn randomly without 45 degrees from

the initial course
 Periodically offshoot “foothills”

perpendicular to movement direction

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

46	

Mountain Agent Code

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

47	

Mountain Agents
 Narrow vs. wide features

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

48	

River Agents
 Move from a random point on the coast

towards a random point on a mountain
ridge

 “Wiggle” along the path
 Stop when reaching too high altitudes
 Retrace the path down to the ocean,

deepening a wedge along the path

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

49	

River Agent Code

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

50	

River Agents
 A dry river, and the outflow of three rivers

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

51	

In What Order?
 Doran and Parberry suggest

 Coastline
 Landform
 Erosion

 But the “Implementation” suggests
random order

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

52	

Further Questions
 Parameters... what parameters?
 What features of landscapes do we want

to be able to specify?
 How can the human and the algorithm

interact productively?

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

53	

54	

Self Similarity
 Level of detail remains the same as we

zoom in
 Example

 Surface roughness, or silhouette, of mountains
is the same at many zoom levels

 Difficult to determine scale

 Types of fractals
 Exactly self-similar
 Statistically self-similar

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Example:
Ferns

55	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

56	

Fractals and Self-Similarity
 Exact Self-similarity

  Each small portion of the fractal is a reduced-scale
replica of the whole (except for a possible rotation
and shift).

 Statistical Self-similarity
  The irregularities in the curve are statistically the

same, no matter how many times the picture is
enlarged.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

57	

Fractal Coastline

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

58	

Examples of Fractals
 Modeling mountains (terrain)
 Clouds
 Fire
 Branches of a tree
 Grass
 Coastlines
 Surface of a sponge
 Cracks in the pavement
 Designing antennae (www.fractenna.com)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

59	

Examples of Fractals: Trees

 Fractals appear “the same” at every scale.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

60	

Examples of Fractals: Mountains

Images: www.kenmusgrave.com	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

61	

Examples of Fractals: Clouds

Images: www.kenmusgrave.com	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

62	

Examples of Fractals: Fire

Images: www.kenmusgrave.com	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

63	

Examples of Fractals: Comets?

Images: www.kenmusgrave.com	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

64	

Koch Curves
 Discovered in 1904 by Helge von Koch
 Start with straight line of length 1
 Recursively

 Divide line into three equal parts
 Replace middle section with triangular bump

with sides of length 1/3
 New length = 4/3

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

65	

Koch Snowflake
 Can form Koch snowflake by joining three Koch

curves
 Perimeter of snowflake grows as:

 where Pi is the perimeter of the ith snowflake
iteration

 However, area grows slowly as S∞ = 8/5!
 Self similar

  Zoom in on any portion
  If n is large enough, shape is the same
 On computer, smallest line segent > pixel spacing

€

Pi = 3 4 3()
i

www.jimloy.com	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

66	

Koch Snowflake

S3	

 S4	

 S5	

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

67	

Fractal Dimension – Eg. 2
The Sierpinski Triangle

!
"

#
$
%

&
=

s

ND
1

log

log

N = 3, s = ½
 ∴D =1.584

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

68	

Space-Filling Curves
 There are fractal curves which

completely fill up higher dimensional
spaces such as squares or cubes.

 The space-filling curves are also
known as Peano curves (Giuseppe
Peano: 1858-1932).

 Space-filling curves in 2D have a
fractal dimension 2.

You’re not expected to be able to prove this.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

69	

Space-Filling Curves

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

70	

Space-Filling Curves in 3D

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

71	

Generating Fractals
 Iterative/recursive subdivision techniques

 Grammar based systems (L-Systems)
  Suitable for turtle graphics/vector devices

 Iterated Functions Systems (IFS)
  Suitable for raster devices

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

72	

L-Systems
(“Lindenmayer Systems”)

 A grammar-based model for generating simple
fractal curves
  Devised by biologist Aristid Lindenmayer for modeling

cell growth
  Particularly suited for rendering line drawings of fractal

curves using turtle graphics

 Consists of a start string (axiom) and a set of
replacement rules
  At each iteration all replacement rules are applied to the

string in parallel

 Common symbols:
  F Move forward one unit in the current direction.
  + Turn right through an angle A.
  - Turn left through an angle A.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

73	

The Koch Curve
Axiom: F (the zeroth order Koch curve)
Rule: F → F-F++F-F
Angle: 60°

First order:

 F-F++F-F

Second order:

F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F

60

120

Order

0

1

2

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

74	

The Dragon Curve
Axiom: FX
Rules:
 F → ∅
 X → +FX––FY+
 Y → –FX++FY–
Angle: 45 °

At each step,
replace a straight
segment with a
right angled
elbow.

Alternate right and
left elbows.

