
IMGD 3000 - Technical Game
Development I:

Game Engine Structure

by
Robert W. Lindeman

gogo@wpi.edu

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

2

The User Experience
You spawn into an outdoor scene

 Flag waving
 Waterfall
 Trees
 Rocks
 A bridge
 A satellite dish

You shoot at the rocks
 A projectile

Animate vs. inanimate objects

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

3

The Engine Experience
Engine must provide support for your

world
 Load the scene objects
 Place inanimate objects
 Place you
 Make the flag wave, the water fall
 Make your projectile fly/hit/disappear
 Show you everything

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

4

High-Level Engine Code
Basic game loop:

InitializeObjects();

while(gameNotFinished) {
// Handle user input
// (mouse, keyboard, gamepad, etc.)
// Update objects in the world
// Render the World

}

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

5

Digging Deeper: Initialization
ResourceResult GameWorld::Preprocess(void) {
 ResourceResult result = World::Preprocess();
 if(result != kResourceOkay) return(result);
 SetCamera(&spectatorCamera);
 playerCamera = &firstPersonCamera;
 spawnLocatorCount = 0;
 CollectZoneMarkers(GetRootZone());
 const Marker *marker = GetFirstSpectatorLocator();
 if(marker) {
 // Initialize spectatorCamera to the marker's
 // position and direction.
 else {
 spectatorCamera.SetNodePosition(Point3D(0.0F, 0.0F, 1.0F));
 }
 return(kResourceOkay);
}

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

6

Digging Deeper: User Input
C4 defines a singleton called
TheInputMgr

Singleton?
The input manager dispatches actions to

your code
 You need to

 subclass the Action class

Define Begin() and End() methods
Bind the action to the instance you want to use

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

7

Game Engine Flow
Load program
Initialize variables
Load mission/level information
Place objects/NPCs into world
Schedule events
Start clock
Spawn player
Handle events

 Generated by player(s), NPCs, or timers

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

8

Multiplayer: Server
Start server

 Like previous slide
 Events include clients joining

Spawn player
Receive updates from clients
Update global state

 Maintain the world state

Disseminate state changes
 To clients
 To other servers

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

9

Multiplayer: Client
Load client code
Search for a server

 Choose wisely!

Establish connection
Receive current game state
Render game to user
Receive

 Input from user
 Updates from server

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

10

Game Engines
 Scene graph

 Representation of the world
 Includes characters

 Timing is very important
 Events

 Time-based
 Multi-player

 Synchronization

 Database of objects
 Networking

 Between Server and clients
 Between Servers

Origin

Transform

Castle

Drawbridge Moat

TransformTransform

DragonPlayer

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

11

Game Graphics
 Different from other media

 Need to process and display @ 30 fps
 Dynamic scenes

 Graphics Processing Units (GPUs) are now
programmable
 Need to understand how to program for them
 nVidia's cg programming language, OpenGL 2.0

extensions, GLSL
 Stream-processing model
 Data must be packed into textures
 Limited control support

 Loops, stack data structures

 Good jobs here!

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

12

Physics
 Need to consider how fast you can compute

 Scalable in the number of objects?
 Scalable in the types of objects?

 Cloth?
 Hair?
 Water?

 Three main types of objects
 Point masses
 Rigid bodies
 Soft bodies

 Life is a combination of physics and freewill
 How do we balance these?

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

13

Server Details
 Server performs multiple tasks concurrently

 Each WORKER is a separate thread
 How do they coordinate efforts?

WORKER
Listen for client updates
•One port per client?

WORKER
Update NPC state
•Time
•Behavior

WORKER
Transmit updates to
clients
•Object state
•Player state
•Does this scale?

WORKER
Client join/leave process

Initialize game
•Load assets
•Load map
•Load add-ons (mods)
•Initialize NPCs
•Start WORKER threads
•Start clock

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

14

Server Coordination
 Each worker has tables of interest

 Workers sleep until table data changes
 Database dispatcher monitors tables, wakes workers

WORKER
Listen for client updates
•One port per client?

WORKER
Update NPC state
•Time
•Behavior

WORKER
Transmit updates to
clients
•Object state
•Player state
•Does this scale?

