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Procedural Content Generation 
 The algorithmic creation of game content 

with limited or indirect user input1 

 or 
 Computer software that can create game 

content on its own, or together with one 
or many human players or designers1 

2 

1Togelius, J., Kastbjerg, E., Schedl, D., Yannakakis, G.N., What is procedural content generation?: Mario on the 
borderline. Proc. of the 2nd Workshop on Procedural Content Generation in Games (2011)	
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Game Content? 
 Levels, tracks, maps, terrains, dungeons, 

puzzles, buildings, trees, grass, fire, plots, 
descriptions, scenarios, dialogue, quests, 
characters, rules, boards, parameters, 
camera viewpoint, dynamics, weapons, 
clothing, vehicles, personalities... 

 Wow! Just about anything! 
 Except NPC behavior (this is AI) 
 More on this later! 
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History: 
Runtime Level Generation 
 Rogue (1980) 
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History: 
Runtime Level Generation 
 Tribal Trouble (2005) 
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History: 
Runtime Level Generation 
 Civilization IV (2005) 
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History: 
Runtime Level Generation 
 Dwarf Fortress (2007) 
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History: 
Runtime Level Generation 
 Diablo (2008) 
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History: 
Runtime Level Generation 
 AaaaaAAaaaAAAaaAAAAaAAAAA (2009) 
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History: 
Foliage Generation 
 SpeedTree (Oblivion, 2009) 
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Terrain Generation: 
Can be Based on Physics 
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The Future? 
 Can we drastically cut game development 

costs by creating content automatically from 
designers’ intentions? 

 Can we create games that adapt their game 
worlds to the preferences of the player? 

 Can we create endless games? 
 Can the computer circumvent or augment 

limited human creativity and create new 
types of games? 
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Procedural Dungeon Generation 
 In general 

 PCG > Randomness 

 Can think of approaches as 
 Online vs. Offline 
 Necessary vs. Optional 
 Random seed vs. Parameter vectors 
 Stochastic vs. Deterministic 
 Constructive vs. Generate-and-test 
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Online vs. Offline 
 Online 

 As the game is being played 
 What could be the downside of this? 
 What is the upside? 

 Offline 
 During development/building of the game 
 What could be the downside of this? 
 What is the upside? 
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Necessary vs. Optional 
 Necessary content 

 Content the player needs to pass in order to 
progress 

 Move the story along, solve a puzzle, etc. 

 Optional content 
 Can be discarded, or bypassed, or exchanged 

for something else 
 Background things, like terrain, forest, non-

essential characters, etc. 
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Stochastic vs. Deterministic 
 Deterministic 

 Given the same starting conditions, always 
creates the same content 

 Stochastic 
 The above is not the case 
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Random Seeds vs. 
Parameter Vectors 
 Also known as Dimensions of Control 
 Can we specify the shape of the content in 

some meaningful way? 
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Constructive vs. 
Generate-and-test 
 Constructive 

 Generate the content once, and be done with 
it 

 Generate-and-test 
 Generate, test for quality, tweak, and re-

generate until the content is good enough 
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Search-based Paradigm 
 A special case of generate-and-test 

 The test function returns a numeric fitness 
value (not just accept/reject) 

 The fitness value guides the generation of new 
candidate content items 

 Usually implemented through evolutionary 
computation 
 Genetic Algorithms 
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Evolutionary Computation? 
 Keep a population of candidates 
 Measure the fitness of each candidate 
 Remove the worst candidates 
 Replace with copies of the best (least bad) 

candidates 
 Mutate/crossover the copies 

 Can use all genetic operations (and some you 
can make up!) 
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Procedural Dungeon Generation 
 In general 

 PCG > Randomness 

 Space-Partitioning Algorithms 
 Macro approach 

 Agent-Based Dungeon Growing 
 Micro approach 
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Space-Partitioning 
Approaches: Quad Trees 
 Can partition the space, and choose how 

to fill each leaf 
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Space-Partitioning 
Approaches: K-D Trees 
 Special case of BSP Trees 
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Space-Partitioning 
Approaches: K-D Trees 
 Add rooms and corridors 
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Space-Partitioning 
Approaches: K-D Trees 
 Add a theme to the resulting dungeon 
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Agent-Based Dungeon Growing 
 Agent chooses what to do based on 

different probabilities 
 Keep going, turn, build a room, etc. 
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Agent-Based Dungeon Growing: 
“Blind” Digger Code 
1.  initialize chance of changing direction Pc=5 
2.  initialize chance of adding room Pr=5 

3.  place the digger at a dungeon tile and randomize its direction 
4.  dig along that direction 

5.  roll a random number Nc between 0 and 100 
6.  if Nc below Pc: 

