
Chapter 9

Arcade Game

Animation

In this chapter, you’ll learn about:

� Animation

� Animation properties and fundamentals

� Sprites and grid squares

� Core arcade game animation techniques

� Creating animation sequences for arcade games

� General animation tips

293



What is Animation?

Animation is the process that produces the illusion of movement. It works by dis-

playing two or more image fragments called frames (also commonly referred to as

cells). When these frames are displayed in rapid succession with subtle changes

made to their content, our eyes register these changes as movement.

Animation is not a mystical art. Rather, it’s a well-established process that com-

bines the aesthetics of design with real-world physics in order to breathe life into

what are otherwise static objects and scenes. This chapter will introduce the fun-

damental concepts behind animation to you so that you can create and implement

animation in your own arcade game projects.

Animation Properties and Fundamentals

To be able to create effective animation, you must learn how to divide the ele-

ments of motion into their basic components. This means breaking them down

into a sequence of easy-to-follow frames. However, before you can do this, you

must first learn and master two things: the art of observation and the characteris-

tics of basic motion.

The secret behind creating great animation lies in keen observation and the ability

to focus on the subtle details of how different objects move. Every object exhibits

certain peculiarities as it moves. Some of these idiosyncrasies are slight while

others are more pronounced. As such, there are several characteristics of motion

that you should be aware of before attempting to animate an object. These charac-

teristics include such things as:

� Motion lines

� Motion angles

� Key-frames and in-betweens

� Weight and gravity

� Flexibility

� Secondary actions

� Cycles and loops

� Tempo

Motion Lines

A motion line (sometimes referred to as a natural path) is an invisible line created

by an object as it performs a series of sequential movements.

294 Chapter 9 / Arcade Game Animation



Motion lines are essential to creating effective animations, and manipulating the

motion line can add realistic emphasis to animated objects. For example, you can

create very smooth animations by making small alterations to the motion line.

Conversely, you can produce very dramatic animations by making large or exag-

gerated changes to the motion line.

Even more interesting to the animator is how objects produce different shaped

motion lines depending on how they move. For example, a bullet has a motion line

that is straight and even while a bouncing ball has a motion line that is wavy and

uneven. This being said, motion lines must be consistent with an object’s real-

world behavior in order to produce realistic-looking animation. Otherwise, the

quality of the animation will suffer. Therefore, you can use an object’s motion line

as a means of determining whether or not it is being animated correctly and

convincingly.

The best way to follow an object’s motion line is to locate its center of gravity. The

location of the center of gravity varies according to the type of object involved.

To help you accomplish this, Table 9-1 provides some examples of where the cen-

ter of gravity is for a number of common objects. Using this information, you

should then be able to identify the center of gravity for other types of objects.

TABLE 9-1: Location of the Center of Gravity in Different Objects

Object Type Estimated Center of Gravity

2-legged animals Head

4-legged animals Chest

Flying animals Torso

Humans Head

Insects Torso

Spaceships or airplanes Hull or fuselage

Tracked or wheeled vehicles Turret or body

Chapter 9 / Arcade Game Animation 295

Motion Line

FIGURE 9-1: Motion Line Example



Motion Angles

Motion angles are one of the most obvious clues as to an object’s direction as it

moves. It’s important to point out that there is a direct relationship between an

object’s direction and its motion angle. Almost any change in an object’s speed or

direction will require a similar adjustment to its motion angle. Therefore, the

sharper the motion angle, the faster or the more extreme the change in the

object’s motion or direction will be.

Motion angles are particularly useful for conveying a sense of realism in animated

objects. For example, a jet fighter making a steep bank will have a motion angle

that is sharper than a jet fighter that is flying straight and level as shown in Figure

9-2. In this case, you can use its motion angle to visually discern that it is travel-

ing at a high speed, which ultimately helps to reinforce the illusion of realism.

Although the actual location of motion angles varies, most motion angles are

located along the spine of an object, i.e., the backbone of a human being or the hull

of a spaceship.

Key-frames

Most people are aware of the extremes that occur during movement, i.e., such

noticeable things as the flapping of wings or kicking of legs. In animation, we refer

to these actions as key-frames.

Being able to determine which frames in an animated sequence are the

key-frames is an extremely important part of the animation process. This is

because key-frames serve as the framework for the entire animation sequence.

In addition, there is a direct relationship between the number of key-frames used

and how smooth a particular animation appears. The presence of more key-frames

in an animated sequence means smaller incremental changes in the animation and

296 Chapter 9 / Arcade Game Animation

Sharp Motion Angle

Straight Motion Angle

FIGURE 9-2: Motion Angle Example



results in smoother overall movement. Having fewer key-frames present, on the

other hand, results in coarser and jerkier animation. Please keep this very impor-

tant relationship in mind as it has a direct effect on the quality of any animation

you create.

Key-frames are most effective when they incorporate very exaggerated or dra-

matic elements, since these actions can be used to emphasize the most critical

movements in an animated sequence. In addition, exaggeration can help you to

better determine the most effective starting, middle, and ending

points for an animated sequence. For example, Figure 9-3 shows

the two key-frames for a bird flying. Notice how they mirror the

two extreme states of the action, i.e., the wing moving up and

the wing moving down. These two frames are extremely exag-

gerated, which makes them ideally suited as key-frames because

their differences are clearly distinguishable to the observer.

It’s important to realize that the more key-frames a particular animation has, the

more complex it is and the longer it will take to design. This is certainly some-

thing to consider when designing the artwork for an arcade-style game, especially

when working under a tight deadline. In addition to taking longer to create, com-

plex animations make it easier to introduce errors and mistakes into the animation

sequence, which can have a negative impact on the animation’s overall quality and

effectiveness.

In reality, however, the actual situation dictates which approach to take and how

many key-frames to use for a given animation.

There will be instances where you can get away with using fewer key-frames than

in others. In most cases, you can use as few as two or three key-frames per object

in arcade-style games, with little or no detrimental impact. However, you should

look at each game on a case-by-case basis before deciding on a particular number

of key-frames to use. If you don’t, you run the risk of reducing the quality of your

game’s animations and, ultimately, the quality of the game.

Please refer to Table 9-2 for general suggestions on key-frame usage in different

arcade game genres.

TABLE 9-2: Object Key-frame Quantity Suggestion Chart

Arcade Game Type Key-frame Usage Suggestions

Pong games 2 per animated object

Maze/chase games 2-3 per animated object

Puzzlers 2-3 per animated object

Shooters 2-4 per animated object

Platformers 2-6 per object

Chapter 9 / Arcade Game Animation 297

FIGURE 9-3:
Key-frame
Example



NOTE: These are subjective estimates only. Each game situation will be differ-

ent and will depend on the design time, the game’s target platform, and the

overall level of animation quality you want to achieve.

It’s important to note that key-frames can occur at any point within an animated

sequence. However, certain factors such as the type of animation involved and its

relative complexity can influence where in the sequence they might actually

appear. For example, non-repetitive motions such as explosions have many

key-frames and tend to be located at several points within the animation sequence

or wherever there is a major change. In comparison, repetitive motions such as

walking or flying have only a few key-frames (i.e., two or three). These tend to be

distributed at the start, middle, or end of the animation sequence.

After the key-frames of the animation are identified and established, the

in-between frames must then be added. In-betweens are frames of animation that

are used to smooth out the transition between individual key-frames.

In animation, key-frames are important for defining the object’s primary move-

ments, while in-betweens are responsible for making the entire animation look

smooth and convincing. Introducing slight or subtle changes to each frame

between key-frames creates in-betweens. This process is also known as tweening,

and great care must be taken to ensure that these changes are small in order to

maintain the illusion of continuous and realistic movement.

Figure 9-4 shows an example of how in-betweens co-exist with key-frames. This

example shows an animation of a man swinging a stick. The start of the sequence

shows the man with the stick up at the shoulder and ready to swing, while the

final frame shows the end of the swinging process with the stick fully extended.

These are the key-frames of the animation while the frames that occur in-between

them are the in-betweens of the animation.

298 Chapter 9 / Arcade Game Animation

Key-frame
Key-frame Key-frame

In-Between
In-Between

FIGURE 9-4: Key-frame and In-Between Example



Creating in-betweens is one of the most tedious and time-consuming aspects of

designing arcade game animation. Fortunately, most painting programs allow you

to easily duplicate existing frames so that each in-between doesn’t have to be

re-created entirely from scratch. In traditional animation, the process of duplicat-

ing an existing frame of animation to create a new one is called onion skinning.

