
Chapter 6
Network
Although little emphasis was given to the subject in recent chapters, a key feature of
working with Torque is the fact that it was built around a client/server networking
architecture.

Torque creates a GameConnection object, which is the primary mechanism that links the
client (and the player) to the server. The GameConnection object is built from a
NetworkConnection object. When the server needs to update clients, or when it receives
updates from clients, the work is done through the good auspices of the
NetworkConnection, and it is normally quite transparent at the game level.

What this means in practical terms is that the engine automatically handles things like
movement and state changes or property changes of objects that populate a game world.
Game programmers (like you and me) can then poke their grubby little fingers into this
system to make it do their bidding without needing to worry about all the rest of the stuff,
which Torque will manage—unless we decide to mess around with that too!

I know this seems a bit vague, so in this chapter we will attack the nitty-gritty so that you
can really see how to use Torque's built-in networking to the best advantage.

First we will discuss the features, and look at examples of how they can be implemented,
and then later in the chapter, after you update your Emaga sample program, you can try
them out.

Direct Messaging
The quickest way to get down and dirty with the client/server networking in Torque is to
use the CommandToServer and CommandToClient direct messaging functions. These
extremely useful "ad hoc" messaging functions are used for a wide variety of purposes in
a Torque game, like in-game chat, system messages, and client/server synchronization.

CommandToServer
The CommandToServer function is used to send a message from a client to a server. Of
course, the server needs to know that the message is coming and how to parse it to extract
the data. The syntax is as follows:

CommandToServer(function [,arg1,...argn])
Parameters: function Message handler function on the server to be executed.

arg1,...argn Arguments for the function.

Return: nothing

An example of how to use the function would be a simple global chat macro capability
where a player would press a key, and then a specific message would be broadcast to all
other players. Here is how that would work:

First, we would bind a key combination to a specific function, say Ctrl+H bound to the
function we'll call SendMacro(). In the key binding statement, we'll make sure to pass the
value 1 as a parameter to SendMacro().

SendMacro() could be defined on the client as this:

function SendMacro(%value)

{

 switch$ (%value)

 {

 case 1:

 %msg = "Hello World!";

 case 2:

 %msg = "Hello? Is this thing on?";

 default:

 %msg = "Nevermind!";

 }

 CommandToServer('TellEveryone', %msg);

}

So now, when the player presses Ctrl+H, the SendMacro() function is called, with its
%value parameter set to 1. In SendMacro(), the %value parameter is examined by the
switch$ statement and sent to case 1:, where the variable %msg is stuffed with the string
"Hello World!". Then CommandToServer is called with the first parameter set to the
tagged string "TellEveryone" and the second parameter set to our message.

Now here is where some of the Torque client/server magic elbows its way onto the stage.
The client will already have a GameConnection to the server and so will already know
where to send the message. In order to act on our message, the server side needs us to
define the TellEveryone message handler, which is really just a special purpose function,
something like this:

function ServerCmdTellEveryone(%client,%msg)

{

 TellAll(%client,%msg);

}

Notice the prefix ServerCmd. When the server receives a message from the client via the
CommandToServer() function, it will look in its message handle list, which is a list of
functions that have the ServerCmd prefix, and find the one that matches
ServerCmdTellEveryone. It then calls that function, setting the first parameter to the
GameConnection handle of the client that sent the message. It then sets the rest of the

parameters to be the parameters passed in the message from the client, which in this case
is %msg stuffed with the string "Hello World!".

Then we can do what we want with the incoming message. In this case we want to send
the message to all of the other clients that are connected to the server, and we'll do that by
calling the TellAll() function. Now we could put the code right here in our
ServerCmdTellEveryone message handler, but it is a better design approach to break the
code out into its own independent function. We'll cover how to do this in the next section.

CommandToClient
Okay, here we are—we're the server, and we've received a message from a client. We've
figured out that the message is the TellEveryone message, we know which client sent it,
and we have a string that came along with the message. What we need to do now is
define the TellAll() function, so here is what it could look like:

function TellAll(%sender, %msg)

{

 %count = ClientGroup.getCount();

 for (%i = 0; %i < %count; %i++)

 {

 %client = ClientGroup.getObject(%i);

 commandToClient(%client,'TellMessage', %sender, %msg);

 }

}

Our intention here is to forward the message to all of the clients. Whenever a client
connects to the server, its GameConnection handle is added to the ClientGroup's internal
list. We can use the ClientGroup's method getCount to tell us how many clients are
connected. ClientGroup also has other useful methods, and one of them— the getObject
method—will give us the GameConnection handle of a client, if we tell it the index
number we are interested in.

If you want to test these example functions, I'll show you how to do that toward the end
of the chapter. If you feel like giving it a go by yourself, I'll give you small hint: the
CommandToClient function is called from the server side, and the CommandToServer
functions belong on the client side.

As you can see, CommandToClient is basically the server-side analogue to
CommandToServer. The syntax is as follows:

CommandToClient(client, function [,arg1,...argn])
Parameters:client Handle of target client.

function Message handler function on the server to be executed.

arg1,...argn Arguments for the function.

Return: nothing

The primary difference is that although the client already knew how to contact the server
when using CommandToServer, the same is not true for the server when using
CommandToClient. It needs to know which client to send the message to each time it
sends the message. So the simple approach is to iterate through the ClientGroup using the
for loop, getting the handle for each client, and then sending each client a message using
the CommandToClient() function, by specifying the client handle as the first parameter.
The second parameter is the name of the message handler on the client side this time.
Yup—works the same going that way as it did coming this way! Of course, the third
parameter is the actual message to be passed.

