
IMGD 3000 - Technical Game
Development I:

Scene Management

by

Robert W. Lindeman
gogo@wpi.edu

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

2	

Overview
 Graphics cards can render a lot, very fast

 But never as much, or as fast as we'd like!

 Intelligent scene management allows us
to squeeze more out of our limited
resources
 Scene graphs
 Scene partitioning
 Visibility calculations
 Level of detail control

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

3	

Scene Graphs
 A specification of object and attribute

relationships
 Spatial
 Hierarchical
 Material properties

 Transformations
 Geometry
 Easy to attach objects together

 Riding a vehicle

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

4	

Scene Graphs (cont.)
 Can use instances to save resources

 Geometry handles instead of geometry
 Texture handles

 To take advantage of GPUs, reducing the
amount of shader (cg) and texture
switching is preferred

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

5	

Geometry Sorting and Culling
 Keys to scene management

 Render only what can be seen
 Render at a satisfactory, perceivable fidelity
 Pre-process what you can
 Use GPU as efficiently as you can

 First-level
 View-frustum culling
 Back-face culling
 Bounding sphere

 One or more acceleration structures
can be used

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

6	

Acceleration Structures
 Hierarchical bounding structures

 Test if parent is visible
 If not, then none of its children are
 If so, then recursively check the children

 Could use information about your
application to optimize approach
 Many interior levels have cells and portals
 No need to solve the general problem, just

the specific one

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

7	

Acceleration Structures
 Many structures exist

 Appropriateness depends on the scene, and
the game (e.g., dynamic objects)

 Space partitioning
 Uniform Grid
 Quad/Oct Tree
 Binary-Space Partitioning (BSP) trees
 k-d trees

 Geometry partitioning
 Bounding boxes/spheres/capsules

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

8	

Acceleration Structures -
Space Partitioning
 Uniform Grids

 Split space up into equal sized (or an equal
number of) cells

 Quad (Oct) Trees
 Recursively split space into 4 (8) equal-sized

regions

 Binary-Space Partitioning (BSP) trees
 Recursively divide space along a single,

arbitrary plane

 k-dimensional trees (k-d trees)
 Recursively

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

9	

Acceleration Structures -
Object Partitioning
 Bounding boxes/spheres/capsules
 Axis-Aligned Bounding Boxes (AABB)
 Oriented Bounding Boxes (OBB)
 Discrete Oriented Polytope (DOP)

 Polytope: 2D = polygon, 3D = polyhedron
 k-DOP: k planes in a DOP
 Common: 6-DOP (AABB), 10-DOP, 18-DOP,

24-DOP

 Bounding-Volume Hierarchies (BVHs)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

10	

Cell-Portal Visibility
 Keep track of which cell the viewer is in
 Somehow enumerate all the visible regions
 Cell-based

  Preprocess to identify the potentially visible set (PVS)
for each cell

 Point-based
  Compute at runtime

 Trend is toward point-based, but cell-based is
still very common
 Why choose one over the other?

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

11	

Visibility of Cells
 Point-based algorithms compute visibility from

a specific point
 Which point?
  How often must you compute visibility?

 Cell-based algorithms compute visibility from
an entire cell
  Union of the stuff visible from each point in the cell
  How often must you compute visibility?

 Which method has a smaller potentially visible
set?

 Which method is suitable for pre-computation?

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

12	

Potentially Visible Set (PVS)
 PVS: The set of cells/regions/objects/polygons

that can be seen from a particular cell
 Generally, choose to identify objects that can be seen
  Trade-off is memory consumption vs. accurate

visibility

 Computed as a pre-process
  Have to have a strategy to manage dynamic objects

 Used in various ways:
  As the only visibility computation - render everything

in the PVS for the viewer’s current cell
  As a first step - identify regions that are of interest

for more accurate run-time algorithms

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

13	

Cell-to-Cell PVS
 Cell A is in cell B's PVS if there exists a stabbing

line from a portal of B to a portal of A
  Stabbing line: a line segment intersecting only portals
  Neighbor cells are trivially in the PVS

I J

H

G A

C
B E

F
D

PVS for I contains:
B, C, E, F, H, J

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

14	

Eye-to-Region Example (1)

View

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

15	

Eye-to-Region Example (2)

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

16	

Putting it all Together
 The "best" solution will be a combination

 Static things
 Oct-tree for terrain
 Cells and portals for interior structures

 Dynamic things
 Quick reject using bounding spheres
 BVHs for objects

 Balance between pre-computation and
run-time computation

R.W. Lindeman - WPI Dept. of Computer Science
 Interactive Media & Game Development	

17	

References
  http://www.cs.wisc.edu/graphics/Courses/679-f2003/