7.      randomize the agent’s direction 
8.      set Pc=0 

9.  else: 
10.      set Pc=Pc+5 

11.  roll a random number Nr between 0 and 100 
12.  if Nr below Pr: 

13.      randomize room width and room height between 3 and 7 
14.      place room around current agent position 

15.      set Pr=0 
16.  else: 

17.      set Pr=Pr+5 
18.  if the dungeon is not large enough: 

19.      go to step 4 
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Agent-Based Dungeon Growing: 
“Look Ahead” Digger Code 
1.  place the digger at a dungeon tile 
2.  set helper variables Fr=0 and Fc=0 
3.  for all possible room sizes: 

4.      if a potential room will not intersect existing rooms: 
5.          place the room 

6.          Fr=1 
7.          break from for loop 

8.  for all possible corridors of any direction and length 3 to 7: 
9.      if a potential corridor will not intersect existing rooms: 

10.         place the corridor 
11.         Fc=1 

12.         break from for loop 
13. if Fr=1 or Fc=1: 

14.     go to 2 
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Cellular Automata 
 A discrete computational model 

 An n-dimensional grid 
 E.g., two-dimensional grid 

 A set of states 
 Simplest: ON/OFF 

 A set of transition rules 
 Decide what to do based on neighborhood 
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Cellular Automata 
 Number of possible configurations of a 

neighborhood? 
 Possible_StatesNumber_of_Cells 

 E.g., for a two-state automata and a Moore 
neighborhood of size 2, 
 225 = 33,554,432 

 Small neighborhoods usually use a lookup 
 Each neighborhood configuration leads to a state 

 Large neighborhoods usually use a proportion 
of cells of each state 
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Example: Infinite Caves* 
  Each room is a 50x50 grid, where each cell can be 

either empty or rock (2 states) 
  Initially, each cell has a probability r (e.g., 0.5) that 

it is rock 
  Leads to relatively uniform rock distribution 

 Apply a single rule to the grid for n (e.g., 2) steps 
  A cell turns into rock in the next step if at least T (e.g., 5) 

neighbors are rock, otherwise, it turns into free space 

  For looks, rock cells that border empty space are 
designated as “walls”, but function like rock 
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*Johnson, L., Yannakakis, G.N., Togelius, J.: Cellular Automata for Real-time Generation of Infinite 
Cave Levels. In: Proceedings of the ACM Foundations of Digital Games. ACM Press (2010)	





Example: Infinite Caves* 
 Random vs. Cooked 
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CA params: n =4, M=1, T=5	

Red=Wall White=Rock, Other=Floor clusters	





Example: Infinite Caves* 
 Need to connect rooms, and smooth 

 Drill at thinnest points, then run two more 
iterations 
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Controlled Procedural 
Terrain Generation 

Using Software Agents 
 

Adapted by Julian Togelius from 
Jonathon Doran and Ian Parberry 
Published in IEEE TCIAIG, 2010 
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Five Agent Types 
 Apply each of these agents in succession 

 Coastline agents 
 Smoothing agents 
 Beach agents 
 Mountain agents 
 River agents 

 Agent Rules 
  Each agent has a number of “tokens” to spend on actions 
  Each agent is allowed to see the current elevation around it, 

and allowed to modify it 
  Agents don’t interact directly 
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In the beginning... 
 ...there was a vast ocean. 

 Then came the first coastline agent. 
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Coastline Agents 
 Multiply until they cover the whole coast 

 About 1000 necessary for this size map 

 Move out to position themselves right at 
the border of land and sea 

 Generate a repulsor and an attractor point 
 Score all neighboring points according to 

distance to repulsor and attractor points 
 Move to the best-scoring points, adding 

land as they go along 
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Coastline Agent Code 
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Coastline Agents 
 Varying action sizes (number of tokens) 
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Smoothing Agents 
 Take random walks on the map 
 Change the elevation of each visited point 

to (almost) the mean of its extended von 
Neumann neighborhood 
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Smoothing Agent Code 
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Beach Agents 
 Select random position along the coast, 

where coast is not too steep 
 Flatten an area around this point (leaving 

small variations) 
 Move randomly a short direction away 

from the coast, flattening the area 
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Beach Agent Code 
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Beach Agents 
 Varying beach width 
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Mountain Agents 
 Start at random positions and directions 
 Move forward, continuously elevating a 

wedge, creating a ridge 
 Turn randomly without 45 degrees from 

the initial course 
 Periodically offshoot “foothills” 

perpendicular to movement direction 
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Mountain Agent Code 
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Mountain Agents 
 Narrow vs. wide features 
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River Agents 
 Move from a random point on the coast 

towards a random point on a mountain 
ridge 

 “Wiggle” along the path 
 Stop when reaching too high altitudes 
 Retrace the path down to the ocean, 

deepening a wedge along the path 
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River Agent Code 
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River Agents 
 A dry river, and the outflow of three rivers 
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In What Order? 
 Doran and Parberry suggest 