So we need that message handler to be defined back over on the client. You can do it like
this:

function clientCmdTellMessage(%sender, %msgString)

{

 // blah blah blah

}

Notice that when we called this function there were four parameters, but our definition
only has two in the parameter list. Well, the first parameter was the client handle, and
because we are on the client, Torque strips that out for us. The second parameter was the
message handler identifier, which was stripped out after Torque located the handler
function and sent the program execution here. So the next parameter is the sender, which
is the client that started this whole snowball rolling, way back when. The last parameter
is, finally, the actual message.

I'll leave it up to you to decide what to do with the message. The point here was to show
this powerful messaging system in operation. You can use it for almost anything you
want.

Direct Messaging Wrap-up
CommandToServer and CommandToClient are two sides of the same direct messaging
coin and give us, as game programmers, a tremendous ability to send messages back and
forth between the game client and the game server.

Direct messaging can also be an important tool in the fight against online cheating in
your game. You can, in theory and in practice, require all user inputs to go to the server
for approval before executing any code on the client. Even things like changing setup
options on the client—which are not normally the sort of thing that servers would
control—can be easily programmed to require server control using the technique we just
looked at.

The actual amount of server-side control you employ will be dictated by both available
bandwidth and server-side processing power. There is a lot that can be done, but it is a
never-ending series of tradeoffs to find the right balance.

Triggers
Right off the bat, there is potential for confusion when discussing the term trigger in
Torque, so let's get that out of the way. There are four kinds of triggers that people talk
about when programming with Torque:

* area triggers
* animation triggers
* weapon state triggers
* player event control triggers

I'll introduce you to all four here but we'll talk about three of them—area triggers,
animation triggers, and weapon state triggers—in more detail in future chapters.

Area Triggers
Area triggers are a special in-game construct. An area in the 3D world of a game is
defined as a trigger object. When a player's avatar enters the bounds of the trigger area,
an event message is posted on the server. We can write handlers to be activated by these
messages. We will be covering area triggers in more depth in Chapter 22.

Animation Triggers
Animation triggers are used to synchronize footstep sounds with walking animation in
player models. Modeling tools that support animation triggers have ways of tagging
frames of animation sequences. The tags tell the game engine that certain things should
happen when this frame of an animation is being displayed. We'll discuss these later in
Chapter 20.

Weapon State Triggers
Torque uses weapon state triggers for managing and manipulating weapon states. These
triggers dictate what to do when a weapon is firing, reloading, recoiling and so on. We'll
look at this in more detail later in Chapter 20 in the section Weapon Sounds.

Player Event Control Triggers
Finally, there are player event control triggers, which are a form of indirect messaging of
interest to us in this chapter. These mechanisms are used to process certain player inputs

on the client in real time. You can have up to six of these triggers, each held by a variable
with the prefix $mvTriggerCountn (where n is an index number from 0 to 5).

When we use a trigger move event, we increment the appropriate $mvTriggerCountn
variable on the client side. This change in value causes an update message back to the
server. The server will process these changes in the context of our control object, which
is usually our player's avatar. After the server acts on the trigger, it decrements its count.
If the count is nonzero, it acts again, when it gets the next change in its internal
scheduling algorithm. In this way we can initiate these trigger events by incrementing the
variable as much as we want (up to a maximum of 255 times), without having to wait and
see if the server has acted on the events. They are just automatically queued up for us via
the $mvTriggerCountn variable mechanism.

Torque has default support for the first four control triggers built into its player and
vehicle classes (see Table 6.1).

Table 6.1 Default Player Event Control Triggers
Trigger Default Action
$mvTriggerCount0 Shoots or activates the mounted weapon in image slot 0 of the player's

avatar. (The "fire" button, so to speak.)

$mvTriggerCount1 Shoots or activates the mounted weapon in image slot 1 of the player's
avatar. (The "alt fire.")

$mvTriggerCount2 Initiates the "jump" action and animation for the player's avatar.

$mvTriggerCount3 Initiates the "jetting" (extra boost) action and animation for the vehicle on
which a player's avatar is mounted.

$mvTriggerCount4 Unassigned

$mvTriggerCount5 Unassigned

In the server control code, we can put a trigger handler in our player's avatar for any of
these triggers that override the default action. We define a trigger handler like this:

function MyAvatarClass::onTrigger(%this, %obj, %triggerNum, %val)

{

 // trigger activity here

 $switch(%triggerNum)

 {

 case 0:

 //replacement for the "fire" action.

 case 1:

 //replacement for the "alt fire" action.

 case 2:

 //replacement for the "jump" action.

 case 3:

 //replacement for the "jetting" action.

 case 4:

 //whatever you like

 case 5:

 //whatever you like

 }

}

The MyAvatarClass class is whatever you have defined in your player avatar's data block
using the following statement:

 className = MyAvatarClass;

To use these handlers, you merely have to increment one of the player event control
triggers on the client, something like this:

function mouseFire(%val)

{

 $mvTriggerCount0++;

}

GameConnection Messages
Most of the other kinds of messaging used when making a game with Torque are handled
automatically. However, in addition to the direct messaging techniques we just looked at,
there are other more indirect messaging capabilities available to the Torque game
developer. These are messages related to the GameConnection object.