FX and FY are
“embryonic” right
and left elbows
respectively.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

75	

L-System code
import turtle
turtle.speed(0) # Max speed (still horribly slow)

def draw(start, rules, angle, step, maxDepth):
 for char in start:
 if maxDepth == 0:
 if char == 'F': turtle.forward(step)
 elif char == '-': turtle.left(angle)
 elif char == '+': turtle.right(angle)
 else:
 if char in rules: # rules is a dictionary
 char = rules[char]
 draw(char, rules, angle, step, maxDepth-1)
Dragon example:
draw("FX",{'F':"",'X':"+FX--FY+",'Y':"–FX++FY–"}, 45, 5, 10)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

76	

Generalized Grammars
 The grammar rules in L-systems can be further

generalized to provide the capability of drawing
branchlike figures, rather than just continuous
curves.

 The symbol [is used to store the current state
of the turtle (position and direction) in a stack
for later use.

 The symbol] is used to perform a pop
operation on the stack to restore the turtle’s
state to a previously stored value.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

77	

Generalized Grammars
Fractal bush:
 S → F
 F → FF-[-F+F+F]+[+F-F-F]
 (A = 22 degs.)

Zero order bush
 F

First order bush
Fourth order bush
(with 90 deg. rotation)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

78	

Random Fractals
 Natural objects do not contain identical scaled

down copies within themselves and so are not
exact fractals.

 Practically every example observed involves
what appears to be some element of
randomness, perhaps due to the interactions of
very many small parts of the process.

 Almost all algorithms for generating fractal
landscapes effectively add random irregularities
to the surface at smaller and smaller scales.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

79	

Random Fractals
 Random fractals are

  randomly generated curves
that exhibit self-similarity, or

  deterministic fractals modified
using random variables

 Random fractals are used to
model many natural shapes
such as trees, clouds, and
mountains.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

80	

Random Midpoint Displacement
Algorithm (2D)

g A B
C   Subdivide a line segment into two

parts, by displacing the midpoint by
a random amount “g”. i.e., y-
coordinate of C is

 yC = (yA + yB)/2 + g

  Generate g using a Gaussian
random variable with zero mean
(allowing negative values) and
standard deviation s.

  Recurse on each new part
  At each level of recursion, the

standard deviation is scaled by a
factor (1/2)H
  H is a constant between 0 and 1
  H = 1 in the example on the right

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

81	

Midpoint Displacement Algorithm
(3D)
Square-Step:
Subdivide a ground square into
four parts, by displacing the
midpoint by a Gaussian
random variable g with mean
0, std dev s.
 i.e., Compute y-coordinate
of E as
yE = (yA + yB + yC + yD)/4 + g

Z

X

A B

C D

E

Do that for all squares in the grid
(only 1 square for the first iteration).
Then ...
R.W. Lindeman - WPI Dept. of Computer Science

 Interactive Media & Game Development	

82	

Diamond step
 To get back to a regular grid, we now need

new vertices at all the edge mid-points too.

 For this we use a diamond step:

Vertices before square step

New vertices from square step

Vertex from diamond step
(on an old edge midpoint).
Computed as in square step but
using the 4 diamond vertices.

Do this for all edges (i.e., all possible diamonds).

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

83	

Diamond step (cont’d)

“Reflect” vertices at grid edges to make diamonds there.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

84	

Diamond-Square Algorithm
 The above two steps

are repeated for the
new mesh, after
scaling the standard
deviation of g by
(1/2)H. And so on …

H=0.8

H=0.4

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

85	

Diamond Step Process

 1st pass 2nd pass 5th pass

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

86	

Height Maps
 The 2D height map obtained using the

diamond-square algorithm can be used to
generate fractal clouds.

 Use the y value to generate opacity.

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

87	

Useful Links
  Terragen – terrain generator

  http://www.planetside.co.uk/terragen/

  Generating Random Fractal Terrain
  http://www.gameprogrammer.com/fractal.html

  Lighthouse 3D OpenGL Terrain Tutorial
  http://www.lighthouse3d.com/opengl/terrain/

  Book about Procedural Content Generation
  Noor Shaker, Julian Togelius, Mark J. Nelson, Procedural Content

Generation in Games: A Textbook and an Overview of Current
Research (Springer), 2014.

  Book about Procedural Generation
 David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, Steve
Worley. Texturing and Modeling: A Procedural Approach (The
Morgan Kaufmann Series in Computer Graphics)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

Source for Most of this Material
 Much of the material covered in this

lecture came from excellent material from
a course on Procedural Content
Generation by Julian Togelius, and a good
book by Julian, Noor Shaker, and mark
Nelson from ITU:
 http://game.itu.dk/
 http://pcgbook.com/

R.W. Lindeman - WPI Dept. of Computer Science

 Interactive Media & Game Development	

88	