Determining the number of frames necessary for creating a particular type of ani-

mated movement takes time and experience to figure out. To help you on your

way, Table 9-3 lists the number of frames required to produce a variety of different

animation effects. Use these as a general guide if the issue is ever in question in

your own game projects.

TABLE 9-3: Common Frame Animation Frame Requirements

Object Minimum # of Frames Maximum # of Frames

4-legged animal running 4 16

Animal biting 2 5

Crawling 2 12

Explosions 5 16

Falling 3 5

Flying 2 12

Jumping 2 10

Kicking 2 6

Punching 2 6

Rotating/spinning 4 16

Running 2 12

Swinging (an object) 2 8

Throwing (an object) 2 6

Vehicle flying 2 4

Vehicle moving 2 8

Walking 2 12

Weight and Gravity

If you intend to create realistic-looking game animations, you must consider how

the elements of weight and gravity can affect your work. When designing anima-

tion, you must remember that real-world physics should always apply to the

sequences that you create. One of the most important of these influences is that of

weight. Weight affects speed. So, for example, the larger the object, the heavier it

is and the slower it is likely to move.

Chapter 9 / Arcade Game Animation 299



In addition to influencing the speed at which objects travel, weight can also affect

how easily an object can move. For example, think about how fast a racecar moves

in comparison to a battle tank. The tank will plod across the ground whereas the

racecar will quickly skim across it. This is because the racecar weighs less.

Then there’s the issue of gravity. Gravity also influences the motion of objects. In

the real world, gravity will exert more force (resistance) against heavier or denser

objects than it will against lighter ones. To see how this works, consider how

quickly a bomb falls from the sky when compared to a feather, or how a rock

bounces off the ground in comparison to a rubber ball. Remember that people

aren’t always easily fooled. Believe me, they are well aware of such things and

failing to account for these behaviors in your animations can have a negative

impact on how they are perceived in a game.

Incidentally, the principles of weight and gravity can be applied to virtually any

animated object. Therefore, the more attention you pay to them, the more realistic

your animations can be.

Flexibility

Flexibility is essential to producing convincing and fluid animation, particularly

when depicting complex, jointed objects such as animals, insects, and human

beings. Animations without proper flexibility can appear stiff and rigid, which for

these types of objects is a less than desirable effect.

The key to adding flexibility to your animations is careful planning coupled with

careful observation of how different objects behave when they move. Whenever

you animate a jointed object, you must always determine which parts of the object

(i.e., arms, legs, etc.) lead the movement and which ones follow it. It’s very impor-

tant to realize that not all body parts actually move at the same time on all objects.

For example, consider how a swordsman might slash with his sword. The swords-

man leads with his legs first to gain a solid footing and then follows through with

his arm to complete the cutting motion. In animation, this flow of movement is

called the range of motion.

When attempting to incorporate flexibility into an animation you must take care to

account for the limits of anatomy. That is to say, never attempt to unrealistically

extend the available range of motion that a given object has. Don’t depict objects

moving in ways that aren’t possible in the real world. Examples of this might

include, but aren’t limited to, such things as bending a joint backward or in a posi-

tion that is not normally possible for one to make.

300 Chapter 9 / Arcade Game Animation



Secondary Actions

As mentioned in the previous section on flexibility, not all parts of an object move

simultaneously when animated. There are parts that lead the flow of movement

and parts that follow it. The parts that follow the movement are called secondary

actions.

Secondary actions are extremely important to the animation process because they

add an extra dimension of realism to animations. Essentially, anything that is free

moving can qualify as a secondary action. This includes everything from hair and

clothing to eyes and lips. So, for example, if a character in a game is wearing a

cape and walking, the secondary action of this action would occur when the char-

acter’s cape bounces and sways as the character moves. Figure 9-5 shows this in

frames 1 and 2.

Secondary actions are not limited to small details such as clothing or hair. It’s

important that you understand that they can be virtually anything in an animation

sequence that isn’t the main focus.

Cycles and Loops

In animation, cycles are the repetitious movements that many animated objects

make when displayed in a sequence. As your ability to observe how objects move

in nature improves, you will soon discover that many objects include cycles in

their movements.

Cycles can be considered the time savers of the animation process. They help us

avoid the tedium of constantly having to re-create frames to construct basic

actions. For example, without cycles you might have to draw hundreds of frames

of animation to show a bird flying across the screen. However, by using cycles,

you simply have to identify the object’s repeated motions and display them

instead. So, if your bird animation used 30 frames to display the complete anima-

tion sequence you would only have to draw the three or four frames that best

Chapter 9 / Arcade Game Animation 301

Secondary Action

1 2 3 4

FIGURE 9-5: Secondary Action Example



represent the major points of movement. Although key-frames usually fall into

this category, it’s important to realize that there isn’t always a direct one-to-one

relationship between key-frames and cycles.

While cycles focus on repeating the occurrence of specific frames within an anima-

tion sequence, loops emphasize the repetition of the entire sequence as a whole.

For example, an animated sequence of a man walking goes through a number of

frames to produce the illusion of movement. By looping the sequence, you can

simulate the effect of constant motion so that the walking sequence appears to be

continuous. Therefore, it can be said that loops help us to keep animated move-

ment constant.

However, this being said, it’s important to understand that not all objects require

constant motion while being animated. Loops are a device to help us achieve this

but they shouldn’t be used in all animations. In fact, quite a few types of animation

don’t rely on loops at all.

In addition to adding realism and continuity to your animations, looping can also

save you time by preventing you from having to manually repeat the individual

frames of the entire animation sequence.

Figure 9-6 shows an example of how cycles and loops work together in anima-

tions. Here, frames 1 and 5 are cycles because they are repeating the same frame

of animation. When the sequence reaches frame 5, it would loop back to frame 1 to

create the illusion of continuous movement.

Tempo

Every animated object can display at a specificed tempo, or speed. Tempo can be

used to control the rate at which entire animation sequences are shown as well as

the speed of the individual frames that comprise the sequence.

Tempo is important because it allows us to create more realistic-looking animation

sequences. Its usefulness becomes immediately apparent when you consider that

most real-world objects move at different rates during the course of their move-

ments. For example, consider the average marathon runner. When running, a

marathoner’s legs move faster during mid-stride than they do when they are fully

extended. You can account for this fact in your own animations by using the dis-

tance of the object between successive frames as a means of depicting animations

302 Chapter 9 / Arcade Game Animation

FIGURE 9-6: Cycle and Loop Example



moving at varying speeds. For example, the animation of a jumping character

would have objects in frames that are evenly spaced during the part of the jump

sequence that is moving at a constant rate. When the sequence begins to slow, the

objects in the frames that would appear closer together. When the sequence

speeds up, the objects in the frames would move farther apart. The basic concept

is illustrated in Figure 9-7.

We measure tempo in frames per second (FPS), or the number of frames that can

be displayed per second of time. The human eye can perceive movement (or the

illusion of it) in as few as 12 frames per second. Generally speaking, the higher

the frame rate (FPS), the smoother the animation. Therefore, it is preferable to

display most forms of animation at a tempo that is greater than 12 frames per

second.

Table 9-4 compares some of the more common animation frame rates for different

forms of animation.

TABLE 9-4: Comparisons of Common Animation Frame Rates

Animation Type Frame Per Second (FPS)

Computer video 15

Fast-action arcade game 30

Motion picture 24

Television 30

Unfortunately, FPS is not a universal constant when it comes to displaying anima-

tions on computers. Several factors, including the physical size, the number of

frames involved, and the speed of the computer, can all adversely influence the

rate at which animated sequences display. This is particularly true of the

Chapter 9 / Arcade Game Animation 303

Faster Tempo

Slower Tempo

FIGURE 9-7: Tempo Example



animation that appears in computer games, as they tend to really tax the systems

that they are played on.

Table 9-5 provides some suggestions on the common frame rates for each type of

arcade game.

TABLE 9-5: Common Arcade Game Frame Rates

Arcade Game Type Common Arcade Game Animation Frame Rates (FPS)

Pong games 15-30

Maze/chase games 20-30

Puzzlers 9-15

Shooters 20-50

Platformers 20-30

Most game developers consider 15 FPS to be the minimum acceptable frame rate

for fast-action arcade games and consider 20 or 30 FPS to be a desirable frame

rate. Certain arcade game genres demand higher animation frame rates than

others. This is because the fluidity of their animation enhances the overall user

experience.

Sprites

Sprites are special graphic objects that can move independently of the screen back-

ground. Sprites are used in arcade games to represent spaceships, bombs, aliens,

soldiers, and so on. In addition, they can be either animated or static and can also

be used to represent a variety of fixed game objects such as treasure and power

ups as well.