I call these methods indirect because we, as programmers, don't get to use them in any
old way of our choosing. But we can, nonetheless, use these methods, in the form of
message handlers, when the Torque Engine decides it needs to send the messages.

What GameConnection Messages Do
GameConnection messages are of great importance to us during the negotiation process
that takes place between the client and server when a client joins a game. They are
network messages with game-specific uses, as opposed to being potentially more general-
purpose network messages.

Torque calls a number of GameConnection message handlers at different times during the
process of establishing, maintaining, and dropping game-related connections. In the
Torque demo software, many of these handlers are defined in the common code base,
whereas others aren't used at all. You are encouraged to override the common code
message handlers with your own GameConnection message handlers or use the unused
handlers, if you need to.

Specifics
During program execution, the client will at some point try to connect to the server using
a set of function calls like this:

 %conn = new GameConnection(ServerConnection);

 %conn.SetConnectArgs(%username);

 %conn.Connect();

In this example the %conn variable holds the handle to the GameConnection. The
Connect() function call initiates a series of network transactions that culminate at the
server with a call to the GameConnection::OnConnect handler.

The following descriptions are listed roughly in the order that they are used in the
program.

onConnectionRequest()

Parameters:none

Return:"" (null string) Indicates that connection is accepted.

None Indicates rejection for some reason.

Description:Called when a client attempts a connection, before the connection is
accepted.

Usage:Common—Server

This handler is used to check if the server-player capacity has been exceeded. If not
exceeded, then "" is returned, which allows the connection process to continue. If the
server is full, then CR_SERVERFULL is returned. Returning any value other than "" will
cause an error condition to be propagated back through the engine and sent to the client
as a call to the handler GameConnection:: onConnectRequestRejected. Any arguments
that were passed to GameConnection::::Connect are also passed to this handler by the
engine.

onConnectionAccepted(handle)
Parameters:handle GameConnection handle.

Return:nothing

Description:Called when a Connect call succeeds.

Usage:Client

This handler is a good place to make last-minute preparations for a connected session.

onConnectRequestRejected(handle, reason)

Parameters:handle GameConnection handle.

reason Indicates why connection was rejected.

Return:nothing

Description:Called when Connect call fails.

Usage:Client

If you arrive in this handler you should display, or at least log, the fact that the
connection was rejected and why.

onConnect(client, name)
Parameters:client Client's GameConnection handle.

name Name of client's account or username.

Return:nothing

Description:Called when a client has successfully connected.

Usage:Server

In this case the second parameter (%name) is the value the client has used, while
establishing the connection, as the parameter to the
%(GameConnection).SetConnectArgs(%username) call.

onConnectRequestTimedOut(handle)
Parameters:handle GameConnection handle.

Return:nothing

Description:Called when establishing a connection takes too long.

Usage:Client

When this gets called you probably want to display, or at least log, some message
indicating that the connection has been lost because of a timeout.

onConnectionTimedOut(handle)
Parameters:handle GameConnection handle.

Return:nothing

Description:Called when a connection ping (heartbeat) has not been received.

Usage:Server, Client

When this gets called you probably want to display, or at least log, some message
indicating that the connection has been lost because of a timeout.

onConnectionDropped(handle, reason)
Parameters:handle GameConnection handle.

reason String indicating why server dropped the connection.

Return:nothing

Description:Called when the server initiates the disconnection of a client.

Usage:Client

When this gets called you probably want to display, or at least log, some message
indicating that the connection has been lost because of a timeout.

onConnectRequestRejected(handle, reason)
Parameters:handle GameConnection handle.

reason See Table 6.2 for a list of conventional reason codes defined by
GarageGames in script.

Return:nothing

Description:Called when a client's connection request has been turned down by the
server.

Usage:Client

When this gets called you probably want to display, or at least log, some message
indicating that the connection has been lost because of a timeout.

Table 6.2 Connection Request Rejection Codes
Reason Code Meaning
CR_INVALID_PROTOCOL_VERSION The wrong version of client was detected.

CR_INVALID_CONNECT_PACKET There is something wrong with the connection
packet.

CR_YOUAREBANNED Your game username has been banned.

CR_SERVERFULL The server has reached the maximum number of
players.

CHR_PASSWORD The password is incorrect.

CHR_PROTOCOL The game protocol version is not compatible.

CHR_CLASSCRC The game class version is not compatible.

CHR_INVALID_CHALLENGE_PACKET The client detected an invalid server response
packet.

onConnectionError(handle, errorString)

Parameters:handle GameConnection handle.

errorString String indicating the error encountered.

Return:nothing

Description:General connection error, usually raised by ghosted objects' initialization
problems, such as missing files. The errorString is the server's connection
error message.

Usage:Client

onDrop(handle, reason)
Parameters:handle GameConnection handle.

reason Reason for connection being dropped, passed from server.

Return:nothing

Description:Called when a connection to a server is arbitrarily dropped.

Usage:Client

initialControlSet (handle)
Parameters:handle GameConnection handle.

Return:nothing

Description:Called when the server has set up a control object for the GameConnection.
For example, this could be an avatar model or a camera.

Usage:Client

setLagIcon(handle, state)
Parameters:handle GameConnection handle.

state Boolean that indicates whether to display or hide the icon.

