

IMGD 3100 – Novel Interfaces for Interactive Environments: The Human Visual System and Visual Display Techniques

Robert W. Lindeman

Associate Professor

Interactive Media & Game Development

Human Interaction in Virtual Environments (HIVE) Lab

Department of Computer Science

Worcester Polytechnic Institute

gogo@wpi.edu

Introduction

- □ Vision is the most dominant sense
 - Though other senses are better at certain things, like smell for memory recall
- What types of visual elements are common to interactive experiences?
- □ How can we leverage the visual sense to promote efficiency and effectiveness?

Motivation

- We need to display the state of the world to the user
 - Display: a method of presenting information to any of the senses
- We need to display the user to the user (maybe)
- We need to feed each sense appropriately
- We need to feed multiple senses in concert
 - Display for one sense shouldn't get in the way of display for another sense
- May need to quickly don/doff displays
- □ For gaming, low-cost is important

Some Things to Remember

- □ Humans are animals, and hence, have evolved over time.
- □ Evolutionary forces have guided the development of our senses.
- □ Displays and cues that leverage this fact have a better shot of being effective.

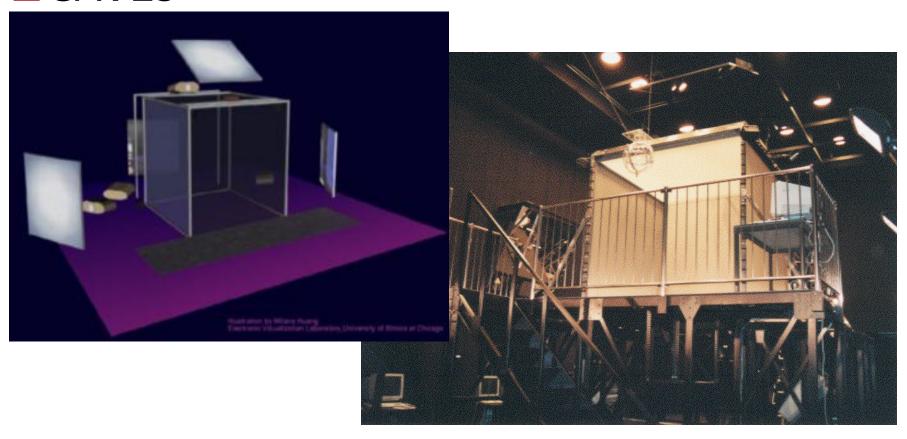
General Types of Displays

- ☐The senses
 - Visual
 - Auditory
 - Haptic
 - Olfactory
 - Gustatory
- Display anchoring
 - World-fixed displays
 - Body-worn displays
 - Hand-held displays

Visual Display Anchoring Points

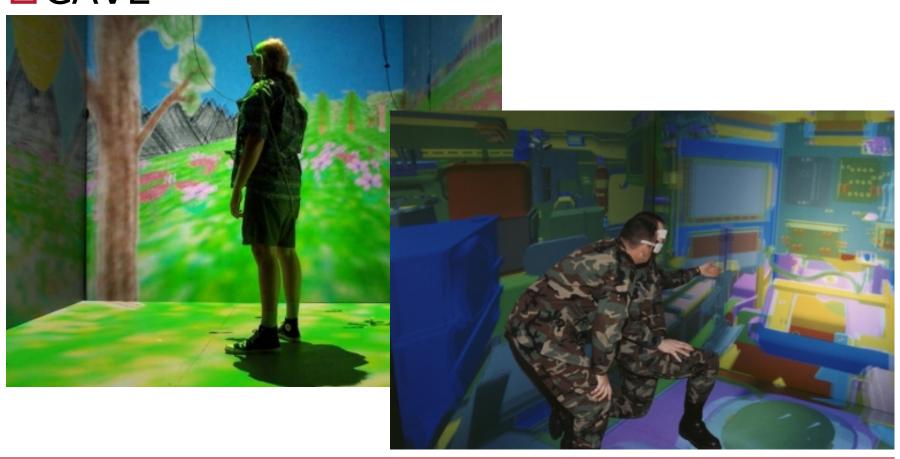
- World-fixed displays
 - Fishtank VR
 - Projection VR
- Body-worn displays
 - Opaque HMDs
 - Transparent HMDs
- □ Hand-held displays
 - Palm VR
 - Boom-mounted screens