304 Chapter 9 / Arcade Game Animation

FIGURE 9-8: Sprite Examples



Sprite Properties

Sprites are used extensively by arcade games and have a number of interesting

and distinct properties, including:

� Variable sizes and shapes

� Free range of movement

� Separate from background

Variable Sizes and Shapes

For the most part, sprites have no limits to either their size or shape. This being

said, sprites can have rectangular, square, or even irregular shapes—it really

doesn’t matter. This versatility makes sprites useful for depicting virtually any

type of object an arcade game may require. Sprites can also be of any size and they

can change their size to respond to specific game events or actions as needed.

Free Range of Movement

Unlike other types of animated objects, sprites can move freely about the screen.

This means that they are not restricted to displaying at specific areas of the

screen. This characteristic makes sprite animations very effective in representing

all types of moving game objects.

Separate from Background

Sprites exist as separate entities from the background of the screen. Sprites also

support transparency, which, if you recall our discussion on transparency in Chap-

ters 7 and 8, allows the background of an object to show through the foreground.

This feature makes sprites particularly useful when used in games that have com-

plex background screens since the contents of the background can be preserved as

the sprite moves over it.

NOTE: Practically any graphic object can be used as a sprite. As a result,

sprites can be created using most of the painting programs mentioned in

Chapter 6.

Despite their unique advantages, sprites are among the most challenging aspects

of creating arcade game graphics. This is because designing most sprites involves

a complex two-step process. First, the sprite must be created just as any other

graphic image. However, unlike most graphic objects, sprites tend to face more

restrictions in terms of their size and use of color, which can complicate their

design and increase the time required to create them. Then, after doing all of that

Chapter 9 / Arcade Game Animation 305



work, the sprite needs to be animated, which, as you will soon see, is a very com-

plicated process.

Grid Squares

As previously mentioned, the size of the sprite being animated can also impact the

speed at which a sprite is animated. Smaller sprites will always animate faster

than larger sprites, especially when there are lots of objects being displayed on

the screen at once. This is because the computer has to manipulate less data with

smaller sprites than it does with larger ones. Because of this, you should limit the

size of your sprites whenever possible. One of the best ways to do this is to create

your sprites in predefined size using a grid as a guide. Grids squares are miniature

“screens” on which to draw sprites. As such, all grids have an origin, or a starting

reference point. The origin helps us pinpoint the location of individual pixels

within the grid when designing and editing individual sprite images. Like a graph,

the origin of a grid square always starts at position (0,0), the position on the grid

where X and Y are both equal to 0.

Grid squares offer us a number of important advantages when creating sprites,

including:

� Maintaining size consistency

� Assisting the animation process

� Optimizing sprites for implementation in games

� Optimizing sprites for screen performance

306 Chapter 9 / Arcade Game Animation

Grid Origin (0, 0)

Sprite

24 x 24 Grid

FIGURE 9-9: Grid Origin



Maintaining Size Consistency

Grid squares are very useful for helping us to place constraints on the sizes of the

sprites we create. This allows us to focus on packing as much detail as possible

into the grid space that is available. As most sprite grids have visible borders that

indicate their boundaries, this feature allows us to create sprites that are consis-

tent and uniform in size. Keeping the sizes of your sprites consistent helps to

improve their quality and better facilitates their incorporation into a game.

Assisting the Animation Process

Grid squares can also be quite useful for assisting us with the sprite animation

process. This is due to the fact that grids allow us to arrange and organize sprites

in a more consistent and predictable manner. This in turn makes them easier to

manipulate than if they were haphazardly arranged on the screen. For example,

you can use grids to arrange your sprites in the sequence you want an animation

to appear. This makes it easier to work with your objects and improves your over-

all efficiency.

Optimizing Sprites for Implementation in Games

Because grid squares allow sprites to be easily arranged on-screen, they also

make it possible to optimize the process of adding sprites to games. For example,

many game development tools support the ability to import batches of sprites at

one time. By arranging your sprite grids in a particular sequence and position

inside a larger graphic image, you make it much easier to include them in a game,

especially when dealing with large numbers of similarly sized objects. This can

wind up saving you countless time, hassle, and effort during the course of a game

project.

Optimizing Sprites for Screen Performance

Finally, grid squares offer programmers the opportunity to optimize their games

around certain sprite sizes, which contributes to the overall screen performance

of a game. You can find more information on this particular issue by referring to

Chapter 2.

Table 9-6 highlights some of the more common sprite grid sizes used.

Chapter 9 / Arcade Game Animation 307

FIGURE 9-10: Example of Grid Containing an Animation
Sequence



TABLE 9-6: Common Grid Square Sizes at Different Screen Resolutions

Screen Resolution Common Grid Sizes

320x240 8x8, 16x16, 32x20, 32x32, 64x64, 96x64

640x480 16x16, 32x20, 32x32, 64x64, 96x64, 96x128, 128x128, 256x256

800x600 16x16, 32x20, 32x32, 64x64, 96x64, 96x128, 128x128, 256x256

NOTE: These sizes change in proportion to the screen resolution in which they

are displayed. For example, an object animated at 16x16 at a resolution of

320x240 will appear as if it were created at 8x8 when shown at a resolution

of 640x480. You can easily draw grid squares by using the Grid tool of your

favorite painting program. This tool is described in more detail in Chapter 5.

You may have noticed that most of the common sprite grid square sizes are based

on even multiples. This is intentional. In addition to helping with screen perfor-

mance, evenly sized sprite grids also simplify the programming process because

they allow for cleaner and more optimized math in programs. This being said, this

doesn’t actually mean that the sprites you design inside these grids have to be

evenly sized. For example, a given grid square might be 32x32 but the sprite

inside the grid square might actually measure 29x27.

Table 9-7 provides some examples of how these different grid square sizes might

be used for different types of arcade game objects.

TABLE 9-7: Example Grid Square Sizes for Different Game Objects

Grid Square Size Comments

8x8, 16x16 Useful for small objects such as bullets or missiles. Can also be used
to represent on-screen text characters at lower screen resolutions (i.e.,
320x200).

32x20, 32x32 Useful for objects such as spaceships, bonus items, icons, and other
small on-screen objects in most screen resolutions.

64x64, 96x64, 128x128 Useful for larger spaceships and vehicles as well as most on-screen
objects in most screen resolutions.

Greater than 128x128 Useful for very large objects, namely “boss” objects, or major
characters that frequently appear at the end of game levels, etc.

308 Chapter 9 / Arcade Game Animation



Table 9-8 provides some suggestions for using sprite grid sizes for different types

of arcade games.

TABLE 9-8: Suggestions for Using Grid Square Sizes in Different Arcade Game Genres

Grid Size Suggested Arcade Game Genre

8x8, 16x16 Pong games, maze/chase, shooters

32x20, 32x32 Pong games, maze/chase, shooters

64x64, 96x64, 128x128 Pong games, maze/chase, puzzlers, shooters,
platformers

Greater than 128x128 Shooters, platformers

Table 9-9 shows the grid square sizes that are most useful at different screen

resolutions.

TABLE 9-9: Using Grid Square Sizes at Different Screen Resolutions

Grid Size Suggested Screen Resolution

8x8, 16x16 320x200, 320x240, 640x480

32x20, 32x32 320x200, 320x240, 640x480, 800x600

64x64, 96x64, 128x128 320x200, 320x240, 640x480, 800x600

Greater than 128x128 640x480, 800x600

NOTE: The information presented in Tables 9-7, 9-8, and 9-9 is to be used as

general guidelines only. You are certainly free to use grid sizes other than

the ones mentioned here.

Chapter 9 / Arcade Game Animation 309

32x32

64x64

128x128

FIGURE 9-11: Comparison of Different Grid Square Sizes



General Rules for Creating Grid Squares

There are a few items to consider before going to the trouble of designing your

artwork using a specific grid square size. These issues include:

� Programmer requirements—In order to maximize screen performance,

some games use sprites that are hard-coded to certain sizes. Therefore, never

choose a particular grid square size to create your sprites without first con-

sulting with your programmer! Otherwise, you’re likely to create sprites that

are incompatible with the game’s animation code and will probably have to

redo a large portion of your work.

� Grid square size in relation to other objects—During your initial graphics

work, you may find that you need to make certain game objects larger or

smaller to better fit the overall look and feel of the game. Therefore, always

test the grid square size you choose before using it for all of your sprites. To

do this, simply create a few key objects using the selected grid square size and

see how they fit together. Place the objects side by side and in relation to the

rest of the items in your game, i.e., backgrounds, status indicators, etc. After a

few quick tests, it should become clear whether or not a particular grid square

size will work for your game. Taking this extra step can save you a lot of extra

time and effort later on.