Return:nothing

Description:Called when the connection state has changed, based upon the lag setting.
state is set to true when the connection is considered temporarily broken
or set to false when there is no loss of connection.

Usage:Client

onDataBlocksDone(handle, sequence)
Parameters:handle GameConnection handle.

sequence Value that indicates which set of data blocks has been
transmitted.

Return:nothing

Description:Called when the server has received confirmation that all data blocks have
been received.

Usage:Server

Use this handler to manage the mission loading process and any other activity that
transfers data blocks.

onDataBlockObjectReceived(index, total)
Parameters:index Index number of data block objects.

total How many sent so far.

Return:nothing

Description:Called when the server is ready for data blocks to be sent.

Usage:Client

onFileChunkReceived(file, ofs, size)
Parameters:file The name of the file being sent.

ofs Offset of data received.

size File size.

Return:nothing

Description:Called when a chunk of file data from the server has arrived.

Usage:Client

onGhostAlwaysObjectReceived()

Parameters:none

Return:nothing

Description:Called when a ghosted object's data has been sent across from the server to
the client.

Usage:Client

onGhostAlwaysStarted(count)
Parameters:count The number of ghosted objects dealt with so far.

Return:nothing

Description:Called when a ghosted object has been sent to the client.

Usage:Client

Master Servers
When you offer a game with networked client/server capabilities, there needs to be some
means for players to find servers to which to connect. On a small- to medium-sized local
area network, this is not too onerous a task—an extremely simple method is to have the
client merely examine a specified port on all visible nodes to see if a server is present.

The Internet, however, is a different kettle of fish. It is just too large for such an
approach. Instead, a fairly widely implemented technique is to employ a master server.
The master server's job is fairly straightforward and simple. It keeps a list of active game
servers and provides a client with the necessary information to connect to any one of the
servers if desired.

To see the utility of such a simple system, just take a look at NovaLogic, makers of the
successful Delta Force series of first-person shooters. NovaLogic still hosts master
servers for customers who bought the original Delta Force games from the late 1990s!
The overhead of such a simple system is minimal, and the benefit in customer good will
is tremendous.

The Tribes series of games, upon which Torque is based, also offers such master servers,
as do many other games out there.

Code Changes
We are going to implement master server support in our version of Emaga for this
chapter. We will create Emaga6 by modifying Emaga5, the game from the last chapter.

First, copy your entire C:\Emaga5 folder to a new folder, called C:\Emaga6. Then, for the
sake of clarity, rename the UltraEdit project file to chapter5.prj. Now open your new
Chapter 6 UltraEdit project. All changes will be made in the control code. In addition to
changes to the actual program code, you might want to also change any Chapter 5
comment references so they refer to Chapter 6—it's your call.

Client—Initialize Module
We'll make our first change in control/client/initialize.cs. Open that module and locate
the function InitializeClient. Add the following statements to the very beginning of the
function:

 $Client::GameTypeQuery = "3DGPAI1";

 $Client::MissionTypeQuery = "Any";

When one of our servers contacts the master server, it uses the variable
$Client::GameTypeQuery to filter out game types that we aren't interested in. For your
game, you can set any game type you like. Here we are going to go with 3DGPAI1
because there will be at least one 3DGPAI1 server listed on the master server, and for the
purpose of illustration it is better to see one or two 3DGPAI1servers listed than nothing at
all. You can change this later at your leisure.

The variable $Client::MissionTypeQuery is used to filter whatever specific game play
styles are available. By specifying any, we will see any types that are available. This is
also something we can define in whatever way we want for our game.

Farther down will be a call to InitCanvas. Although it is not really important to make the
master server stuff work, change that statement to this:

 InitCanvas("emaga6 - 3DGPAi1 Sample Game");

Doing so reflects the fact that we are now in Chapter 6 and not in Chapter 5 anymore.

Next, there are a series of calls to Exec. Find the one that loads playerinterface.gui, and
put the following line after that one:

 Exec("./interfaces/masterscreen.gui");

Then find the call to Exec that loads screens.cs, and add the following statement after it:

 Exec("./misc/masterscreen.cs");

Finally, toward the end of the function, find the Exec call that loads connections.cs. After
that statement, and before the call to Canvas.SetContent, add the following statement:

 SetNetPort(0);

This statement is critical. Although we will never use port 0, it is necessary to make this
call to ensure that the TCP/IP code in Torque works correctly. Later on in other modules
the appropriate port will be set, depending on what we are doing.

New Modules
More typing! But not as much as in previous chapters, so don't fret. We have to add a
new interface module and a module to contain the code that manages its behavior.

Client—MasterScreen Interface Module
Now we have to add the MasterScreen interface module. This module defines buttons,
text labels, and a scroll control that will appear on the screen; we can use it to query the
master server and view the results. Type in the following code and save it as
control/client/interfaces/masterscreen.gui.

//==

// control/client/interfaces/masterscreen.gui

//

// Master Server query interface module for 3DGPAI1 emaga6 sample game

//

// Copyright (c) 2003 by Kenneth C. Finney.