WORKER
Client join/leave process

Initialize game
•Load assets
•Load map
•Load add-ons (mods)
•Initialize NPCs
•Start WORKER threads
•Start clock

Game
Data

Tables

WORKER
Database event dispatcher

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

15

Even More Server Details
 For this to work, you need

 Threads
 Inter-process/thread Communication

 Sockets
 Shared memory

 Some way of doing timing
 Callback
 Interrupt handler

 An efficient data store

 In order to do it well, you also need
 Thorough understanding of systems programming
 A very good design, and lots of it!
 You should have seen this in CS-3013: OS, and

CS-2303: Systems Programming Concepts

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

16

Client/Server Approach
Requires messages to be passed

 Network could be bottleneck
 Server could be bottleneck

Lag is bad
 Example: the player you shoot at is

"magically" not there anymore by the time
the projectile gets to him

Inconsistent state is bad
 Who grabbed that object first?

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

17

Client/Sever Programming
Make it easy on the programmer

 Hide the fact that things are being sent to
server

Make "surrogates" for server objects
 Underlying system does actual

communication

How can we make a system really
scalable to 1000s of users?
 How is this done in gaming systems?

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

18

Graphical User Interface
Provides access to

 Game menus (e.g., save, load, boss)
 Player status (e.g., health, current speed)
 Maps

Current play location
 Location of "persons of interest"
 Location of "goals"

 Non-Player Character (NPC) dialog
 Player-to-player chat

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

19

Rob, stop here…
I said STOP!

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

20

C4 Scene Graph
Everything in the scene is part of the

scene graph
The scene graph is created (loaded) at

initialization
At runtime, your game will manipulate

the nodes in the graph
 Update transformations (positions/orient.)
 Add nodes (e.g., projectiles)
 Delete nodes (e.g., health packs)

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

21

Traversing the Scene Graph
 In C4, the root node is called the “infinite zone”

 All game elements must be part of a zone

 You can access the root node with the
World::GetRootNode() function

 Move through (traverse) the tree with
 GetFirstSubNode()
 GetNextNode()
 GetPreviousNode()
 etc.

 Look at the Tree class

 More on scene graphs later

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

22

More on Nodes
 Search the C4 API for “hierarchy”

 Shows Node class hierarchy

 A transform is a matrix representing the
object’s position, orientation, and scale

 Two notions of a transform
 Local transform is relative to the immediate

parent node in the scene graph
 World transform is the absolute position in

world space

 Moving an object means updating its transform

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

23

Game Loop, Revisited
Can expand “Update objects in the

world” to:
 Starting at the root node in the scene graph,

traverse from parent to child nodes
recursively

 For each node, if certain conditions are met,
call some function to update the transform

But how do you specify what code to call,
and under what conditions?

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

24

Controllers
One way to change a node’s transform is

through the use of a controller
The Node class has Set/GetController()

methods
Controller class has Move() method

 This is what is called during traversal
 This is where you put your transform update

code
 Actually, you can update the transform of
any nodes from this method!

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

25

Controllers (cont.)
As with many things, the controller class

makes heavy use of inheritance
 CollectableController
 DoorController
 LightningController
 RotationController
 CharacterController
 RocketController

Everything that has some kind of
behavior has a controller assigned to it
 Swinging lights? PendulumController

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

26

Controllers (cont.)
 What’s the difference between the Move() and
Travel() controller methods?
 Movement code goes in Move(), and tells C4 where

you want your object to go.
 Travel() is used to apply any corrective movement

caused by things like collisions

 The collision system tries to move each object,
and checks for collisions
 In Travel(), if a collision happened, handle it. If not,

set the position to the final position calculated in
Move().

 You need to tell the sysem what to do once a collision
happens in the Travel() method.

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

27

Final Notes on Controllers
If you want to animate something

 Make sure that the associated node has a
controller assigned to it

 Add your code to update the transform in the
Move() method of the controller

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

28

Geometry and Nodes
Geometry (mesh) information is not

contained directly in the node
 It is stored in a GeometryObject
See Set/GetObject() methods for

geometry nodes
Separating them allows for instancing,

saving memory
Each instance has its own transforms

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

29

C4 Engine Structure
Layered structure

 Base Services
 System Managers
 Large-Scale Architecture
 Plugin Modules
 Application (e.g., your game)

http://www.terathon.com/c4engine/architecture.php

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

30

C4 Base Services
File Manager
Memory Manager
Time Manager
Resource Manager
Math Library
Utility Library
System Utilities

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

31

C4 System Managers
Sound Manager
Rendering Core
Display Manager
Graphics Manager
Input Manager
Network Manager

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

32

C4 Large-Scale Architecture
Interface Manager
Message Manager
Effect Manager (fluid, cloth, particles)
Scene Graph
Animation System
Controller System
World Manager
Plugin Manager

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development

33

C4 Plugin Modules
Import Tools (Collada, TGA files)
World Editor
Application Module
Media players

 Model viewer
 Texture viewer
 Font generator
 Sound player
 Movie player

