IMGD 4000
Technical Game Development II
Advanced Texture Mapping

Robert W. Lindeman
Associate Professor
Interactive Media & Game Development
Human Interaction in Virtual Environments (HIVE) Lab
Department of Computer Science
Worcester Polytechnic Institute
gogo@wpi.edu
Texturing

- Created/manipulated using image-processing software...
 - Photoshop
 - Illustrator

- ...or computed from a scene description
 - Radiosity
 - Ambient occlusion

- Mapped to geometry (models)

- Very powerful image enhancing techniques
 - Can be used for fake shadows, fake reflections, much more
Mapping to Models

- Objects are made from
 - Geometry (a.k.a., polygons)
 - Lighting
 - Textures

- Vertices and connectivity
 - Triangles
 - Triangle-strips
 - Meshes
 - Patches/surfaces
Textures

- Images that are applied to geometry

- Many ways to apply textures
 - Decal
 - Blend
 - Layer

- Can use for other things as well
 - Height fields
 - Environment mapping
 - Bump mapping
 - Displacement mapping
 - …
Scenes
Texture Mapping Example
Texture Mapping Example
Texture Detail Settings

Depth of Field

Depth of Field

☑ Problems?
Bump Map Example: Texture
Bump Map Example: Bump Map
Bump Map Example

Advanced Mapping Techniques

- Parallax Mapping
- Ambient Occlusion
- Horizon Mapping
- Baked-on Radiosity
Parallax Mapping Example
Parallax Mapping Closeup
Parallax Mapping Example

Ambient Occlusion

- Sometimes called “Sky Light”
- Lighting models (e.g., Phong lighting) often consist of three types of lights
 - Ambient
 - Light that is just there because of light bouncing around the scene
 - Diffuse
 - Light that is proportional to the surface direction/distance to light sources
 - Specular
 - Highlights that change depending on the location of the viewer
Ambient Occlusion (cont.)

- Ambient light is often just a constant
- In “reality”, it is not constant, but rather is influenced by occluders
 - Light reaching points under a desk or inside a tube will be darker than others
- Ambient occlusion mapping pre-computes how much a point is blocked (occluded) by other surfaces in a scene, then applies it as a texture layer
Ambient Occlusion Calculation

- How could you calculate this for a given point p in a scene?
- Can you do it at runtime?
Ambient Occlusion: Example 1

Without Ambient Occlusion

With Ambient Occlusion
Ambient Occlusion:
Example 2 (StarCraft II)

http://starcraft2.hu/2011/01/11/extrame-graphics-options/
Ambient Occlusion:
Example 2 (StarCraft II)

http://starcraft2.hu/2011/01/11/extrame-graphics-options/
Ambient Occlusion: Example 2 (StarCraft II)

http://starcraft2.hu/2011/01/11/extrame-graphics-options/
Ambient Occlusion: Example 3

Horizon Mapping

- Works like parallax mapping, but takes into account light sources
- Can be done dynamically
Horizon Mapping: Example 1

Horizon Mapping: Example 2

Dynamic Horizon Mapping

Radiosity

What is it?
Example of Blending
Blending Result
Skybox Rendering

- Create *really big* a cube around the world
- Texture each side with a sky texture
Sources of Textures

- Computer-generated
 - Complete control, might not be realistic
 - Generate a repeating pattern
 - Generate a random pattern (like noise)
 - Simulate physical properties

- Digital camera
 - Realistic, but hard to control
 - Can stitch into mosaic

- Hybrid
 - Start with a photo, edit as necessary
Resources

- Nice place for textures (pay)
 - http://shop.3dtotal.com/