//==

new GuiChunkedBitmapCtrl(MasterScreen) {

 profile = "GuiContentProfile";

 horizSizing = "width";

 vertSizing = "height";

 position = "0 0";

 extent = "640 480";

 minExtent = "8 8";

 visible = "1";

 helpTag = "0";

 bitmap = "./emaga_background";

 useVariable = "0";

 tile = "0";

 new GuiControl() {

 profile = "GuiWindowProfile";

 horizSizing = "center";

 vertSizing = "center";

 position = "100 100";

 extent = "600 300";

 minExtent = "8 8";

 visible = "1";

 helpTag = "0";

 new GuiTextCtrl() {

 profile = "GuiTextProfile";

 horizSizing = "right";

 vertSizing = "bottom";

 position = "15 40";

 extent = "30 20";

 minExtent = "8 8";

 visible = "1";

 helpTag = "0";

 text = "Pass";

 maxLength = "255";

 };

 new GuiButtonCtrl(MasterQueryMaster) {

 profile = "GuiButtonProfile";

 horizSizing = "right";

 vertSizing = "bottom";

 position = "164 272";

 extent = "127 23";

 minExtent = "8 8";

 visible = "1";

 command = "Canvas.getContent().Query();";

 helpTag = "0";

 text = "Query Master";

 };

 new GuiButtonCtrl(MasterJoinServer) {

 profile = "GuiButtonProfile";

 horizSizing = "right";

 vertSizing = "bottom";

 position = "318 272";

 extent = "127 23";

 minExtent = "8 8";

 visible = "1";

 command = "Canvas.getContent().Join();";

 helpTag = "0";

 text = "Join Server";

 active = "0";

 };

 new GuiScrollCtrl() {

 profile = "GuiScrollProfile";

 horizSizing = "right";

 vertSizing = "bottom";

 position = "10 75";

 extent = "437 186";

 minExtent = "8 8";

 visible = "1";

 helpTag = "0";

 willFirstRespond = "1";

 hScrollBar = "dynamic";

 vScrollBar = "alwaysOn";

 constantThumbHeight = "0";

 defaultLineHeight = "15";

 childMargin = "0 0";

 new GuiTextListCtrl(MasterServerList) {

 profile = "GuiTextArrayProfile";

 horizSizing = "right";

 vertSizing = "bottom";

 position = "0 0";

 extent = "419 8";

 minExtent = "8 8";

 visible = "1";

 helpTag = "0";

 enumerate = "0";

 resizeCell = "1";

 columns = "0 40 195 260 325 385";

 fitParentWidth = "1";

 clipColumnText = "0";

 noDuplicates = "false";

 };

 };

 new GuiTextEditCtrl() {

 profile = "GuiTextEditProfile";

 horizSizing = "right";

 vertSizing = "bottom";

 position = "98 15";

 extent = "134 16";

 minExtent = "8 8";

 visible = "1";

 variable = "Pref::Player::Name";

 helpTag = "0";

 maxLength = "255";

 historySize = "0";

 password = "0";

 tabComplete = "0";

 };

 new GuiTextCtrl() {

 profile = "GuiTextProfile";

 horizSizing = "right";

 vertSizing = "bottom";

 position = "12 11";

 extent = "79 20";

 minExtent = "8 8";

 visible = "1";

 helpTag = "0";

 text = "Player Name:";

 maxLength = "255";

 };

 new GuiTextCtrl() {

 profile = "GuiTextProfile";

 horizSizing = "right";

 vertSizing = "bottom";

 position = "269 42";

 extent = "44 20";

 minExtent = "8 8";

 visible = "1";

 helpTag = "0";

 text = "Players";

 maxLength = "255";

 };

 new GuiTextCtrl() {

 profile = "GuiTextProfile";

 horizSizing = "right";

 vertSizing = "bottom";

 position = "335 42";

 extent = "44 20";

 minExtent = "8 8";

 visible = "1";

 helpTag = "0";

 text = "Version";

 maxLength = "255";

 };

 new GuiTextCtrl() {

 profile = "GuiTextProfile";

 horizSizing = "right";

 vertSizing = "bottom";

 position = "412 42";

 extent = "35 20";

 minExtent = "8 8";

 visible = "1";

 helpTag = "0";

 text = "Game";

 maxLength = "255";

 };

 new GuiTextCtrl() {

 profile = "GuiTextProfile";

 horizSizing = "right";

 vertSizing = "bottom";

 position = "212 42";

 extent = "26 20";

 minExtent = "8 8";

 visible = "1";

 helpTag = "0";

 text = "Ping";

 maxLength = "255";

 };

 new GuiTextCtrl() {

 profile = "GuiTextProfile";

 horizSizing = "right";

 vertSizing = "bottom";

 position = "72 42";

 extent = "74 20";

 minExtent = "8 8";

 visible = "1";

 helpTag = "0";

 text = "Server";

 maxLength = "255";

 };

 new GuiButtonCtrl() {

 profile = "GuiButtonProfile";

 horizSizing = "right";

 vertSizing = "top";

 position = "10 272";

 extent = "127 23";

 minExtent = "8 8";

 visible = "1";

 command = "Canvas.getContent().Close();";

 helpTag = "0";

 text = "Close";

 };

 new GuiControl(MasterQueryStatus) {

 profile = "GuiWindowProfile";

 horizSizing = "center";

 vertSizing = "center";

 position = "72 129";

 extent = "310 50";

 minExtent = "8 8";

 visible = "0";

 helpTag = "0";

 new GuiButtonCtrl(MasterCancelQuery) {

 profile = "GuiButtonProfile";

 horizSizing = "right";

 vertSizing = "bottom";

 position = "9 15";

 extent = "64 20";

 minExtent = "8 8";

 visible = "1";

 command = "Canvas.getContent().Cancel();";

 helpTag = "0";

 text = "Cancel Query";

