IMGD 3xxx - HCI for Real, Virtual, and Teleoperated Environments:

Interactivity

by

Robert W. Lindeman

gogo@wpi.edu
Introduction

☐ This course is about going beyond traditional interfaces
 ■ Keyboard, mouse, gamepad

☐ There are many ways of providing feedback to users, and many ways to gather input

☐ The key is to find the effective and efficient ones

☐ Depends on three main components
 ■ User
 ■ Task
 ■ Environment
What is Interaction?

- "The exchange of information between two or more active participants" (Noble)
- "An iterative process of listening, thinking, and speaking between two or more actors" (Crawford)
- HCI means that at least one of the participants is a system, and at least one is a person.
- As a designer, you are trying to understand what the user wants to do and how the system that you are creating should respond to support this.
The feedback Loop

Many systems have a "regulatory system" to maintain good operation
- Sweating, breathing, balancing, blinking

No user intervention for these to work
- "Automatic" (actually, *nothing* is automatic)

We are looking more at active interaction
- Still need to provide feedback loops when appropriate
Levels of Interaction

- **Pacing**
 - User controls movement through pre-specified material

- **Reaction**
 - System reacts to user input
 - This gets you thinking about what the user might do, and how the system should react

- **Monitoring and Guiding**
 - System performs an on-going task, and user controls it as needed
 - Game engines, interactive installations
Levels of Interaction (cont.)

- **Adaptive**
 - System learns something about the user, and alters responses accordingly
 - User learns from information provided by the system, and alters his/her actions accordingly
 - As user becomes expert, interface morphs

- **Conversational**
 - User and system work as a team to determine proper actions
 - Multi-modal (e.g., sound, facial expressions, hand gestures)
Messages

- Input and output happen using *messages*
 - Text, speech, visual feedback, physical input/feedback

- Ambiguity of messages can be a problem
 - Cryptic error messages
 - Pointing in a crowded (real or virtual) space

- Every new interface requires training to achieve mastery
 - Though training time may be short

- Can leverage *previous experience*
 - Desktop metaphor
The Interface(s)

- The interface is the medium of the communication between user and system.
- It limits or enables efficiency and effectiveness.
 - The user should never apologize for doing something wrong. The designer should.
- There is a balance between form (attractiveness) and function (usefulness).
 - Some systems make you choose one or the other.
 - Some people choose one over the other.
The Process of System Creation

- The process of creation can be differentiated from the content of the creation

- Steps help us in several key ways
 - Thinking before doing
 - Not re-inventing the wheel
 - Participatory design
 - Iteration
 - Prototyping
 - Graceful escape
 - Planning for future features/additions
Steps in the Process

1. Concept
2. Research
3. Design
4. Build
5. Test
Concept

☐ What is the initial idea for your application?
☐ Draw pictures, diagrams, etc.
☐ Talk to the client (if there is one)
☐ What should the application do?
☐ How should it look?
☐ Sketching without a clear plan can lead you to exciting places.
☐ Don't write any code!
Research

- Who is your target audience?
- What environment (context) will they be working in?
- What have others done that is similar?
- What parts are needed to make up the whole?
- What approaches could you use for the individual parts of the system?
- Will you use existing components, build new ones, or buy new ones?
 - Classic build vs. buy decision
- Is what you are proposing really feasible?
Design

- Need to design both the hardware and software
- What are the tradeoffs for your choices?
 - Speed vs. space (in computation)
- What are the constraints on your system?
 - Size? Weight? Battery life? Cost?
 - Distraction of the user?
- Clearly define
 - How all the parts will appear to the user, and
 - How the user will interact with them.
- Flow diagrams (control and data) will help describe the system
- What do the interfaces between components look like?
 - APIs
 - Protocols
Build

- With your design(s) in hand, start building!
- Good approach
 - Don't try to build the whole thing at once!
 - Build a little, test a little, integrate, repeat
- Hardware
 - Assemble (build or buy) your hardware
 - Do low-level testing (debugging)
- Software
 - You need to talk to the hardware, user
 - What language(s) will you use?
- Integration
 - Always takes longer than you think it will
 - Designing is hard
Test

- Testing is always the first thing to be sacrificed
 - Ever played any buggy games?
 - Ever patched a game, or any software, right after you bought it?

- Many levels of testing
 - Components
 - Integrated system
 - End-user testing
 - Balance testing (games)
 - Alpha, Beta, open, closed?

- Hardware
 - Build it in simulation
 - Build a breadboard version
 - Build a "quickboard" version
 - Have PCBs made and populated
 - Revise
Final Thoughts

☐ Be open to iterate at any step!
 ■ This is not a "waterfall model"

☐ Many projects have milestones
 ■ Show to client/publisher
 ■ May be canned at that point (graceful escape)

☐ Teams can make better solutions than individuals
 ■ Usually, anyway
 ■ More heads thinking about problem
 ■ Greater breadth of experiences to draw upon
 ■ Variety of expertise

☐ Need to instill ownership of each part
 ■ Who is the go-to person on this part?