� Proper grid square scaling—It helps if you use grid squares that are divisi-

ble by a power of two. Doing this has several advantages. First, it allows your

sprites to be compatible with all common screen resolutions. Second, it facili-

tates their placement on the screen, as all common screen resolutions are also

divisible by a power of two. Third and finally, doing this allows you to scale

your sprites up or down to other sizes as the need arises with minimal loss in

quality.

One last word about sprite grid sizes: be very careful when creating them! When

the programmer specifies a grid size of 32x32, find out if the 32x32 dimensions

include the grid border or just the contents of the grid cell. This detail is often

overlooked and can result in game objects that do not fit together properly, such as

background tiles.

Therefore, to be safe, always make your grids one pixel larger than what is speci-

fied in both the X- and Y-axes. For example, when tasked with making objects that

are 40x40 in size, create a grid that is 41x41, as this will account for the grid’s

border.

Core Arcade Game Animation Primitives

Animated objects are at the heart of every arcade-style game. They represent the

stylistic sequences that comprise everything from on-screen characters that walk,

310 Chapter 9 / Arcade Game Animation



run, and jump to spaceships and special effects such as flashes and explosions. It’s

these objects that ultimately make arcade games engaging and appealing to those

who play them. Yet, despite all of the outward differences each arcade game

exhibits in terms of their looks, the animations that give them unique character all

share a common set of primitives, or techniques of producing animated sequences.

This is a little-known fact but an extremely important one. Once you understand

how these arcade animation primitives work, you will have an important insight

into how arcade game animations are designed and created.

The purpose of this section is to highlight these core animation primitives and

explain both how they work and how to use them effectively in your own arcade-

style game projects.

For the purposes of this book, these key animation primitives can be grouped into

three general categories. These categories include:

� Major arcade game animation primitives

� Minor arcade game animation primitives

� Complex arcade game animation primitives

Major Arcade Game Animation Primitives

This category includes seven of the most basic animation primitives that are used

in nearly every arcade game. The techniques described here are relatively simple

in nature and are applicable to both character and mechanical objects of all types.

They include:

� The cylindrical primitive

� The rotational primitive

� The disintegration primitive

� The color flash primitive

� The scissors primitive

� The growing primitive

� The shrinking primitive

The Cylindrical Primitive

This primitive is used in arcade games to represent the spinning motion of round,

cylindrical objects. Although this doesn’t sound like much, you’d be surprised. In

arcade games, these objects can be used to represent a diverse and extensive

range of elements including ship’s hulls, buildings, missiles, robots, and even car

wheels.

The cylindrical technique is among the easiest animation techniques to master

because unlike most forms of animation, it doesn’t require any dramatic changes

Chapter 9 / Arcade Game Animation 311



to occur between frames to produce its intended effect. Rather, cylindrical anima-

tions rely on points or lines called markers that change gradually from one frame

to the next as illustrated in Figure 9-12.

NOTE: Technically, this animation sequence can be completed in as few as four

frames. However, the example in Figure 9-12 shows five in order to empha-

size the full motion of a typical cylindrical effect.

When animated it will produce the illusion of the object rotating in place. Here’s a

quick breakdown of the motion that’s taking place:

� Frame 1: The marker (the horizontal line) is positioned near the top of the

object.

� Frame 2: The marker moves down slightly from the previous frame.

� Frame 3: The position of the marker moves to the center of the object. This

provides an unmistakable visual clue that the object is starting to rotate since

the marker has made a dramatic and visible positional change since frame 1.

� Frame 4: The marker moves down past the center. If you look carefully, you’ll

see that frame 2 and frame 4 are exact opposites of each other in terms of the

position of the marker.

� Frame 5: The marker moves to the bottom of the object. At this point, a sin-

gle rotation has been completed and the animation is ready to be cycled.

Creating effective cylindrical animations requires that you pay close attention to

three things: color selection, proper positioning of the marker, and sequence

length.

Because it doesn’t rely on the broad or exaggerated changes used by the other

forms of animation, the cylindrical primitive requires that you pick suitable colors

to support the effect. These colors should be high contrast shades with the

marker color being the most prominent of them. Making the marker brighter than

the rest of the object serves two important purposes. First, it establishes the point

of change on the object. This cues the user’s eyes to follow the object as it is ani-

mated. Second, it serves as a highlight that reinforces the object’s illusion of

roundness.

The position of the marker can make or break a cylindrical animation. The marker

should always travel from one end of the object to the other in a smooth and pre-

dictable fashion. If it doesn’t, the illusion of motion won’t be properly established

312 Chapter 9 / Arcade Game Animation

1 5

FIGURE 9-12: Cylindrical Animation Example



and the animation will fail. To ensure that the marker is always positioned cor-

rectly, move it in gradual increments as this will give you more control over its

progression along the surface of the object and give you the opportunity to correct

it during the design process. The correct positioning of the marker is one of the

more difficult aspects of creating this type of animation. To help give you a better

sense of how to do this, look at a real-world object such as a large coin. Turn the

coin on its side and roll it in your fingers. Notice how the light moves along the

edge of the coin. Move the marker in the same fashion and the animation will pro-

duce the desired result.

The effectiveness of cylindrical animations is also greatly influenced by the num-

ber of frames used to create the effect. To ensure that the animation is successful,

plan on rendering the cylindrical animation using between three and ten frames.

In my experience, seven works best, but more can be used without drawing out

the effect too much. Never use less than three frames to represent any cylindrical

animation since there won’t be enough frames available to adequately show the

flow of movement.

TABLE 9-10: Cylindrical Primitive Animation Property Summary

Animation Property Comments

Motion lines Cylindrical animations should never have an uneven
(non-linear) motion path. Cylindrical animations always have
straight motion lines.

Motion angles Motion angles are always straight.

Key-frames and in-betweens Three to four key-frames with up to three in-betweens produce
the smoothest and most effective cylindrical animation
sequences.

Weight and gravity These properties may influence the speed at which a cylindrical
object rotates if it’s large or heavy.

Flexibility Does not apply and has no effect.

Secondary actions Has no effect as all parts of the object move at the same time
during cylindrical animations.

Cycles and loops Cycles are used extensively in cylindrical rotation sequences. All
cylindrical animations loop; otherwise, the effect won’t seem
continuous.

Tempo Used extensively to adjust the speed at which the cylindrical
action occurs. Be careful not to move objects too quickly when
performing cylindrical animations. Doing so has a tendency to
ruin the effect.

Chapter 9 / Arcade Game Animation 313



The Rotational Primitive

The rotational animation primitive is often used in arcade games to describe a

variety of rotating object movements. Although it’s often confused with cylindri-

cal-style animation, it’s really a unique technique unto itself. In arcade games,

rotational animation is used to represent everything from rotating gun turrets to

spinning asteroids, making it a powerful and versatile technique.

The rotational technique is popular because it’s easy to implement. Basically, it

works this way: an object is rotated in variable increments using a 360-degree

scale. The object completes a single rotation when it progresses from 0 to 360

degrees over the course of successive frames.

Rotational animations can move either clockwise or counterclockwise. There’s

also a direct relationship between the smoothness of the animation and number of

degree increments each frame represents. For example, an object such as a gun

turret can complete a full rotation in as little as four frames if each frame repre-

sents a 90-degree rotational increment. At the extreme end, a rotating object can

require as many as 360 frames if each frame uses only a 1-degree rotational

increment.

Refer to Table 9-11 for some suggestions on how to handle common rotating

objects in arcade-style games.

TABLE 9-11: Common Arcade Game Rotational Object Suggestions

Arcade Game Object Degree Increments
per Frame

Total Frames
Required

Comments

Asteroids/meteors
(coarse)

45º 8 Minimum required to produce
convincing animation.

Asteroids/meteors
(smooth)

225º 16 Sufficient to render convincing
animation.

Gun turrets (coarse) 90º 4 Minimum required to produce
convincing animation.

Gun turrets (smooth) 45º 8 Sufficient to render convincing
animation.

Spinning objects
(coarse)

90º 4 Minimum required to produce
convincing animation.

Spinning objects
(coarse)

45º 8 Sufficient to render convincing
animation.

314 Chapter 9 / Arcade Game Animation

1 8

FIGURE 9-13: Rotational Animation Example



Arcade Game Object Degree Increments
per Frame

Total Frames
Required

Comments

Vehicle/character
facings (coarse)

90º 4 Minimum required to produce
convincing animation.

Vehicle/character
facings (smooth)

45º 8 Sufficient to render convincing
animation.