 };

 new GuiProgressCtrl(MasterStatusBar) {

 profile = "GuiProgressProfile";

 horizSizing = "right";

 vertSizing = "bottom";

 position = "84 15";

 extent = "207 20";

 minExtent = "8 8";

 visible = "1";

 helpTag = "0";

 };

 new GuiTextCtrl(MasterStatusText) {

 profile = "GuiProgressTextProfile";

 horizSizing = "right";

 vertSizing = "bottom";

 position = "85 14";

 extent = "205 20";

 minExtent = "8 8";

 visible = "1";

 helpTag = "0";

 maxLength = "255";

 };

 };

 };

};

The first half of the module is an interface definition, defining a number of buttons, text
labels, and a scroll control that will appear on the screen. Most of the properties and
control types have been covered in previous chapters; however, some of them are of
particular note here.

The first item of interest is the GuiScrollCtrl. This control provides a scrollable vertical
list of records; in this case it will be a list of servers that satisfy the filters used in
subsequent Query calls that we will look at a bit later.

Some of the GuiScrollCtrl properties of interest are explained in Table 6.3.

Table 6.3 Selected GuiScrollCtrl Properties
Property Description
willFirstRespond If set to True or 1 indicates that this control will

respond to user inputs first, before passing them on
to other controls.

hScrollBar Indicates how to decide whether to display the
horizontal scroll bar. The choices are:

alwaysOn: The scroll bar is always visible.

alwaysOff: The scroll bar is never visible.

dynamic: The scroll bar is not visible until the
number of records in the list exceeds the number of
lines available to display them. If this happens the
scroll bar is turned on and made visible.

vScrollBar The same as hScrollBar but applies to the vertical
scroll bar.

constantThumbHeight Indicates whether the thumb, the small rectangular
widget in the scroll bar that moves as you scroll, will
have a size that is proportional to the number of
entries in the list (the longer the list, the smaller the
thumb) or will have a constant size. Setting this
property to 1 ensures a constant size; 0 ensures
proportional sizing.

The next significant control to examine is the GuiTextEditCtrl. It has an interesting
property, shown by this statement:

 variable = "Pref::Player::Name";

What this does is display the contents of the variable Pref::Player::Name in the control's
content. If we change that content by placing our edit cursor in the control's field while it

is being displayed and typing in new text, then the contents of the variable
Pref::Player::Name are also changed.

Also in this GuiTextEditCtrl control is the following statement:

 historySize = "0";

This control has the ability to store a history of previous values that were held in the
control's edit box. We can scroll through the list's previous values by pressing the Up
Arrow and Down Arrow keys. This property sets the maximum number of values that can
be saved in the control's history. A setting of 0 means that no history will be saved.

Now go take a look at the control of type GuiControl with the name MasterQueryStatus.
This is the definition of a subscreen that will display in the Master Server screen to
display the progress of the query. It contains a couple other controls that we've seen
before, but I just want you to note how they are nested within this control, which is
nested within the larger MasterScreen.

Client—MasterScreen Code Module
Next, we will add the MasterScreen code module. This module defines how the
MasterScreen interface module will behave. Type in the following code and save it as
control/client/misc/masterscreen.cs.

//==

// control/client/misc/masterscreen.cs

//

// Master Server query code module for 3DGPAI1 emaga6 sample game

//

// Copyright (c) 2003 by Kenneth C. Finney.

//==

function MasterScreen::onWake()

{

 MasterJoinServer.SetActive(MasterServerList.rowCount() > 0);

}

function MasterScreen::Query(%this)

{

 QueryMasterServer(

 0,$Client::GameTypeQuery,$Client::MissionTypeQuery,0,100,0,2,0,100,0,0,0);

}

function MasterScreen::Cancel(%this)

{

 CancelServerQuery();

}

function MasterScreen::Close(%this)

{

 CancelServerQuery();

 Canvas.SetContent(MenuScreen);

}

function MasterScreen::Update(%this)

{

 MasterQueryStatus.SetVisible(false);

 MasterServerList.Clear();

 %sc = GetServerCount();

 for (%i = 0; %i < %sc; %i++)

 {

 SetServerInfo(%i);

 MasterServerList.AddRow(%i,

 ($ServerInfo::Password? "Yes": "No") TAB

 $ServerInfo::Name TAB

 $ServerInfo::Ping TAB

 $ServerInfo::PlayerCount @ "/" @ $ServerInfo::MaxPlayers TAB

 $ServerInfo::Version TAB

 $ServerInfo::GameType TAB

 %i);

 }

 MasterServerList.Sort(0);

 MasterServerList.SetSelectedRow(0);

 MasterServerList.ScrollVisible(0);

 MasterJoinServer.SetActive(MasterServerList.RowCount() > 0);

}

function MasterScreen::Join(%this)

{

 CancelServerQuery();

 %id = MasterServerList.GetSelectedId();

 %index = GetField(MasterServerList.GetRowTextById(%id),6);

 if (SetServerInfo(%index)) {

 %conn = new GameConnection(ServerConnection);

 %conn.SetConnectArgs($pref::Player::Name);

 %conn.SetJoinPassword($Client::Password);

 %conn.Connect($ServerInfo::Address);

