

IMGD 3100 – Novel Interfaces for Interactive Environments: Introduction

Robert W. Lindeman

Associate Professor
Interactive Media & Game Development
Human Interaction in Virtual Environments (HIVE) Lab
Department of Computer Science
Worcester Polytechnic Institute
gogo@wpi.edu

Motivation

- □ Some interesting recent developments
 - Mobile computer systems are cheap, powerful, and everywhere
 - Wireless connections are everywhere
 - □ Cellular, WiFi, Bluetooth, ...
 - Sensors and actuators are cheap
 - Accessible robot systems are emerging
 - □ Roomba, MANY kits
 - Wild popularity of new games and platforms
 - □ Rockband, Kinect, Wii/U, iPhone/iPod/iPad, Android

Motivation (cont.)

- □ I've been working on 3D User Interfaces for Virtual Reality for a looooong time
 - About 20 years
- VR and gaming are very related
 - But games sell!
- □ Games have gotten a little stale
 - How many more FPSs can you make?
- Graphics are pretty good now!
- Sound is also pretty good!
- □So, what's the next big thing?

Questions

- Why are car navigation systems so popular?
- Why are smartphones and tablets so popular?
- What made the Wii different?
 - What was different about popular Wii games?
- What did Sony and Microsoft do to catch up?
- What can Nintendo do to stay ahead?
- Where does this innovation come from?!

HCI in Real Environments

- Mobile devices
 - Car Navigation (useful during task)
 - Medical monitoring (people are aging)
 - Foursquare (we love collecting!)
 - Ingress (augmenting reality as a game)
- Multi-person coordination
 - Military operations
 - Search-and-Rescue
 - Fire fighting
- □ Stuff we don't know about yet!

HCI in Virtual Environments

- Layouts for user interfaces
 - Heads-Up Displays (HUDs)
 - Chat windows
 - Game state
- Spatialized audio/voice
- □ Haptic (touch) displays
 - Hit by weapons fire
 - Virtual surgery training
 - Steering wheels
- □ Smell?
- □ Taste?
- What about input?

HCI in Teleoperated Environments

- □ Teleoperated robot systems are used more and more
 - Disaster areas
 - Medical micro-robots
 - Space exploration
 - UXVs (UAV, UGV, UUV)
- Operator relies on remote sensors
 - Limited fidelity
 - Communication delays
- Remote actuators change the physical world

Common Problems

- □ All three environments require the user to:
 - 1. Sense something (i.e., get input)
 - Perceive the environment
 - Limited fidelity (screen space, etc.)
 - 2. Make a decision
 - Draw on new and existing knowledge
 - Limited knowledge
 - 3. Carryout actions (i.e., produce output)
 - Make something happen
 - Limited expressiveness (mouse, gamepad, etc.)
- □ Errors can be made at each step
- □ In this course, we will focus on 1 & 3

What to Expect

- ☐ This course is about
 - How to build new interfaces for these environments
 - How to design applications (e.g., games) that take advantage of these devices
- □ This is really a Chicken & Egg proposition
 - Devices constrain the application
 - Application constrains the devices
 - User constrains both
 - Environment constrains both
- But, constraints are a good thing!!

What to Expect (cont.)

- The groundwork to do this stuff right requires
 - A good understanding of the human sensory systems
 - A good understanding of building devices
 - A good understanding of application domains
- The projects you do in this course will help you learn all of this

Summary of Syllabus

- Lectures and in-class work
 - Exercises designed to drive home concepts, or to get you thinking about projects
- □ 1 Application Design Report (33%)
 - Research a potential application (Real/Virtual/Tele)
 - Design (not build) a novel user interface for it
- □ ~4 "Smaller" Projects (33%)
 - Individual projects
 - Use the Arduino and Android to build stuff
- □ 1 Final Project (34%)
 - Team-based
 - Use Arduino/Android, plus other software you choose (Unity, Flash, C4, XNA, etc.)
- □ All material on class website (www.cs.wpi.edu/~gogo/ courses/imgd3100/)

Readings for the Course

- □ There will be material from several eBooks:
 - Programming Interactivity, 2nd Edition, Joshua Noble, O'Reilly.
 - Getting Started with Arduino, 1st Edition, Massimo Banzi, O'Reilly.
 - Arduino Cookbook, 2nd Edition, Michael Margolis, O'Reilly.
 - eBooks can be accessed from any WPI computer
 Check the course Web page for details.
- And also material from the Web:
 - Arduino/Android communities, Electrical engineering help, Project idea
- □ Excerpts from:
 - 3D User Interfaces: Theory and Practice, Bowman, Kruijff, LaViola, Poupyrev, 2005, Addison Wesley, ISBN: 0-201-75867-9

More About the Projects

- One of the goals of this course is for you to feel confident to build devices
 - Find sensors to measure what you want to measure
 - Find interesting ways of getting input to the system
 - And output to the real world (e.g., the user)
 - □ Pinwheels for network traffic
- You can find stuff easily these days
 - Sparkfun (www.sparkfun.com)
 - Digikey (www.digikey.com)
 - Jameco (www.jameco.com)
 - Allelectronics (www.allelectronics.com)
 - RadioShack (www.radioshack.com)

Engineering vs. Science

- □ Scientific Method
 - Define a hypothesis, test it, and make laws
- Engineering Approach
 - Come up with an idea, build it, refine
- Both of these require solid foundations!
 - You need to do your homework
- Software people are reluctant to mess with hardware
 - Might break something
 - Might burn your fingers

Arduino Development

- ☐ You should all have Arduino Development Kits for this course from SparkFun.
- □ The kits work in the lab
 - And you can work at home too
- Cross-platform
 - Mac, Linux, Windows
- □ LOTS of help on the Web:
 - http://www.arduino.cc/
- We'll be using this Arduino Kit
 - https://www.sparkfun.com/products/11930

Android Development

- □ Google gave us phones!
- The Android development environment is eclipse based
 - Java is main language
 - Emulator for testing
- Eclipse has been configured in the lab
 - And you can work at home too
- Cross-platform
 - Mac, Linux, Windows
- □ LOTS of help on the Web:
 - http://developer.android.com/

Final Project

- □Two- or three-person teams
- Choose an application area
- Define a set of interface devices and techniques that support the app
- □ Interim status demos in class
- Presentations will be done the last week of this course, where you will show your stuff
- Let's see some from previous years!

Flipping the Class

- □Some of the lectures for this course will be delivered by video+testing
- □ Classes will be used to dig much deeper
- □ It will be assumed you have watched the assigned video(s) prior to class
- ■This is called "Flipping the Classroom"
- More on this real soon (for Tuesday!)

Course Support

- □ There is a GDC Forum for this course
 - http://forums.gdc.wpi.edu/
 - All project discussions should be posted there
 - You are encouraged to post screen-shots of your progress
- Contact me if you need to meet for office hours
 - I'll post some real soon...

Expected Outcomes

- Think beyond the gamepad
 - Alternative I/O to support a particular application
- □ Feel comfortable building new things
- Know how best to provide output to humans
 - All the senses
- Build up your portfolio

Final Thoughts

- □ I don't know which parts of this course will give you problems
 - We need to work together to tweak the content, presentation, etc.
- □ I welcome any and all feedback and suggestions on how to make the course better
- We have some flexibility to re-order/change topics
- Be playful!
- □ Be ambitious!