 Coastline 
 Landform 
 Erosion 

 But the “Implementation” suggests 
random order 
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Further Questions 
 Parameters... what parameters? 
 What features of landscapes do we want 

to be able to specify? 
 How can the human and the algorithm 

interact productively? 
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Self Similarity 
 Level of detail remains the same as we 

zoom in 
 Example 

 Surface roughness, or silhouette, of mountains 
is the same at many zoom levels 

 Difficult to determine scale 

 Types of fractals 
 Exactly self-similar 
 Statistically self-similar 
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Example: 
Ferns 
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Fractals and Self-Similarity 
 Exact Self-similarity 

  Each small portion of the fractal is a reduced-scale 
replica of the whole (except for a possible rotation 
and shift). 

 Statistical Self-similarity 
  The irregularities in the curve are statistically the 

same, no matter how many times the picture is 
enlarged. 
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Fractal Coastline 
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Examples of Fractals 
 Modeling mountains (terrain) 
 Clouds 
 Fire 
 Branches of a tree 
 Grass 
 Coastlines 
 Surface of a sponge 
 Cracks in the pavement 
 Designing antennae (www.fractenna.com) 
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Examples of Fractals: Trees 

   Fractals appear “the same” at every scale.  
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Examples of Fractals: Mountains 

Images: www.kenmusgrave.com	
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Examples of Fractals: Clouds 

Images: www.kenmusgrave.com	
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Examples of Fractals: Fire 

Images: www.kenmusgrave.com	



R.W. Lindeman - WPI Dept. of Computer Science 
 Interactive Media & Game Development	





63	



Examples of Fractals: Comets? 

Images: www.kenmusgrave.com	
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Koch Curves 
 Discovered in 1904 by Helge von Koch 
 Start with straight line of length 1 
 Recursively 

 Divide line into three equal parts 
 Replace middle section with triangular bump 

with sides of length 1/3 
 New length = 4/3 
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Koch Snowflake 
 Can form Koch snowflake by joining three Koch 

curves 
 Perimeter of snowflake grows as: 

 

 where Pi is the perimeter of the ith snowflake 
iteration 

 However, area grows slowly as S∞ = 8/5! 
 Self similar 

  Zoom in on any portion 
  If n is large enough, shape is the same 
 On computer, smallest line segent > pixel spacing 

€ 

Pi = 3 4 3( )
i

www.jimloy.com	
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Koch Snowflake 

S3	

 S4	

 S5	
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Fractal Dimension – Eg. 2 
The Sierpinski Triangle 
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log

log

N = 3,  s = ½  
 ∴D =1.584 
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Space-Filling Curves 
 There are fractal curves which 

completely fill up higher dimensional 
spaces such as squares or cubes. 

 The space-filling curves are also 
known as Peano curves (Giuseppe 
Peano: 1858-1932). 

 Space-filling curves in 2D have a 
fractal dimension 2.  

You’re not expected to be able to prove this. 
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Space-Filling Curves 
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Space-Filling Curves in 3D 
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Generating Fractals 
 Iterative/recursive subdivision techniques 

 Grammar based systems (L-Systems) 
  Suitable for turtle graphics/vector devices 

 Iterated Functions Systems (IFS) 
  Suitable for raster devices 
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L-Systems 
(“Lindenmayer Systems”) 

 A grammar-based model for generating simple 
fractal curves 
  Devised by biologist Aristid Lindenmayer for modeling 

cell growth 
  Particularly suited for rendering line drawings of fractal 

curves using turtle graphics 

 Consists of a start string (axiom) and a set of 
replacement rules 
  At each iteration all replacement rules are applied to the 

string in parallel 

 Common symbols: 
  F  Move forward one unit in the current direction. 
  +  Turn right through an angle A. 
  -  Turn left through an angle A. 
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The Koch Curve 
Axiom: F  (the zeroth order Koch curve) 
Rule: F →  F-F++F-F 
Angle: 60°  
 
First order:  

 F-F++F-F 
 
 
 
Second order: 
 
 
   

F-F++F-F-F-F++F-F++F-F++F-F-F-F++F-F 

60 

120 

Order 

0 

1 

2 
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The Dragon Curve 
Axiom: FX 
Rules: 
   F → ∅ 
   X → +FX––FY+ 
   Y → –FX++FY– 
Angle: 45 ° 

At each step, 
replace a straight 
segment with a 
right angled 
elbow. 
 
Alternate right and 
left elbows. 
 
