

IMGD 3100 – Novel Interfaces for Interactive Environments: Haptic Cues

Robert W. Lindeman

Associate Professor
Interactive Media & Game Development
Human Interaction in Virtual Environments (HIVE) Lab
Department of Computer Science
Worcester Polytechnic Institute
gogo@wpi.edu

Haptic Displays

- □ Haptic sense is most complex
 - Tactile
 - Stimuli on the skin
 - □ Different kinds of mechanoreceptors, each with varying types of sensitivity
 - Temperature
 - □ Actually part of tactile
 - Kinesthetic
 - □ Force on the muscles and tendons
 - Proprioception
 - □ Force feedback
 - Wind
 - Pain

Haptic Sense

- □ The haptic sense is bidirectional
 - Senses the environment
 - Acts on the environment
 - Tight coupling between the two

Haptic Sensation

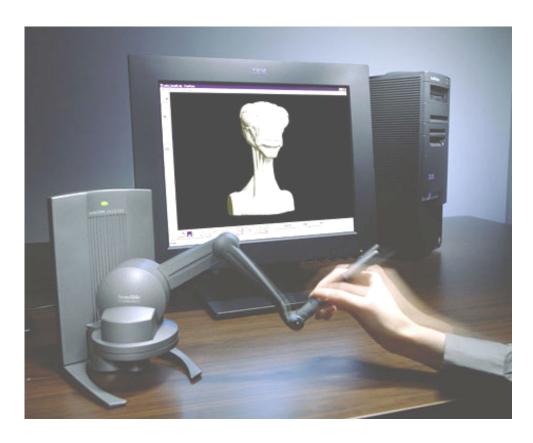
- Skin is the largest organ
- □ Tactile: Surface properties
 - Most densely populated area is the fingertip (okay, it's the tongue)
- □ Kinesthetic: Muscles, Tendons, etc.
 - Also known as proprioception

Haptic Sensation

- □ Sensitivity varies greatly
 - Two-point discrimination

Body Site	Threshold Distance
Finger	2-3mm
Cheek	6mm
Nose	7mm
Palm	10mm
Forehead	15mm
Foot	20mm
Belly	30mm
Forearm	35mm
Upper Arm	39mm
Back	39mm
Shoulder	41mm
Thigh	42mm
Calf	45mm

http://faculty.washington.edu/chudler/chsense.html



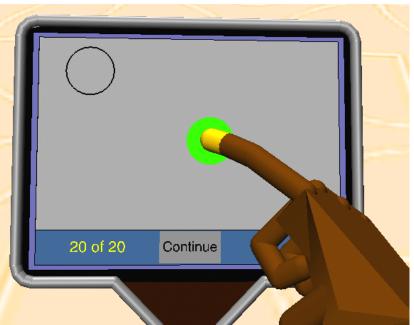
Haptic Devices

- □ Pin arrays for the finger(s)
- □ Force-feedback "arms"
- □"Pager" motors
- □ Particle brakes
- □ Passive haptics
- Many devices are application specific
 - Like surgical devices

SensAble PHANToM

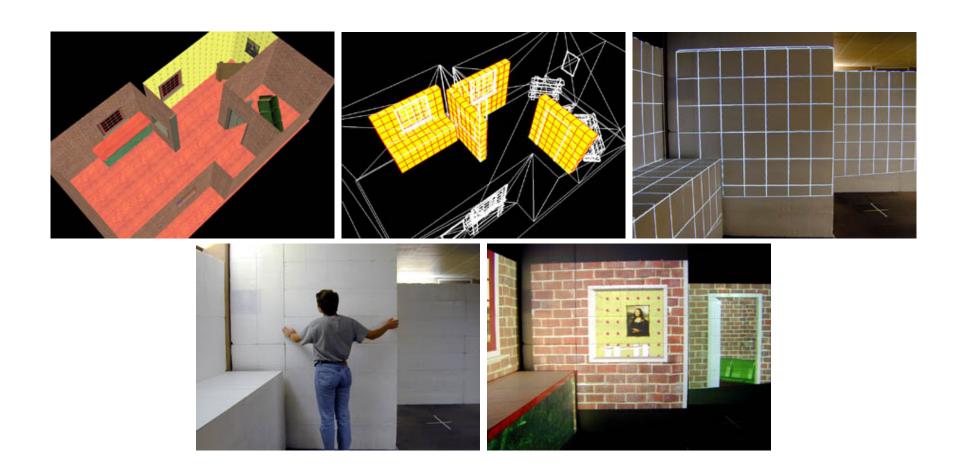
http://www.sensable.com/

Immersion CyberGrasp



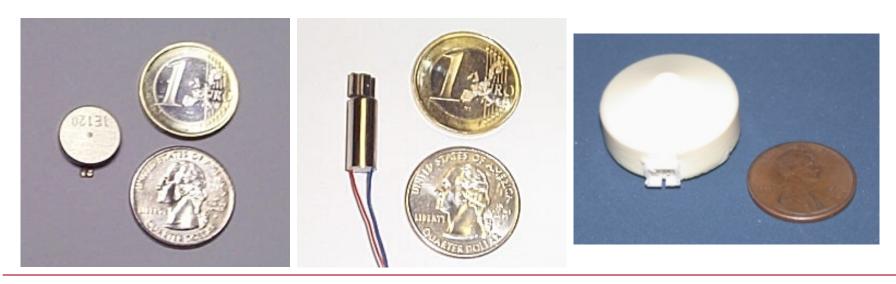
http://www.immersion.com/

Passive Haptic Paddle



http://www.cs.wpi.edu/~gogo/hive/

UNC Being There Project


Haptic Feedback in VR

- □ Virtual contact
 - What should we do when we know that contact has been made with a virtual object?
 - The output of collision detection is the input to virtual contact
 - Cues for understanding the nature of contact with objects are typically over-simplified (e.g., sound)
- □ Training aids
 - Can we convey additional information using the haptic channel?

Vibrotactile Cueing Devices

- □ Vibrotactile feedback has been incorporated into many devices
- □ Can we use this technology to provide scalable, wearable touch cues?

Vibrotactile Feedback Projects

Navy TSAS Project

TactaBoard and TactaVest