TABLE 9-12: Rotational Primitive Animation Property Summary

Animation Property Comments

Motion lines Typically, rotational animations have straight motion lines, but
there will be some waviness depending on how smoothly the
object is rotated.

Motion angles Motion angles are almost uniformly straight. Rotational
animations seldom have uneven motion angles.

Key-frames and in-betweens The number varies depending on the amount of smoothness
you want to achieve. Anything between two and four
key-frames is effective for this type of animation.

Weight and gravity These properties may influence the speed at which an object
rotates if it’s large or heavy but has little effect on the
animation otherwise.

Flexibility Does not apply and has no effect.

Secondary actions Do not apply and have no effect.

Cycles and loops Cycles are used extensively in rotational animation sequences.
All rotational animations loop; otherwise, the effect won’t seem
continuous.

Tempo Used extensively to adjust the speed at which the rotation action
occurs. Very rapid tempos can help reinforce the notion of an
object moving at a high speed. Similarly, very slow tempos can
help give the impression of an object moving slowly.

NOTE: Rotational animations are the basis for other animation effects such as

motion blurs. Motion blurs are effects used to depict the movement and

passing of air that is disrupted by the motion of another object. For exam-

ple, motion blurs occur when helicopter rotors move or when a fighter kicks

or punches.

The Disintegration Primitive

The disintegration primitive is most often used in arcade games to remove objects

from the screen. For example, when a character dies in a game, it gradually disin-

tegrates and disappears so a fresh character can replace it. There are two factors

to pay attention to when designing disintegration animations: the method of

Chapter 9 / Arcade Game Animation 315



removal and the extent of the removal that occurs between each frame. Let’s start

with the removal method first. The three most common removal methods, or disin-

tegration effects, are melting, dissolving, and color fading.

Table 9-13 identifies how each of these removal methods work and differ from

each other.

TABLE 9-13: Common Object Removal Methods

Removal Method Effect Produced How it Works

Melting Causes an object to appear as if it’s
melting, similar to a candle.

Gradually reduces the vertical area of
an object and blends its pixels together
to form an unidentifiable mess.

Dissolving Causes an object to decay similarly
to being dissolved by acid.

Gradually removes random patterns of
pixels from the object over successive
frames.

Color fading Causes an object to slowly vanish. Introduces gradual (or in some cases
extreme) color changes to erase the
object from the screen over time.

In order to remove an object effectively, once you select a removal method, it’s

imperative that you stick with the mechanics associated with the effect. In other

words, if you choose to employ the dissolving method, don’t use color fading as

part of the removal process.

The example in Figure 9-14 uses the dissolving removal method.

Here’s a breakdown of the animation sequence:

� Frame 1: This is an unmodified version of the original object.

� Frame 2: The object starts to break up. Care must be taken so that this effect

occurs gradually but remains distinctly visible to the eye.

� Frame 3: The breakup effect continues. The integrity of the object continues

to hold but large areas of its surface begin to vanish.

� Frame 4: There is further progression of the effect. Notice how large areas of

the object are now gone.

� Frame 5: The object is now practically destroyed with only a few small areas

of its original structure and shape now visible and intact.

316 Chapter 9 / Arcade Game Animation

1 5

FIGURE 9-14: Dissolving Removal Example



As mentioned, how much of an object is removed during each frame of animation

can influence the overall quality of the intended effect. For example, if you remove

too much of an object’s content too early in the animation sequence, the effect will

look fake. Similarly, if you remove too little, the effect won’t be as convincing.

Planning the right amount and rate of removal for an object can be tricky. There-

fore, to ensure positive results, try using what I call the percentage method.

Using this system, a fixed percentage of the object is removed on each successive

animation frame. Not only does this method produce consistent results but it also

will help you determine the maximum number of frames required by the anima-

tion. So, for example, if you set the removal percentage to 25 percent, 25 percent

of the object will be removed per each frame of animation. This means that it will

require a total of four frames of animation to completely remove the object from

the screen. Since each removal technique requires a different number of frames to

produce convincing animation, consult Table 9-14 for some general guidelines for

using this method under different circumstances.

TABLE 9-14: Percentage Removal Method Guideline Suggestions

Selected Removal Method Estimated Percent
Removed per Frame

Total Frames Required

Melting (coarse) 25 4

Melting (smooth) 10 10

Dissolving (coarse) 25 4

Dissolving (smooth) 10 10

Color fade (coarse) 12.5* 8*

Color fade (smooth) 6.25* 16*

* Denotes that frames used should correspond to available palette entries to produce the
best results.

NOTE: It’s entirely possible to combine different removal methods to enhance

the disintegration effect. However, because this can get messy fast, it’s only

recommended once you’ve mastered creating and using each of the differ-

ent removal techniques individually.

TABLE 9-15: Disintegration Primitive Animation Property Summary

Animation Property Comments

Motion lines Have no direct application to the disintegration action but are inherited
from the original object and bound to its particular behavior (i.e., if a
bird is flying, the disintegration animation will continue to fly as well and
it will theoretically inherit the same wavy motion line).

Chapter 9 / Arcade Game Animation 317



Animation Property Comments

Motion angles Have no direct application to the disintegration action but are inherited
from the original object and bound to its behavior.

Key-frames and
in-betweens

Application varies. Depends on the desired smoothness of the
disintegration action. Refer to Table 9-14 for more information.

Weight and gravity Have no direct application to the disintegration action but are inherited
from the original object and bound to its behavior.

Flexibility Does not apply and has no effect.

Secondary actions Have no direct application to the disintegration action but are inherited
from the original object and bound to its behavior.

Cycles and loops Rarely used since the purpose of disintegration animations is to remove
an object from the screen in a graceful manner. Therefore, such
sequences only move once and never cycle or loop.

Tempo Used extensively to adjust the speed at which the disintegration action
occurs. Correct tempo is a major factor in the success or failure of most
disintegration-style animations. When in doubt, move your objects faster.
Slow tempos, particularly when displaying explosion animations, can
ruin the illusion produced by the effect.

The Color Flash Primitive

Color flashes are commonly used in arcade games to produce a flashing effect on

or behind an object such as the sparkling of a jewel, the flicker of a torch, the flash

of a light, or the pulse of a rocket motor. Color flashes work by applying a subtle

(or dramatic) color change between each frame of the animation. This color

change is usually limited to a fixed area within each frame and can range anywhere

from a single pixel in size to an intricate, multipixel pattern. Regardless, when

done properly, the color flash technique can produce an extremely effective “quick

and dirty” effect that requires minimal time to create but adds a powerful sense of

realism and character to a scene.

This being said, creating an effective color flash effect relies on four distinct fac-

tors: proper color selection, the size of the flash used, the number of frames

involved, and the position of the flash on the object itself. In most situations, color

flashes require you to use intense, contrasting colors. For example, to use a color

flash to simulate a rocket exhaust at the back of a spaceship’s engine, you should

use shades of red with distinct contrast such as bright red, medium red, and dark

red. When animated, these colors will exhibit the visible distinctions that will

make the effect easier to see in the context of the overall object and game screen.

The size or radius of the color flash can also have a big effect on how convincing

the effect looks when used on an object. A color flash that is too small will appear

too subtle on-screen, whereas a color flash that is too large can ruin the effect and

jeopardize the integrity of the object itself. For the best results, try to find a place

318 Chapter 9 / Arcade Game Animation



in the middle of these extremes. Determining the right size for the color flash

takes experience, but after creating just a few implementations, you’ll begin to

notice a pattern and will be able to judge the size properly.

Color flashes are generally meant to happen quickly. Therefore, their animations

should be short and should not extend beyond a few frames. Color flashes that are

between two and five frames in length are ideal. Anything less won’t work and

anything more can seem too drawn out. Thus, be careful in this regard and try to

keep your sequence lengths relatively short.

Finally, the position of the color flash itself can make or break the intended effect.

To ensure that the effect works as expected, always position the color flash logi-

cally. In other words, place the color flash where the user expects it to be. For

example, jewels sparkle at the point where they reflect light. So, if you shade a

jewel with the light source along the upper left-hand corner, the color flash should

appear there and not in the middle or on the right-hand side. Like anything else,

failing to take into account physical laws can diminish the effect that you’re trying

to achieve.

Figure 9-15 illustrates a complex form of the color flash as used in an animated

logo sequence for a game.

Here is a frame-by-frame synopsis of the effect in action:

� Frame 1: This is the original, unmodified logo.

� Frame 2: A subtle but noticeable light is placed behind the letter A.

Chapter 9 / Arcade Game Animation 319

FIGURE 9-15: Example of the Color Flash Primitive



� Frame 3: The light’s intensity and flash radius increase by about 50%.

