IMGD 3000 - Technical Game Development I: Intro to AI in Games

by
Robert W. Lindeman

gogo@wpi.edu
Motivation

☐ Okay, so you are in control
 ■ What about NPCs?

☐ Use AI to make your experience:
 ■ More compelling
 ■ More challenging

☐ Much AI is AS
 ■ Movement too simplistic
 ■ Movement too predictable
 ■ Movement too repeatable
Sample Uses of AI in Games

- Bad guys guarding something
- Bad guys looking for you
- Bad guys trying to beat you to something
- Bad guys trying to beat you (literally)
- Good guys working with you
- Other people just minding their own business

Summary: 4 Bad, 1 Good, 1 Neutral
More Detailed Examples

- **Bad guys**
 - Find a path through the environment from where they are to where you are
 - Pac man ghosts
 - Guard the base, but if I see you, then attack!
 - Opponents racing around a track
 - Be fast, but block you too

- **Good guys**
 - If we are attacked, then counter!

- **Neutral**
 - Act natural, please!
Let's Start Small

- Objects in an environment follow rules
 - Physical laws
 - Damage
 - Fatigue

- Particles
 - Water flows
 - Fire burns, rises, heat dissipates
 - These are just rules!

- Higher-order beings also follow rules
 - They are just more complex
Basic Model of Particle Systems

- A collection of many minute particles

- For each frame:
 - New particles are generated, and assigned a set of properties
 - Old particles die, and are removed
 - Remaining particles change their properties, e.g., position, shape, color
 - Objects are rendered based on this new state

- Creation and attribute manipulation are procedural
 - Can be the result of computations
Changing Particle Properties

- How should the properties of the particles change over time?
 - Where does each particle move to?
 - How does its color change?

- Can be based on *anything*
 - Look at neighboring particles
 - Look at scene objects, like obstacles
 - Look at time
 - Look at distance traveled
 - Look at anything you want!
Basic Algorithm

Set up particle

While Animation In Progress

If Particle Not Dead Then

 Add Particle Direction * Speed To Particle Position
 Add Particle Acceleration To Particle Speed
 Modify Particle Speed
 Modify Particle Energy

 If Particle’s Energy < Threshold Then
 Mark Particle As Dead
 End If

If Particle Hits Object Then

 Modify Particles’ Positions, Directions, Speed and Energy

End If

Display Particle

End If

End While
Example: Movement of Particles

- S_t is the state of all particles at time t
 - At $t=0$: S_0

Images: Greg M. Johnson
(http://www.geocities.com/pterandon/boids.html)
Example: Movement of Particles

- Compute the influence of all other particles within some range
 - Attraction, repulsion

Images: Greg M. Johnson
(http://www.geocities.com/pterandon/boids.html)
Example: Movement of Particles

- Add all forces together, and use that to update the current position

Images: Greg M. Johnson
(http://www.geocities.com/pterandon/boids.html)
Example: Movement of Particles

- Wait, there might be other forces!
 - Whatever the goal is of the scene

Images: Greg M. Johnson
(http://www.geocities.com/pterandon/boids.html)
Example: Movement of Particles

- Again, sum these as the forces on the particle
- Repeat these steps for each particle

Images: Greg M. Johnson
(http://www.geocities.com/pterandon/boids.html)
Particle Systems: More Examples

- Fire
- Explosions
Particle Systems: Final Thoughts

☐ In many cases, ignore self collisions
 ■ What does two fire particles colliding look like?

☐ Very general framework!
 ■ We can make special cases to get specific effects
 ■ Just change rules, objects, etc.

☐ How would you represent this system in code?