
IMGD 3000 - Technical Game
Development I:

Iterative Development
Techniques

by

Robert W. Lindeman
gogo@wpi.edu

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

2	

Motivation
 The last thing you want to do is write

critical code near the end of a project
 Induces huge stress on the team
 Introduces all kinds of interesting bugs that

break working code

 Testing always gets cut in a crunch
 Makes the problem even worse!

 Planning can help avoid writing critical
code in alpha or beta phases

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

3	

Wishes Versus Reality
 Most games you play are less/smaller

than originally envisioned
 Design was bigger than implementation
 Implementation was bigger than what

actually made it into the game

 How do we know when a game is
"done"?

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

4	

How Do We Estimate Progress?
 Example:

  Jo is a programmer
  She estimates it will take 10 days to implement a

Smart Trap
  She is 4 days into the implementation
  Is the Smart Trap 40% complete?

 We may not see it "snap shut" until day 9
  Say she is good, and finishes in 8 days total

 We are ahead!
  Later, it is decided to add functionality to the Smart

Trap (e.g., can trap larger objects)
 This takes 4 days

  Now we’re behind!

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

5	

So, What’s the Point?
 Most things get revisited multiple times

during development
 Fix bugs, modify functionality, etc.

 The "40% done" estimate looks pretty
sketchy…

 We need a way to account for time
without driving a project into trouble
(and into panic)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

6	

Incremental Delivery
 Milestones are good things!

 They let us get things done

 Downside
 If you miss one, people notice, and action is

often taken
 Especially management and production

people

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

7	

Incremental Delivery (cont.)
 Developer’s view

 Milestones (or plans in general) are just best
guesses for how the implementation will
evolve

 Management’s view
 Schedules are contracts with developers
 Promising certain things at certain times

 These different views cause problems
 Developers: Panic, pressure, long hours
 Managers: Justification, financial pressure

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

8	

Milestones
 Without milestones, work will not get

done
 Unrealistic milestones mean the work

will not get done on time, regardless of
how financially important they are

 Managers need to know the estimates of
the developers, and the key markers
along the way
 They need to plan their financial links

accordingly

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

9	

Milestones (cont.)
 External (used by managers) milestones

are at a coarser granularity
 Need to tie to publishers, etc.

 Internal (used by developers) milestones
are at a finer granularity
 Need to use among team members

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

10	

Milestones (cont.)
 Think of the development plan as a

blackbox
 Managers have a specific "interface" to the

box
 Give me the latest build
 Give me the latest (high-level) schedule

 Clearly, this is too simplistic/wishful
thinking
 Managers want to know more

 But it helps separate things better

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

11	

Hidden Gems
 For many, if I can’t see it, it is not

important
 AI takes time to build
 Network balancing is an optimization

 Developers receive less "credit" for these
than things that can be seen

 Good managers will probe deeper below
the surface to see what is really going on
 Requires technical ability (knowledge)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

12	

Iteration
 Make frequent (daily, weekly?) working

builds
 "We don’t go home Friday until a working

build is checked in."
 If management asks for the latest build, give

them the one from last week

 Resist the desire to show the latest-and-
greatest
 People will always expect it, and it leads to

unrealistic expectations

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

13	

Internal Scheduling
 Given a detailed design document

 Make a list of all objects (players, items,
NPCs, environments, etc.) that need to be
built

 Mark each one as either
 Core,
 Required, or
 Desired.

 Remember the circle diagram?

 End result
 List of features sorted by importance

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

14	

Internal Schedule Structure
 Could start working from top of list, and

when time runs out, we are done
 Produces a lot of complete pieces, but no

whole
 Makes management (and others) nervous

 Since we made the list in an OO way, we
should start building objects!

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

15	

OO Iterative Development:
Object Versions

// Player.h
class Player {
 public:
 Player(void);
 ~Player(void);
};

//Player.cpp
#include "Player.h"

Player::Player(void) {
}

Player::~Player(void) {
}

 Create a Null version
for each object
 Complete, but empty

 Basic version
 Placeholder with some

properties present

 Nominal version
 Commercially viable

implementation

 Optimal version
 State of the art version

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

16	

OO Iterative Development:
Object Versions (cont.)
 Some objects will be simpler

 Fewer iterations

 Some will be more complex
 More iterations

 We can say we have a shippable game
when every object is at least at the
Nominal version

 A complete game is one where all
objects are at Optimal level

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

17	

Discussion
 Seems like we need to write three versions of

every object!
  Yes, but we would probably do this anyway with

revisions

 Approach
  Starting with core, then required, then desired,

implement Null versions of all objects
  Starting with core, then required, implement the

Nominal versions
 Code is now releasable

  Start to work on desirables

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

18	

Discussion (cont.)
 This is a breadth-first approach
 Better than "let's do the cool bits first!"

 Always have a build-able game
 Near-continuous growth
 Can easily show refinement
 Better handle on how "complete" the game is

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

19	

Scheduling:
Naïve

Feature Null Base Nominal Optimal

Core F1 1 13 25 37

F2 2 14 26 38

F3 3 15 27 39

F4 4 16 28 40

Required F5 5 17 29 41

F6 6 18 30 42

F7 7 19 31 43

F8 8 20 32 44

Desired F9 9 21 33 45

F10 10 22 34 46

F11 11 23 35 47

F12 12 24 36 48

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

20	

Scheduling:
Better (single programmer)

Feature Null Base Nominal Optimal

Core F1 1 13 22 37

F2 2 14 23 38

F3 3 15 24 39

F4 4 16 25 40

Required F5 5 17 26 41

F6 6 18 27 42

F7 7 19 28 43

F8 8 20 29 44

Desired F9 9 21 32 45

F10 10 30 33 46

F11 11 31 34 47

F12 12 35 36 48

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

21	

Scheduling:
Better (multiple programmers)

Feature Null Base Nominal Optimal

Core F1 1A 7A 11B 19A

F2 1B 7B 12A 19B

F3 2A 8A 12B 20A

F4 2B 8B 13A 20B

Required F5 3A 9A 13B 21A

F6 3B 9B 14A 21B

F7 4A 10A 14B 22A

F8 4B 10B 15A 22B

Desired F9 5A 11A 16B 23A

F10 5B 15B 17A 23B

F11 6A 16A 17B 24A

F12 6B 18A 18B 24B

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

22	

Team Utilization
 Make sure to use the skills of each team

member well
  All eggs in one basket
  Jack of all traits, master of none

 Keep everyone busy
  No waiting, if possible

 Communication is vital
  Every programmer should be aware of what others

are doing
 Code reviews
  Joint status meetings
 Documentation

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

23	

Scheduling:
Eggs in one Basket

Feature Null Base Nominal Optimal

Core F1 1A 7A 12A 19A

F2 1B 7B 11B 19B

F3 2A 8A 13A 20A

F4 2B 8B 12B 20B

Required F5 3A 9A 14A 21A

F6 3B 9B 13B 21B

F7 4A 10A 15A 22A

F8 4B 10B 14B 22B

Desired F9 5A 11A 16A 23A

F10 5B 15B 16B 23B

F11 6A 17A 18A 24A

F12 6B 17B 18B 24B

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

24	

Scheduling with Iteration
 Shift:

  FROM: When will it be finished?
  TO: When will it be good enough?

 "Finished" is meaningless anyway
 We have a definition of "Good Enough" now!
 Bad estimation often comes from top-down

dissection
  No accounting for the learning curve, code revision,

or integration

 Iterative development
  Total time equals the sum of the Null, Base, Nominal,

and Optimal levels

