

IMGD 3000 - Technical Game Development I: Illumination

by Robert W. Lindeman gogo@wpi.edu

3D Illumination and Shading

- Problem: Model light/surface point interactions to determine final color and brightness
- Actual light computation is too costly!
- □ Apply the lighting model at a set of points across the entire surface

Illumination Model

- The governing principles for computing the illumination
- An illumination model usually considers
 Light attributes (intensity, color, position, direction, shape)
 - Object surface attributes (color, reflectivity, transparency, etc.)
 - Interaction among lights and objects

Basic Light Sources

Light intensity can be independent or dependent of the distance between object and the light source

Point light

Spot light

Directional light

Area light

Local Illumination

Only consider the light, the observer position, and the object material properties

Global Illumination

□Take into account the interaction of light from all the surfaces in the scene

 Example:
 Ray Tracing
 Model light rays bouncing around

object 1

Global Illumination (cont.)

□Example:

Radiosity

 Model energy moving from emitters (e.g., lights) into the scene
 View independent

Simple Local Illumination

- Reduce the complex workings of light to three components
 - Ambient
 - Diffuse
 - Specular
- □ Final illumination at a point (vertex) =
 - ambient + diffuse + specular
- Materials reflect each component differently
 Use different material reflection coefficients
 K_a, K_d, K_s

Ambient Light Contribution

- Ambient light = background light
- Light that is scattered by the environment
 It's just there

Frequently assumed to be constant

- Very simple approximation of global illumination
- No direction: independent of light position, object orientation, observer's position/orientation

Diffuse Light Contribution

Diffuse light: The illumination that a surface receives from a light source that reflects equally in all direction
 Eye point does not matter

11

Diffuse Light Calculation

Need to decide how much light the object point receives from the light source Based on Lambert's Law

Diffuse Light Calculation (cont.)

Lambert's law: the radiant energy D that a small surface patch receives from a light source is:

Diffuse = $K_d \times I \times \cos(\theta)$

K_d: diffuse reflection coefficient

I: light intensity

 $\boldsymbol{\theta} \text{:}$ angle between the light vector and the surface normal

Diffuse Light Examples

Specular Light Contribution

- □ The bright spot on the object
- The result of total reflection of the incident light in a concentrate region

Specular Light Calculation

- How much reflection you can see depends on where you are
 - But for non-perfect surface you will still see specular highlight when you move a little bit away from the ideal reflection direction
 - Φ is deviation of view angle from mirror direction
 - When ϕ is small, you see more specular highlight

Specular Light Calculation (cont.)

- Phong lighting model
 Not Phong shading model
- Specular = $K_s \times I \times \cos^{f}(\phi)$
- The effect of 'f' in the Phong model

Specular Light Examples

Putting It All Together

- Illumination from a light
 - Illum = ambient + diffuse + specular

= $K_a \times I + K_d \times I \times cos(\theta) + K_s \times I \times cos^{f}(\phi)$

□ If there are N lights

Total illumination for a point $P = \Sigma$ (Illum)

- □ Some more terms to be added
 - Self emission
 - Global ambient
 - Light distance attenuation and spot light effect

Putting It All Together (cont.) □ Illum = ambient + diffuse + specular color and ambient diffuse specularity 19 R.W. Lindeman - WPI Dept. of Computer Science Interactive Media & Game Development

Ambient Lighting Example

Diffuse Lighting Example

Specular Lighting Example

Polygon Shading Models

□ Flat shading

Compute lighting once and assign the color to the whole polygon (or mesh)

Gouraud Shading

Lighting is calculated for each of the polygon vertices

Colors are interpolated for interior pixels

Colored Wireframe

Colored Hidden-Line Removal

Ambient Term Only

Flat Shading

Diffuse Shading + Interp. Normals

Gouraud Shading

Ambient + Diffuse + Specular

Ambient + Diffuse + Specular VPI + Interpolated Normals

Radiosity + Texture Mapping

Texture Mapping + Ray Tracing