� Frame 4: This frame shows an increase in the light’s size and radius by an

additional 50% of what it was in frame 3.

� Frame 5: By the end of the sequence the light is several times larger and

brighter than it was in frame 2. At this point, the animation should cycle back

to frame 1 in order to restore the animation to its original state and create the

sudden flashing effect that is the hallmark of this primitive.

TABLE 9-16: Color Flash Primitive Animation Property Summary

Animation Property Comments

Motion lines Do not apply and have no effect.

Motion angles Do not apply and have no effect.

Key-frames and
in-betweens

Three to five key-frames and in-betweens are optimal. More can be used
to smooth the effect but at the risk of appearing too drawn out.

Weight and gravity Do not apply and have no effect.

Flexibility Does not apply and has no effect.

Secondary actions Do not apply and have no effect.

Cycles and loops Used frequently to produce the illusion of continuous action.

Tempo Used extensively to adjust the speed at which the color flash occurs. Most
color flash animations occur quickly; therefore, use a fast tempo
whenever possible when creating animations of this type.

The Scissors Primitive

The scissors primitive is one of the most popular animation techniques used by

arcade games and is used for effects that range from simple walking to creatures

biting.

It’s also one of the simplest animation techniques to create. The basic technique

simulates the cutting action of a pair of scissors, hence the name. Using the scis-

sors primitive, the animation starts in the closed position and gradually

progresses to the open position by the end of the sequence. It works by taking

advantage of the element of exaggerated motion. In other words, it relies on the

introduction of vast changes from one frame to the next. This fools the eye into

seeing the intended effect while using a minimum number of animation frames.

Because of this, the scissors effect is ideal for animations that require use of as

few frames as possible.

320 Chapter 9 / Arcade Game Animation



Here’s a breakdown of a typical scissors-based animation sequence:

� Frame 1: The first frame shows a fish with its mouth closed.

� Frame 2: The next frame shows the fish partially opening its mouth. This

frame serves as the in-between between frame 1 (fully closed mouth) and

frame 2 (fully open mouth) and makes the animation smoother and more real-

istic looking.

� Frame 3: The final frame of the sequence shows the fish with its mouth fully

open. Should you want to make this a continuous motion, you could add

cycling frames at this point of the animation sequence.

The effectiveness of scissors-type animation is entirely dependent on the number

of animation frames used. Smoother scissors-like animation effects require more

transitional frames while coarser scissors animations can get away with fewer

transitional frames. However, scissors animations of between two and four frames

are the most commonly used and encountered.

NOTE: Animations based on the scissors primitive can be horizontally or verti-

cally oriented.

TABLE 9-17: Scissors Primitive Animation Property Summary

Animation Property Comments

Motion lines Do not apply and have no effect.

Motion angles Do not apply and have no effect.

Key-frames and
in-betweens

Two key-frames at minimum. More frames will increase the smoothness of
the animation. Three frames is the optimum.

Weight and gravity Can influence the speed at which the animation occurs.

Flexibility Does not apply and has no effect.

Secondary actions Do not apply and have no effect.

Cycles and loops Cycles are frequently used in scissors animation sequences; however, their
use depends on the complexity of the animation. Scissors animations
make extensive use of looping to produce the illusion of continuous
action.

Chapter 9 / Arcade Game Animation 321

FIGURE 9-16: Example of the Scissors Primitive



Animation Property Comments

Tempo Used extensively to adjust the speed at which the scissors animation
occurs. The object’s tempo will vary according to the type of effect you’re
after.

The Growing Primitive

This primitive is commonly used in arcade games as a modifier for the other ani-

mation techniques described here. It essentially expands an object from one size

to another such as during an explosion, when a character drinks a growth potion,

or to simulate an object getting larger as it moves closer.

Figure 9-17 provides an example of this technique. Notice the progression of how

the object changes its size.

When using this primitive, it’s important to pay close attention to the element of

scale. Scale determines how large an object can become during the course of the

animation. Always make sure that you use a constant scale. In general, it’s good

practice to use a scale based on a multiple of two. This ensures that the object will

scale consistently. Otherwise, the object in question won’t look right when it

grows during the animation sequence.

TABLE 9-18: Growing Primitive Animation Property Summary

Animation Property Comments

Motion lines Generally tend to be uneven as the growing object “grows.”

Motion angles Do not apply and have no effect.

Key-frames and
in-betweens

This effect requires two to three key-frames to create effective growing
sequences. Five to seven total frames is the optimum for most purposes.

Weight and gravity Do not apply and have no effect.

Flexibility Does not apply and has no effect.

Secondary actions Do not apply and have no effect.

Cycles and loops Cycles tend not to apply to these types of animations due to the fact that
object growth is incremental in nature and each frame requires a larger
version of the object. Growth animations rarely loop due to this fact but
can if the effect is warranted.

322 Chapter 9 / Arcade Game Animation

FIGURE 9-17: Growing Primitive Example



Animation Property Comments

Tempo Used extensively to adjust the speed at which the growing effect
transpires. The object’s tempo will vary according to the effect you’re
after.

The Shrinking Primitive

This is the opposite of the growing primitive. It, too, is a commonly used modifier

for the other animation techniques described here. It essentially contracts an

object from one size to another such as during an explosion, when a character

drinks a shrinking potion, or to simulate an object getting smaller as it moves

away from view.

When it comes to the element of scale, what applies to the growing primitive

applies to the shrinking primitive as well.

TABLE 9-19: Shrinking Primitive Animation Property Summary

Animation Property Comments

Motion lines Generally tend to be uneven as the growing object “shrinks.”

Motion angles Do not apply and have no effect.

Key-frames and
in-betweens

Two key-frames is the minimum. More frames create smoother shrinking
sequences. Five to seven frames is the optimum for most purposes.

Weight and gravity Do not apply and have no effect.

Flexibility Does not apply and has no effect.

Secondary actions Do not apply and have no effect.

Cycles and loops Cycles tend not to apply to these types of animations due to the fact that
object shrinking is incremental in nature and each frame requires a
smaller version of the object. Shrinking animations rarely loop due to this
fact but can if the effect is warranted.

Tempo Used extensively to adjust the speed at which the shrinking effect
transpires. The object’s tempo will vary according to the type of effect
you’re after.

Minor Arcade Game Animation Primitives

This set of animation primitives is used in many types of arcade-style games but

appears far less often than those described in the major animation primitives cate-

gory. These techniques are applicable to both character and mechanical objects.

They include:

� The piston primitive

� The squeeze primitive

� The swing primitive

Chapter 9 / Arcade Game Animation 323



� The slide primitive

� The open/close primitive

� The bounce primitive

� The stomp primitive

The Piston Primitive

Objects that use the piston primitive appear to pump up and down or from side to

side when animated. This effect is usually seen in mechanical objects such as

engines, machinery, or robots.

TABLE 9-20: Piston Primitive Animation Property Summary

Animation Property Comments

Motion lines Piston-like animations tend to have non-straight motion lines.

Motion angles Do not apply and have no effect.

Key-frames and
in-betweens

Effective piston animations can be made with as few as two key-frames.
More than eight frames is overkill for this type of effect.

Weight and gravity Can influence the speed at which the animation is displayed. For
example, larger objects or denser gravity will result in slower overall
movement.

Flexibility Does not apply and has no effect.

Secondary actions Do not apply and have no effect.

Cycles and loops Piston animations make extensive use of both cycles and looping effects.

Tempo Used extensively to adjust the speed at which the piston effect occurs.
Piston animations usually occur quickly; therefore, use a fast tempo.

The Squeeze Primitive

Objects that use the squeeze primitive appear

to compress themselves in a manner similar to

an accordion when animated. This effect is usu-

ally seen in certain mechanical objects, such as

spaceships and robots.

324 Chapter 9 / Arcade Game Animation

FIGURE 9-18: Piston Primitive Example

FIGURE 9-19: Squeeze Primitive
Example



TABLE 9-21: Squeeze Primitive Animation Property Summary

Animation Property Comments

Motion lines Squeeze animations almost always have constant and even motion lines.

Motion angles Do not apply and have no effect.

Key-frames and
in-betweens

Squeeze animations can be depicted in as few as two key-frames. Using
more than four frames tends to minimize the effect as the squeeze
primitive relies heavily on exaggeration.

Weight and gravity Can influence the speed at which the animation is displayed. For
example, larger objects or denser gravity will result in slower overall
movement.

Flexibility Does not apply and has no effect.

Secondary actions Do not apply and have no effect.

Cycles and loops Squeezing animations make extensive use of both cycles and looping
effects.