FX and FY are 
“embryonic” right  
and left elbows 
respectively. 
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L-System code 
import turtle 
turtle.speed(0) # Max speed (still horribly slow) 
 

def draw(start, rules, angle, step, maxDepth): 
    for char in start: 
        if maxDepth == 0: 
            if   char == 'F': turtle.forward(step) 
            elif char == '-': turtle.left(angle) 
            elif char == '+': turtle.right(angle) 
        else: 
            if char in rules:  # rules is a dictionary 
                char = rules[char] 
            draw(char, rules, angle, step, maxDepth-1) 
# Dragon example: 
draw("FX",{'F':"",'X':"+FX--FY+",'Y':"–FX++FY–"}, 45, 5, 10) 
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Generalized Grammars 
 The grammar rules in L-systems can be further 

generalized to provide the capability of drawing 
branchlike figures, rather than just continuous 
curves. 

 The symbol  [  is used to store the current state 
of the turtle (position and direction) in a stack 
for later use. 

 The symbol  ]  is used to perform a pop 
operation on the stack to restore the turtle’s 
state to a previously stored value. 
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Generalized Grammars 
Fractal bush: 
  S →  F 
  F →  FF-[-F+F+F]+[+F-F-F] 
  (A = 22 degs.) 
 

Zero order bush 
            F 

First order bush 
Fourth order bush 
(with 90 deg. rotation) 
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Random Fractals 
 Natural objects do not contain identical scaled 

down copies within themselves and so are not 
exact fractals. 

 Practically every example observed involves 
what appears to be some element of 
randomness, perhaps due to the interactions of 
very many small parts of the process. 

 Almost all algorithms for generating fractal 
landscapes effectively add random irregularities 
to the surface at smaller and smaller scales. 
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Random Fractals 
 Random fractals are  

  randomly generated curves 
that exhibit self-similarity,  or 

  deterministic fractals modified 
using random variables 

 Random fractals are used to 
model many natural shapes 
such as trees, clouds, and 
mountains. 
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Random Midpoint Displacement 
Algorithm (2D) 

g A B 
C   Subdivide a line segment into two 

parts, by displacing the midpoint by 
a random amount “g”. i.e., y-
coordinate of C is 

     yC  =  ( yA + yB )/2  + g 

  Generate g using a Gaussian 
random variable with zero mean 
(allowing negative values) and 
standard deviation s. 

  Recurse on each new part 
  At each level of recursion, the 

standard deviation is scaled by a 
factor (1/2)H 
  H is a constant between 0 and 1 
  H = 1 in the example on the right 
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Midpoint Displacement Algorithm 
(3D) 
Square-Step: 
Subdivide a ground square into 
four parts, by displacing the 
midpoint by a Gaussian 
random variable g with mean 
0, std dev s.  
   i.e., Compute  y-coordinate 
of E as 
yE  =  ( yA + yB + yC + yD )/4  + g 

 

Z 

X 

A B 

C D 

E 

Do that for all squares in the grid 
(only 1 square for the first iteration). 
Then ... 
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Diamond step 
 To get back to a regular grid, we now need 

new vertices at all the edge mid-points too.  

 For this we use a diamond step: 

Vertices before square step 

New vertices from square step 

Vertex from diamond step 
(on an old edge midpoint). 
Computed as in square step but 
using the 4 diamond vertices. 

Do this for all edges (i.e., all possible diamonds). 
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Diamond step (cont’d) 

“Reflect” vertices at grid edges to make diamonds there. 
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Diamond-Square Algorithm 
   The above two steps 

are repeated for the 
new mesh, after 
scaling the standard 
deviation of g by 
(1/2)H. And so on … 

H=0.8 

H=0.4 
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Diamond Step Process 

 1st pass  2nd pass  5th pass 
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Height Maps 
 The 2D height map obtained using the 

diamond-square algorithm can be used to 
generate fractal clouds. 

 Use the y value to generate opacity. 

R.W. Lindeman - WPI Dept. of Computer Science 
 Interactive Media & Game Development	





87	



Useful Links 
  Terragen – terrain generator 

  http://www.planetside.co.uk/terragen/ 
 

  Generating Random Fractal Terrain 
  http://www.gameprogrammer.com/fractal.html 
 

  Lighthouse 3D OpenGL Terrain Tutorial 
  http://www.lighthouse3d.com/opengl/terrain/ 

  Book about Procedural Content Generation 
  Noor Shaker, Julian Togelius, Mark J. Nelson, Procedural Content 

Generation in Games: A Textbook and an Overview of Current 
Research (Springer), 2014. 

  Book about Procedural Generation 
 David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, Steve 
Worley. Texturing and Modeling: A Procedural Approach (The 
Morgan Kaufmann Series in Computer Graphics) 
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Source for Most of this Material 
 Much of the material covered in this 

lecture came from excellent material from 
a course on Procedural Content 
Generation by Julian Togelius, and a good 
book by Julian, Noor Shaker, and mark 
Nelson from ITU: 
 http://game.itu.dk/ 
 http://pcgbook.com/ 
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