Visual Display Types

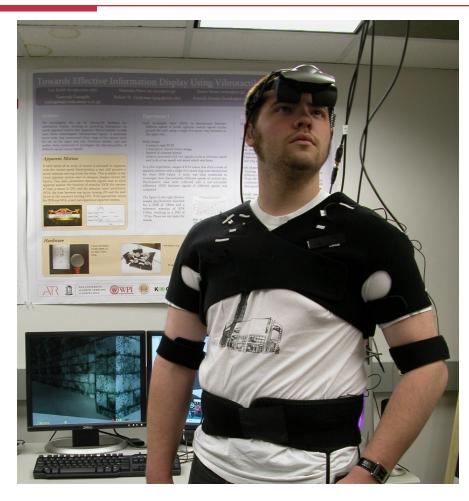

- Monitors
 - CRT, Plasma, LCD
- □ Surround-screens
 - e.g., CAVEs
- □ Tabletops
- □ Hemispheric displays
- □ Head-mounted displays
 - Oculus Rift
- Arm-mounted displays
- □ Virtual retinal displays
- Autostereoscopic displays

- □ 3D displays
- □ Portables (DS, Vita)
- □ Phones
- □ Tablets
- Multi-displays (Wii U)
- Augmented Reality glasses
 - Google Glass, Moverio, Meta

Surround Screens


CAVEs

Surround Screens (cont.)


□ CAVE

WPI

Head-Mounted Displays (HMDs)

HMDs (cont.)

□ Oculus Rift

Augmented Reality Glasses

□ Google Glass

Google Glass Video

http://www.google.com/glass/start/howit-feels/

Augmented Reality Glasses

■ Epson Moverio

Epson Moverio Video

http://www.androidpolice.com/ 2012/03/28/epson-begins-shipping-themoverio-bt-100-a-see-through-wearabledisplay-powered-by-android/

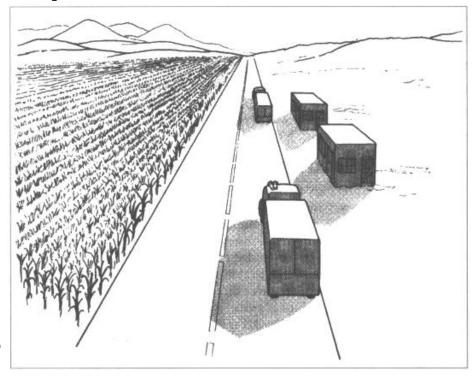
Augmented Reality Glasses

■ Meta Glasses

R.W. Lindeman - WPI Dept. of Computer Science Interactive Media & Game Development

Meta Glasses Video

https://www.spaceglasses.com/


Visual Cues

- Depth is the main thing added by VR to more-traditional displays
 - How do we perceive depth?
- Monoscopic cues
- □ Stereoscopic cues
- Motion-depth cues
- Physiological cues

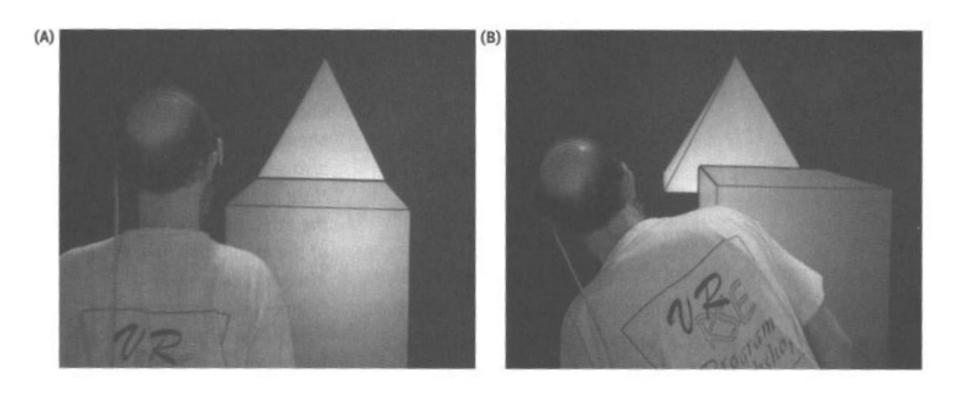
Monoscopic Cues

- □ Overlap (Interposition)
- ☐ Shading & shadows
- □Size
- □ Linear perspective
- □ Texture gradient
- ☐ Height in the image
- □ Atmospheric effects
- □ Brightness

Stereoscopic Cues

- □This is based on the *parallax* of objects appearing in two images.
- □ Camera 1 / camera 2 effect
- Only good within about 5 meters of viewer

Motion Depth Cues


- Changing relative position of head and objects
- Can be user and/or object moving
 - Train leaving a station
 - Use proprioception to disambiguate

http://www.youtube.com/watch?v=1AZAbSXmeoI

Motion Depth Cues (cont.)