Tempo Used extensively to adjust the speed at which the squeezing effect occurs.
Squeeze animations usually occur quickly; therefore, use a fast tempo.

The Swing Primitive

Objects that use the swing primitive appear to swing like a pendulum either hori-

zontally or vertically when animated. The swing primitive is actually a variation of

the scissors primitive and is used by both mechanical and organic objects to repre-

sent movements from spaceship wings to chomping creatures.

TABLE 9-22: Swing Primitive Animation Property Summary

Animation Property Comments

Motion lines They tend to have wavy motion lines that start out straight and sharply
curve towards the center of the motion.

Motion angles They tend to have very sharp motion angles

Key-frames and
in-betweens

Swing animations can contain any number of key-frames. More
key-frames will, of course, result in smoother swinging animation effects.

Weight and gravity Can influence the speed at which the animation is displayed. For
example, larger objects or denser gravity will result in slower overall
swinging movement.

Chapter 9 / Arcade Game Animation 325

FIGURE 9-20: Swing Primitive Example



Animation Property Comments

Flexibility Does not apply and has no effect.

Secondary actions Usually doesn’t apply, but can in certain instances, particularly when
animated walking objects can make use of secondary actions to enhance
the drama of the effect.

Cycles and loops Swinging animations make extensive use of both cycles and looping
effects.

Tempo Used extensively to adjust the speed at which the swinging effect occurs.
The object’s tempo will vary according to the effect you’re after.

The Slide Primitive

The slide primitive is used to represent sliding and shuffling type movements.

Such movements are frequently used to create simple walking and crawling ani-

mations with only a handful of frames.

The slide primitive works by taking advantage of excessive exaggerations. When

done well, this has the effect of fooling the observer into thinking the object is

walking or crawling even though no part of the object has left the ground.

Figure 9-21 demonstrates the sliding primitive in action. Notice how the charac-

ter’s arms and feet work in unison to give the impression that the character is

sliding across a surface.

TABLE 9-23: Slide Primitive Animation Property Summary

Animation Property Comments

Motion lines Sliding animations are almost exclusively straight and constant. However,
occasionally you will encounter sliding animations that have uneven
motion lines.

Motion angles Tend to be very sharp for certain parts of the object being animated, i.e.,
legs and arms.

Key-frames and
in-betweens

Sliding animations are extremely simple and usually only comprise two
key-frames: object still and object sliding. Adding in-betweens will
enhance the sliding motion and are encouraged.

326 Chapter 9 / Arcade Game Animation

FIGURE 9-21: Slide Primitive Example



Animation Property Comments

Weight and gravity Can influence the speed at which the animation is displayed. For
example, larger objects or denser gravity will result in a slower overall
sliding movement.

Flexibility Does not apply and has no effect.

Secondary actions Occasionally applies to sliding objects, particularly during walking
sequences.

Cycles and loops Sliding animations make extensive use of both cycles and looping effects.

Tempo Used extensively to adjust the speed at which the sliding movement
occurs. Slide animations run more slowly than most other animation
primitives; therefore, slow down the tempo when creating sliding effects.

The Open/Close Primitive

As the name implies, objects that use the open/close primitive have two states:

open and closed. As such, this primitive is most commonly used to depict simple

objects such as doors. However, this primitive can be used to produce emotion in

detailed characters such as the blinking of an eye as illustrated by Figure 9-22.

TABLE 9-24: Open/Close Primitive Animation Property Summary

Animation Property Comments

Motion lines Do not apply and have no effect.

Motion angles Do not apply and have no effect.

Key-frames and
in-betweens

Almost all open/close animations require at least two key-frames. Adding
additional frames can enhance the effect but isn’t required.

Weight and gravity Do not apply and have no effect.

Flexibility Does not apply and has no effect.

Secondary actions Do not apply and have no effect.

Cycles and loops Open/closing animations make extensive use of both cycles and looping
effects.

Tempo Used extensively to adjust the speed at which the open/close action
occurs. The object’s tempo will vary according to the type of effect you’re
after.

Chapter 9 / Arcade Game Animation 327

FIGURE 9-22: Open/Close Primitive Example



The Bounce Primitive

The bounce primitive is commonly used in arcade games on objects to simulate

simple objects traveling or bouncing back and forth between two endpoints. It

should not be confused with the element of gravity. This primitive is generally

limited to mechanical objects such as computers and robots.

Figure 9-23 shows the bounce primitive in action. In this example, the white dot at

the center of the object “bounces” back to its original position when looped.

NOTE: This primitive should not be confused with the cylindrical primitive as it

is not intended to simulate the motion of an object spinning in place.

TABLE 9-25: Bounce Primitive Animation Property Summary

Animation Property Comments

Motion lines Always have straight motion lines.

Motion angles Always have straight motion angles.

Key-frames and
in-betweens

Requires at least two to three key-frames to produce a relatively
convincing effect. Adding more frames will improve the smoothness of the
bouncing movement.

Weight and gravity Can influence the speed at which the animation is displayed. For
example, larger objects or denser gravity will result in a slower overall
bouncing movement.

Flexibility Does not apply and has no effect.

Secondary actions Do not apply and have no effect.

Cycles and loops Bouncing animations are usually too simple to require cycles. However,
bouncing animations make extensive use of looping effects.

Tempo Used extensively to adjust the speed at which the bouncing movement
occurs.

The Stomp Primitive

Objects that use the stomp primitive appear to flail from side to side much like a

person stomping their foot. Because of this and the fact that the stomp primitive

only has two states, up or down, it’s used to depict a simple and exaggerated form

328 Chapter 9 / Arcade Game Animation

FIGURE 9-23: Bounce Primitive Example



of walking for characters, human and otherwise. In fact, alien invader type objects

frequently use it.

Stomp-like animations are largely secondary actions since they typically only

affect the feet or bottom of an object.

TABLE 9-26: Stomp Primitive Animation Property Summary

Animation Property Comments

Motion lines Have short and extremely wavy motion lines.

Motion angles Have very sharp motion angles.

Key-frames and
in-betweens

Requires at least two to three key-frames to produce a relatively
convincing effect. Adding more frames will improve the smoothness of the
bouncing movement.

Weight and gravity Can influence the speed at which the animation is displayed. For
example, larger objects or denser gravity will result in a slower overall
stomping movement.

Flexibility As all stomping animations deal with legs, care should be taken to ensure
that the stomping movement is crisp.

Secondary actions Do not apply and have no effect.

Cycles and loops Stomping animations make extensive use of both cycles and looping
effects.

Tempo Used extensively to adjust the speed at which the stomping movement
occurs. Stomping animations tend to run slower than most other
animation primitives; therefore, slow down the tempo when creating these
type of effects.

Complex Arcade Game Animation Primitives

This category of animation primitives encompasses the fundamental character and

creature animation techniques that are used in platform-style games, regardless of

their particular style or theme.

� The slinking primitive

� The flying primitive

� The walking primitive

Chapter 9 / Arcade Game Animation 329

FIGURE 9-24: Stomp Primitive Example



� The running primitive (humans)

� The running primitive (animals)

� The jumping primitive

� The crawling primitive

NOTE: Several of the figures used in this section of the chapter are based on

observations and computer drawings made from material presented in

Eadweard Muybridge’s books, The Human Figure in Motion and Animals in

Motion. Both of these books do an excellent job of breaking down the com-

plex movements of both humans and animals into easy-to-digest pieces.

These books are excellent resources for anyone interested in creating more

realistic arcade game animation.

The Slinking Primitive

Slinking is a form of locomotion that certain “lower” animals such as snakes and

worms use. Therefore, it’s commonly used in arcade-style games that feature

such animals.

The basic slinking motion incorporates elements of the squeezing primitive in that

these creatures move as a result of the momentum produced as their bodies

squeeze and straighten. Slinking movements utilize a great deal of exaggeration in

order to produce the best impression of motion with as few frames as possible.

Figure 9-25 demonstrates how a cartoon snake would move using a slinking

motion.

Here’s a breakdown of how this particular slinking animation works:

� Frame 1: Shows the snake with its body straight and neck and head curled

and braced for movement.

� Frame 2: Shows the progression of the movement as the snake’s body curls

upwards as if it’s pushing the rest of the body forward. Frame 2 is also an

excellent example of secondary action as the snake’s head and tail also move,

albeit at different points.

330 Chapter 9 / Arcade Game Animation

1 2 3 4

FIGURE 9-25: Slinking Example



� Frame 3: Here we see the snake’s body beginning to flatten. At the same

time, the snake’s head and neck lurch forward. This further reinforces the

notion that the snake is moving by the sheer force of momentum.