 }

}

function onServerQueryStatus(%status, %msg, %value)

{

 if (!MasterQueryStatus.IsVisible())

 MasterQueryStatus.SetVisible(true);

 switch$ (%status) {

 case "start":

 MasterJoinServer.SetActive(false);

 MasterQueryMaster.SetActive(false);

 MasterStatusText.SetText(%msg);

 MasterStatusBar.SetValue(0);

 MasterServerList.Clear();

 case "ping":

 MasterStatusText.SetText("Ping Servers");

 MasterStatusBar.SetValue(%value);

 case "query":

 MasterStatusText.SetText("Query Servers");

 MasterStatusBar.SetValue(%value);

 case "done":

 MasterQueryMaster.SetActive(true);

 MasterQueryStatus.SetVisible(false);

 MasterScreen.Update();

 }

}

This module is where we've put the code that controls how the Master Server screen
behaves.

The first function, MasterScreen::onWake, defines what to do when the screen is
displayed. In this case we set the Join button to be active if there are any servers in the
server list at the moment we display the screen.

The next function, MasterScreen::Query, is called when the user presses the Query button
in the interface. It executes a call to QueryMasterServer, which reaches out across the
network and requests the master server to cough up its list of known servers...or else!
There are quite a few parameters to the call to QueryMasterServer. The following syntax
definition shows them in more detail:

QueryMasterServer
(flags,gtype,mtype,minplayers,maxplayers,maxbots,region,ping,cpu,filters,buddyco
unt, buddylist)

Parameters:

flags Query flags. Choices:

0x00 = online query

0x01 = offline query

0x02 = no string compression

gtype Game type string.

mtype Mission type string.

minplayers Minimum number of players for viable game.

maxplayers Maximum allowable players.

maxbots Maximum allowable connected AI bots.

region Numeric discriminating mask.

ping Maximum ping for connecting clients; 0 means no maximum.

mincpu Minimum specified CPU capability.

filterflags Server filters. Choices:

0x00 = dedicated

0x01 = not password protected

0x02 = Linux

0x80 = current version

buddycount Number of buddy servers in buddy list.

buddylist List of server names that are buddies to this server.

Return: nothing

The response to the function is accessible from the MasterServerList array.

The next function, MasterScreen::Cancel, is called when the Cancel button is pressed
while the query is under way.

After that is the MasterScreen::Close function, which is called when the user presses the
Close button. It cancels any pending query and then returns to the MenuScreen.

MasterScreen::Update is the function that inserts the obtained information in the
MasterServerList after it is obtained from the master server. The information is found in
the $ServerInfo array. To update the scrolling display, we find the number of servers that
pass the filters on the master by calling GetServerCount. Then we iterate through our
displayable list, extracting the fields from each $ServerInfo record. Take note of the call
to SetServerInfo. Passing an index number to this function sets the $ServerInfo array to
point to a specific record in the MasterServerList. Then we access the individual fields in
the $ServerInfo array by referencing them with the colon operator: $ServerInfo::Name or
$ServerInfo::Name, to demonstrate with two examples.

The next function, MasterScreen::Join, defines how we go about joining a server that has
been selected from the list. First, we cancel any outstanding queries, get the handle of the
server record that is highlighted in the interface, and then use that to obtain the index

number of the server record. We use the SetServerInfo to set the $ServerInfo array to
point to the right server record, and then we can access the values. After setting some
network parameters, we finally use $ServerInfo::Address to make the network
connection.

The last function in the module is the message handler callback that makes the whole
shebang go: onServerQueryStatus. It gets called repeatedly as the server query process
unfolds. We use the %status variable to determine what response we are receiving from
the master server, and then we use either the %msg or %value variable, set by the master
server to update various fields in the displayed server list.

Dedicated Server
Sometimes we will want to host a game as a server without having to bother with a
graphical user interface. One reason we might want to do this is because we want to run
the server on a computer that doesn't have a 3D accelerated graphics adapter. Another
reason is because we might want to test our client/server connectivity and master server
query capabilities. This need arises because we can't run two instances of the Torque
graphical client at the same time. However, if we have the ability to run as a dedicated
server, we can run multiple dedicated servers, while running one instance of the graphical
client, all on the same computer. And if we have set up the dedicated servers
appropriately, other players out on the network can connect to our servers.

There are a few more modules you will have to change to implement the dedicated server
capabilities.

Root Main Module
In this module we'll need to add some command line switches in case we want to use the
command line interface of Windows, or we'll need to we decide to embed the switches in
a Windows shortcut. Either of these methods is how we can tell the game to run the
server in dedicated mode. In the module main.cs located in the root game folder (which is
the folder where the tge.exe executable is located for your Chapter 6 version of Emaga),
locate the ParseArgs function, and scroll down until you find the statement containing
$switch($currentarg). Type the following code in directly after the $switch statement:

 case "-dedicated":

 $Server::Dedicated = true;

 EnableWinConsole(true);

 $argumentFlag[$i]++;

 case "-mission":

 $argumentFlag[$i]++;

 if ($nextArgExists)

 {

 $mapArgument = $nextArgument;

 $argumentFlag[$i+1]++;

 $i++;

 }

 else

 Error("Error: Missing argument. Usage: -mission <filename>");

Both of these switches are needed to run a dedicated server. The -dedicated switch puts
us into the right mode, and then the -mission switch tells us which mission map to load when
the server first starts running.