☐ Head movement

Physiological Cues

- The eye changes during viewing
- Accommodation
 - Muscular changes of the eye
- □ Convergence
 - Movements to bring images to same location on both retinas

Properties of Visual Displays

- □ Color
- Spatial resolution
- Contrast
- □ Brightness
- Number of channels
- □ Focal distance
- Opacity
- Masking
- ☐ Field of view
- □ Field of Regard

- □ Head position info
- □ Graphics latency
- □ Frame rate

Number of Display Channels

- Spatial multiplexing
 - Different image in front of each eye
- Temporal multiplexing (time interlacing)
 - Use shutter glasses
- Polarization multiplexing
 - Use polarized glasses
- Spectral multiplexing
 - Red/blue left-eye/right-eye images
- Binocular monoscopic
- □ Stereo takes twice the resources!

Masking

- How physical objects block virtual ones
- □ CAVE: Hands can break effect
- □ HMD: Not at all
- ☐ Fishtank: Display edges/bezel can break effect

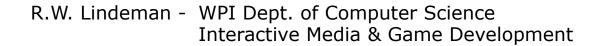
http://www.youtube.com/watch?v=Jd3-eiid-Uw

Field of View vs. Field of Regard

- ☐ Field of view (FOV)
 - How much of the scene (in degrees) is visible at any given time
- ☐ Field of regard (FOR)
 - Amount of space (in percent) of the virtual world currently surrounding the user
- Examples
 - CAVE: 200° FOV facing forward, 75% FOR
 - HMD: 100° FOV, 100% FOR

Hand-Held VR

- PDAs are becoming more powerful
 - Can track a tablet PC, and use as VR display
- □ Call phones have cameras
 - Can do AR



Change Blindness

- □ There is so much information for the brain to process, we need to filter
- □ Change blindness is when we miss things that change from one instant to another
 - http://www.youtube.com/watch?v=mAnKvo-fPs0
- □ A public service announcement:
 - http://www.youtube.com/watch?v=Ahg6qcgoay4&NR=1
- Next example from:
 - http://www.psych.ubc.ca/~rensink/flicker/
 - Show Movie

Change Blindness

Change Blindness (answer)

Change Blindness (answer)

Visuals in Games

- □ Two main kinds
 - Visuals for representing the world (player)
 - Visuals for representing the state of the game (player)
- □ Usually for the first type, more is better
- □ Usually for the second type, less is better

Heads-Up Displays (HUDs)

- What is a HUD?
 - "A collection of persistent on-screen elements whose purpose is to indicate player status."

(Greg Wilson, Gamasutra:

http://www.gamasutra.com/features/20060203/wilson_pfv.htm)

☐ Are HUDs good?

Creating an Effective HUD

- □ How can we minimize HUD elements?
- Decide what information the player needs, and what he/she doesn't.
- Put as much of that information into the game
 - E.g., speedometer in car, ammo count on weapon
- Off-load from visuals to something else
 - Examples for what would work?
- □ Blink-in changes, then fade them out
- Make things configurable
 - View point, map type, transparency
- □ Camouflage the HUD using themes

HUD-less

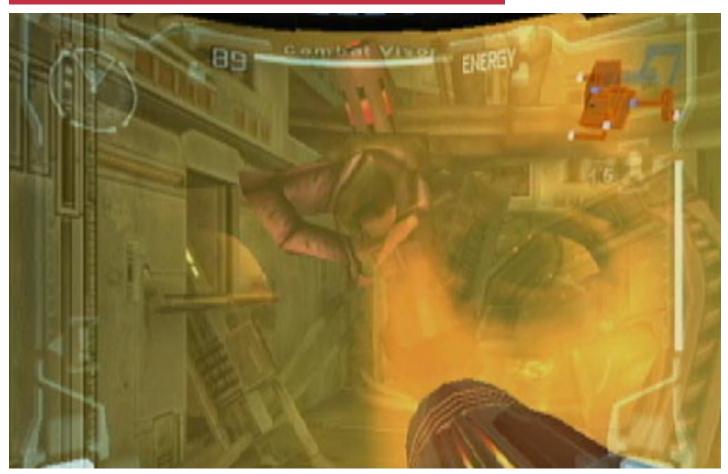
(Peter Jackson's King Kong)

Integrated HUD Info

(*Doom 3*)

Integrated HUD Info

(Project Gotham Racing 3)


Semi-Opaic HUD

(Deus Ex: Invisible War)

Themed HUD

(Metroid Prime)

WPI

Need For Speed HUD Elements

WPI

Need For Speed HUD Elements

Good Readings

"Learn Faster to Play Better"

http://www.gamasutra.com/view/feature/3392/ learn faster to play better how .php

"Off with their HUDs"

http://www.gamasutra.com/features/20060203/wilson_01.shtml