

IMGD 3000 - Technical Game Development I: Intro to AI in Games, Part 2

by Robert W. Lindeman gogo@wpi.edu

Motivation

Particle systems can add nice realism to

- an environment
 - Fairly simplistic "rules"
 - No collision detection

NPCs can be implemented in a similar fashion

- Complex behavior ⇒ more-complex rules
- Combination of "standard" and special purpose algorithms

Sample Uses of AI in Games (recap)

- Bad guys guarding something
- Bad guys looking for you
- □ Bad guys trying to beat you to something
- Bad guys trying to beat you (literally)
- Good guys working with you
- Other people just minding their own business

Flocks, Herds, and Schools

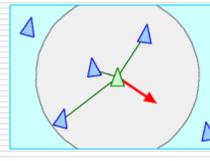
- A flock consists of a group of discrete boids moving in a visually complex fashion.
- There appears to be some central control, but evidence indicates that the motion is just the aggregate result of individual object motions.
- Problem
 - How do we simulate the motions of a flock in games?

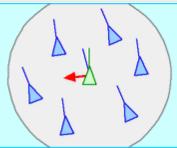
Behavioral Systems

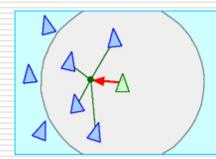
- □ Special instance of particle systems
- Flock is a group of objects that exhibit the general class of polarized (aligned), non-colliding, aggregate motion.
- Boid is a simulated bird-like object, *i.e.*, it exhibits this type of behavior. It can be a fish, dinosaur, *etc.*
- Allow each object to determine its own behavior

General Approach

- Each boid maintains
 - An internal state
 - A set of behaviors
- Fits very nicely into a C++ (Java, etc.) class
 - Each boid is an instance of this class
- □ Three main behavioral rules
 - Separation
 - Alignment
 - Cohesion


Three Rules


□ Separation

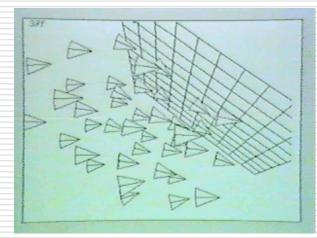

- Steer to avoid crowding local flockmates
- □Alignment
 - Steer towards the average heading of local flockmates

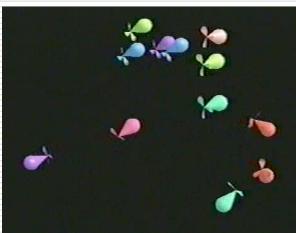
Cohesion

Steer to move toward the average position of flockmates

Three Rules, Restated

- Avoid collisions with neighbors and obstacles
- Attempt to match velocity (speed and direction) of neighbors
- Attempt to stay close to neighbors
- □ These are not orthogonal
 - Collision avoidance helps establish a minimum distance to neighbors
 - Velocity matching maintains it




Boid Brain

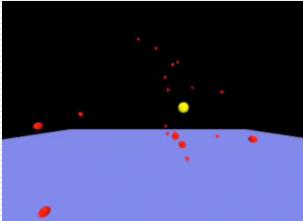
Each boid has access to whole scene

Each one only considers flockmates in neighborhood

- Typically defined using a radius
- Think of fish in murky water, birds in fog

More Rules?

□ What else could you do with this?


R.W. Lindeman - WPI Dept. of Computer Science Interactive Media & Game Development

More Rules?

- Seek and flee
 Food vs. Food?
- Pursue and EvadeWander
- □Arrival
- Containment
- □ Wall following
- □ Path following
- Leader following

Problems with Behavioral Techniques

- Trade control for automation
 Difficult to get *exact* desired effect
- Solution: Follow the leader
 How to define leader
- Solution: Use only for background
 Use something else for foreground characters
- Need to consider *every* boid
 O(n²) complexity!
 How can we fix this?

Behavioral Systems: Examples

- □ Bats and penguins in *Batman Returns* □ All battle scenes in *Lord of the Rings*
- □ Most battle scenes in Star Wars

Add some stochastic behaviors in order to deter uniformity

References

- W. T. Reeves, "Particle Systems A Technique for Modeling a Class of Fuzzy Objects", *Computer Graphics*, vol. 17, no. 3, pp 359-376, 1983.
- C. W. Reynolds, "Flocks, Herds, and Schools: A Distributed Behavioral Model", *Computer Graphics*, vol. 21, no. 4, pp 25-34, 1987.
- http://www.red3d.com/cwr/boids/
- □ http://www.red3d.com/cwr/steer/
- http://www.siggraph.org/education/materials/ HyperGraph/animation/particle.htm
- http://www.devmaster.net/articles/particle_systems/