

IMGD 3100 – Novel Interfaces for Interactive Environments: Electricity

Robert W. Lindeman

Associate Professor Interactive Media & Game Development Human Interaction in Virtual Environments (HIVE) Lab Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu

Overview

- □ So you've built some circuits, made some stuff blink, read values from devices, etc.
- □ Do you understand a little better what's going on with all this ECE stuff?
- Since almost none of you have any ECE background, how can I expect you to do this stuff?!?!??!
- Let's see what we know...

Simple Current Flow

□ Parts of the system

- Power source
- Output device
 Motor
- Switch
- Conduits

What if you switch the *polarity*?

Water Analogy

 Water source and pump
 Battery

□Tap ■Switch

□ Water wheel ■ Motor

Open tap, water drives the wheel

Water Analogy: Important Points

- □ Two factors
 - Water Pressure
 - Flow rate
- Governed by
 - the power of the pump
 - Size of the pipe/ friction of wheel
- Larger pipe + stronger pressure = faster spin

0

Water Analogy: More Detail

- □ Larger pipes = less resistance After some point, need more pressure to fill the pipe □ At some point, the wheel will breakdown too much pressure! □ Some of the energy will come out as heat 0 (from the wheel axel) or something else
 - Same in ECE

WPI Making the Connection to ECE

- Pressure is produced by the pump
- Resistance produced by pipes
- Resistance produced by wheel
- □ The flow rate (e.g., liters/second)
- □In ECE:
 - Power source (battery, wall wart) is the pump
 - Wires, resistors, etc. are the pipes
 - Devices are the wheel
 - Current is the flow rate

Arduino Programming

We know that digitalWrite(13, HIGH);

will turn on the LED attached to pin 13

□ But what does this *mean*?

□ It means the pin will be driven with 5 volts.

What is a Volt?

Voltage

- □ Voltage is related to potential energy
- □ Recall:
 - if you lift something off the ground, it gains potential energy
 - If you let go, it releases the potential energy stored when you lifted it.
- Assume you have a positive charge and a negative charge
- They are attracted to each other, and if you pull them apart, your effort is stored as potential energy

Voltage (cont.)

□ If you release them, the charges jump back together (like the weight)

□ For the weight, potential energy is calculated by plugging the height into:

E=mgh (mass x gravity x height)

□ For charges, height is analogous to voltage

For the potential energy, you multiply the voltage times the charge you are raising
 The "electronic height" of a charge

Voltage (cont.)

- So, what if, while the weight is being held up, someone puts a table underneath it?
 - Does the potential change?
 - How do you explain this?
- Potential is always measured between two points
 - It is an *across* variable.

□ Same for voltage

Ground is one of the points by default

Current

- So, circuits provide paths for charges that have been raised to some potential to flow back down to ground
- □ This *flow of charge* is called Current
- Current is a *through* variable
- □ It is the first derivative of charge
 - The number of Coulombs of charge that pass a point per second
 - A *Coulomb* is about 6 x 10¹⁸ electrons

Voltage & Current

 Voltage is measured using a voltmeter
 Current is measured using a current meter (a.k.a. an *ammeter*)

Direction (polarity) is important too!

Voltage & Current (cont.)

- □ Kirchhoff's Voltage Law (KVL)
 - The voltage that you drop on one side of a circuit must be equal to the amount of voltage you raised on the other side.
 - You can only fall the height you were raised
- □ Kirchhoff 's Current Law (KCL)
 - Current is a conserved quantity
 - If some amount of current flows into a part of a circuit, the exact same amount must flow out.

WPI Making the Connection to ECE

- A 9V battery is a pump (9V of pressure)
 Unit is Volts (V) named after the inventor of the battery
- Flow rate is called *current*, and is measured in amperes or *Amps (A)* After André-Marie Ampère
- □ Higher voltage (pressure) lets you spin the wheel faster
- Higher flow rate (current) lets you spin a larger wheel

WPI Making the Connection to ECE

- Resistance opposing the flow of current over any path is called *resistance*, and is measured in *Ohms (Ω)* After German physicist Georg Ohm
- This guy also gave us an important law
 Ohm's Law describes the relationship between current, voltage, and resistance.
 - The resistance in a circuit will determine the amount of current that will flow through it, given a certain voltage supply.

Ohm's Law

- If we measure the current from a 9V battery plugged into a simple circuit, the current will drop if we add more resistance.
- □ Formally stated:
 - R (resistance) = V (voltage) / I (current)
 - V = R * I
 - I = V / R

□ Why "I" for current?

Watts (W)

□ Rate of energy conversion

Work is done at a rate of one watt when one ampere flows through a potential difference of one volt

1W = 1V * 1A

- □ A 100 W bulb burning for 1 hour would consume 100 watt-hours (W-h)
- □ A 40 W bulb could burn for 2.5 hours and consume the same energy (100 W-h)

More Terms

- Capacitance
 - The ability for a body to hold a charge
 - Used for
 - □ Temporary power storage (UPS, laptops)
 - Smoothing a power signal
- Transistor
 - Solid-state electronic switch
- MOSFET
 - Metal-Oxide-Semiconductor Field-Effect Transistor
 - When a Voltage is present on a specific pin, current flows between the other two pins
 - Used to amplify or switch electronic signals
- Relay
 - Electrically operated switch
 - Current creates a magnetic field which "throws" the switch

Varying the Output

- □We've seen how easy it is to turn things ON and OFF
 - But this quickly becomes too limiting!
- □ Given Ohm's Law, how can we change the brightness of an LED?
 - Increase the resistance
 - □ Maybe with a resistor ladder

How else?
Quickly blink it ON and OFF

WPI Pulse-Width Modulation (PWM)

- Vary the percentage of time over a given period that an output is HIGH (or LOW)
 - This is how traditional dimmer switches work

Period

Total time for the signal

 Duty Cycle
 Percentage of the period the signal is HIGH

21

Persistence of Vision

Human eye won't notice down to a certain point

<u>http://hackedgadgets.com/2008/11/05/arduino-rotating-led-display/</u>

Further Reading

http://antonine-education.co.uk/
electronics_as.htm