The result of these changes is that we can now invoke the dedicated server mode by
launching the game with the following syntax from the command line (don't try it yet):
tge.exe -dedicated -mission control/data/maps/book_ch6.mis.

The game will launch, and all you will see will be a console window. You will be able to
type in console script statements, just as you can when you use the tilde ("~") key in the
graphical client interface. However, don't try this just yet, because we still need to add the
actual dedicated server code!

You can also create a shortcut to the tge.exe executable and modify the Target box in the
shortcut properties to match the command line syntax above. Then you can launch the
server merely by double-clicking on the shortcut icon.

Control—Main Module
Next, we have a quick modification to make to control/main.cs. In the OnStart function,
locate the line that contains InitializeClient. Replace that one line with these four lines:

 if ($Server::Dedicated)

 InitializeDedicatedServer();

 else

 InitializeClient();

Now, when the program detects that the -dedicated switch was used, as described in the
previous section, it will fire up in dedicated mode, not in client mode.

Control—Initialize Module
Okay, the meat of the dedicated server code is contained in this module. Open up the
module control/server/initialize.cs and type in the following lines just before the
InitializeServer function..

$pref::Master0 = "2:master.garagegames.com:28002";

$Pref::Server::ConnectionError = "You do not have the correct version of 3DGPAI1
client or the related art needed to play on this server. This is the server for
Chapter 6. Please check that chapter for directions.";

CERDIP

$Pref::Server::FloodProtectionEnabled = 1;

$Pref::Server::Info = "3D Game Programming All-In-One by Kenneth C. Finney.";

$Pref::Server::MaxPlayers = 64;

$Pref::Server::Name = "3DGPAI1 Book - Chapter 6 Server";

$Pref::Server::Password = "";

$Pref::Server::Port = 28000;

$Pref::Server::RegionMask = 2;

$Pref::Server::TimeLimit = 20;

$Pref::Net::LagThreshold = "400";

$pref::Net::PacketRateToClient = "10";

$pref::Net::PacketRateToServer = "32";

$pref::Net::PacketSize = "200";

$pref::Net::Port = 28000;

You can change the string values to be anything you like as long as it suits your purposes.
You should leave the RegionMask as is for now.

Next, locate the function InitializeServer again, and insert the following lines at the very
beginning of the function:

$Server::GameType = "3DGPAI1";

$Server::MissionType = "Emaga6";

$Server::Status = "Unknown";

This value will be updated when the server makes contact with the master server.

Finally, you will need to add this entire function to the end of the module:

function InitializeDedicatedServer()

{

 EnableWinConsole(true);

 Echo("\n--------- Starting Dedicated Server ---------");

 $Server::Dedicated = true;

 if ($mapArgument !$= "") {

 CreateServer("MultiPlayer", $mapArgument);

 }

 else

 Echo("No mission specified (use -mission <filename>)");

}

This function enables the Windows console, sets the dedicated flag, and then calls
CreateServer with the appropriate values. Now it may not do very much and therefore
seem to be not too necessary, but the significance with the InitializeDedicatedServer
function is in what it doesn't do compared with the InitializeClient function, which would
have otherwise been called. So that's the reason why it exists.

Testing Emaga6
With all of the changes we've made here, we're going to want to see it run. It's really
fairly easy. Open a command shell in Windows, and change to the folder where you've
built the code for this chapter's program. Then run the dedicated server by typing in this
command: tge.exe -dedicated -mission control/data/maps/book_ch6.mis.

After it displays lots of start-up information, it will eventually settle down and tell you in
the console window that it has sent a heartbeat to the master server and that it has
received an information request from the master server. When you see these things, your
dedicated server is running fine.

If you are trying to test your game behind a firewall, you will need to
make sure you’re your firewall allows access to your computer via port
28000. If you want to make use of the GarageGames master server, you
will also need to ensure that the firewall allows access via port 28002 as
well.

Next, double-click your tge.exe icon as you've done in the past to run the Emaga client.
When the Menus screen appears, click the Connect To Server button, and then click the
Query Master button in the Master Server screen. Look for the 3DGAPI1 server name (or
whatever value you assigned to $Pref::Server::Name in the Control—Initialize module).
Select that server entry, and then click Join. Watch the progress bars, and eventually you
will find yourself deposited in the game. Send copies of this to your friends and get them
to join in for some freewheeling havoc or reckless mayhem—whichever you prefer!

If you will recall, back at the beginning of the chapter, in the Direct Messaging section,
we discussed the functions CommandToClient and CommandToServer. You might want
to take this opportunity to test the code shown in that section. Put the SendMacro
function in your C:\aEmagaCh6\control\client\misc\presetkeys.cs module, and then add
the ServerCmdTellEveryone and TellAll functions to the end of your
C:\aEmagaCh6\control\server\server.cs module. You can go ahead and test it now, if you
like.

Moving Right Along
Now you have some understanding how to pass messages back and forth between the
client and the server. Keep in mind when you contemplate these things that there can be
many clients—hockey socks full of clients, even. There will probably only be one server
but you are in no way restricted to only one server. It's all a matter of programming.

You've also seen how you can track specific clients on the server via their
GameConnections. As long as you know the handle of the client, you can access any of
that client's data.

In the next chapter, we'll poke our noses into the Common code that we have been shying
away from. We want to do this so that we can get a better "big picture" understanding of
how our game can operate.