� Frame 4: Here, the snake’s body is nearly completely flat and its head and

neck are in a similar position to how they were originally in frame 1. At this

point, you would cycle the animation to continue the flow of movement.

TABLE 9-27: Slinking Primitive Animation Property Summary

Animation Property Comments

Motion lines Always have slightly wavy motion lines.

Motion angles Always have straight motion angles.

Key-frames and
in-betweens

All four frames qualify as key-frames when using this type of primitive. Of
course, smoother animation can be achieved by adding corresponding
in-betweens for each key-frame used.

Weight and gravity Can influence the speed at which the animation is displayed. For
example, larger objects or denser gravity will result in a slower overall
slinking movement.

Flexibility Although snakes, worms, and snails don’t have joints or backbones, you
should pay attention to flexibility when applying slinking movements, as
these will enhance the naturalness of the movement.

Secondary actions Secondary actions occur very frequently in slinking animations. Pay close
attention to heads and tails in addition to the main part of the object’s
body as it moves.

Cycles and loops Depending on their complexity, slinking animation sequences can make
use of cycles. However, all slinking motions require loops to provide the
illusion of continuous movement.

Tempo Used extensively to adjust the speed at which the slinking movement
occurs. Slinking animations run slower than most other animation
primitives; therefore, slow down the tempo when creating slinking effects.

The Flying Primitive

Animating the motion of birds and insects can be a fairly complex business that

requires a lot of time and study on how creatures fly in order to do properly. Birds,

and all flying creatures for that matter, move their wings from the down position to

the up position and vice versa. This motion is then repeated, or cycled, to com-

plete the sequence. It takes flying creatures several steps to transition the

movement of their wings from these states.

Under most circumstances, it can take as many as 12 frames to create a realistic

flying animation. However, by breaking the basic flying motion into its most exag-

gerated components, you can extract the key-frames and produce effective, if not

somewhat less realistic, flying animations in as few as five frames.

Chapter 9 / Arcade Game Animation 331



NOTE: It’s actually quite possible to produce passable flying animations with

as few as two key-frames (up and down). However, you will need to make

sure that you compensate for the lack of key-frames by using extensive

exaggeration between the two frames and by using the proper tempo.

When studying a bird’s flight, you should take careful note of motion path, motion

angles, tempo, and secondary actions of the wings and body. Failing to do so can

cause you to produce animations that are inaccurate and unconvincing.

To get a better idea of how the flying process works, let’s look at a simplified

example. Figure 9-26 shows a simplified flying sequence rendered in just five

frames.

Here is a breakdown of the simplified flying sequence shown in Figure 9-26:

� Frame 1: The sequence begins with the bird’s wings in the full down posi-

tion. In this frame, the movement of the wings starts upward. The secondary

action occurs at the head and tail with the head being fully raised and the tail

pointing down.

� Frame 2: The wings are now level as if gliding. Here, the head begins to

move down and the tail begins to level out. This produces an effect that is con-

sistent with the flow of movement and cues the observer into believing the

authenticity of the movement. The movement of the bird’s head and tail

between frames also produces a motion line consistent with flight. Since the

exertion of movement and air turbulence both act against the bird, there’s no

way that it would have a perfectly straight motion line in the real world.

Therefore, you wouldn’t expect to have a straight motion line when creating

its animation.

� Frame 3: Here the wings start to rise. The bird’s head lowers farther and its

tail begins to straighten out. Do you notice how the concept of the motion

angle comes in play? The lowering of the head and leveling of the tail serve to

visually emphasize the bird’s acceleration as it starts to gain lift.

� Frame 4: The wings are nearing the completion of their upward movement.

The tail and head begin to repeat their upward motion.

332 Chapter 9 / Arcade Game Animation

1 2 3 4 5

FIGURE 9-26: Simplified Flying Sequence



� Frame 5: The wings are now in a full upright position. At this stage, you

could cycle the animation in reverse to restart the sequence and keep the

sense of motion constant.

NOTE: You can start simplified flying animation sequences in either the up or

the down state. It doesn’t really matter as long as there is a beginning and

an ending to the sequence.

Figure 9-27 represents a complex flying sequence. This is an exact frame-by-

frame breakdown of how a bird really flies. If you compare it with Figure 9-26,

you’ll probably notice a number of similarities between the key-frames, the shape

of the motion path, and the motion angles. For the most part, Figure 9-27 is identi-

cal to Figure 9-26 but it has seven more frames, or in-betweens, added in order to

produce a smoother-looking animation sequence.

Here’s a breakdown of the complex flying sequence shown in Figure 9-26:

� Frame 1: The first frame starts with the bird’s wings in the down position.

� Frame 2: This frame has the bird’s wing and body slowing rising upwards.

� Frame 3: The third frame shows the bird’s wing and body leveling out as if

it’s gliding.

� Frame 4: This frame shows the bird’s tail drooping down and head and wings

rising.

� Frame 5: Here, the bird’s wings reach their uppermost point while its tail

continues to move down. Notice how the first five frames show the uneven-

ness of the bird’s motion path.

� Frame 6: The bird’s wings slowly move downwards. Its tail has now reached

its lowest position in order to aid lift.

� Frames 7 and 8: These frames show the bird’s wings moving down even

farther.

� Frame 9: In this frame, the bird’s body, tail, and wings are completely straight

and level. Here, the bird’s motion line also begins to straighten.

� Frame 10: The wings continue their downward progression.

� Frames 11 and 12: The wings once again complete their downward move-

ment until they are fully extended. At this point, you could add cycles to keep

the flow of motion constant.

Chapter 9 / Arcade Game Animation 333

1
2 3 4 5 6 7 8 9 10 11 12

FIGURE 9-27: Complex Flying Sequence



As mentioned, it’s very important not to neglect tempo when creating flying ani-

mations. Different birds fly at different speeds. For example, insects and

hummingbirds tend to flap their wings at very high speeds, whereas most birds

tend to flap their wings more slowly.

You should also remember to consider the effects of weight and gravity of the fly-

ing creature. For example, smaller birds and insects will tend to have very uneven

motion lines because they flutter as they fly, but larger birds don’t.

TABLE 9-28: Flying Primitive Animation Property Summary

Animation Property Comments

Motion lines Always have wavy motion lines. Certain objects, namely complex bird and
butterfly animation sequences, will have very wavy motion lines.

Motion angles Always have straight motion angles.

Key-frames and
in-betweens

Requires at least two key-frames. More frames will result in smoother
flying sequences. In Figure 9-26, frames 1, 3, and 5 are key-frames while
in Figure 9-27, frames 1, 5, 7, 9, and 12 are key-frames.

Weight and gravity Can influence the speed at which the animation is displayed. For
example, larger objects or denser gravity will result in a slower overall
flying movement.

Flexibility Flexibility should be emphasized around certain object parts such as the
head, neck, and wings.

Secondary actions Secondary actions occur very frequently in flying animations. Pay close
attention to heads and tails in addition to the main part of the object’s
body as it moves.

Cycles and loops Cycles are used extensively in all flying animation sequences. All flying
animations make use of loops to provide the illusion of continuous and
realistic flight.

Tempo Used extensively to adjust the speed at which the flying movement occurs.
Different animals fly at different speeds. For example, insects move their
wings faster than birds. Along the same lines, smaller birds tend to move
their wings faster than larger birds. Make sure you account for this and
apply tempo properly.

NOTE: There is a direct relationship between the number of frames present in

a flying animation sequence and the speed at which it moves. Slowly mov-

ing objects will require more frames than faster moving objects due to the

way our eyes discern movement.

The Walking Primitive

Walking is used in almost every type of arcade game that involves humanoid char-

acters and is particularly important for platform games. Unfortunately, walking is

334 Chapter 9 / Arcade Game Animation



also one of the more difficult types of character actions to animate, especially for

beginners. This is because walking is a complex motion. You see, walking

involves multiple body parts such as the head, arms, and body, as well as the legs.

However, the process becomes much easier if you break the walking process

down into smaller pieces by focusing on animating each body part that is affected

by the movement individually. Thus, walking is also an excellent way to sharpen

your skills in creating secondary actions.

However, in order to do this, we need to review the different components of the

walking process:

� Step 1: The legs—Walking always starts off with the legs. One leg grips the

ground and pulls the other one forward. This essentially produces a propelling

type of movement. When creating a walking sequence, always concentrate on

the legs first.

� Step 2: The arms—The arms swing back and forth along with the motion of

the legs but in the opposite order, i.e., as the leg on one side moves forward,

the arm on that side moves back and vice versa.

� Step 3: The head—Factor in how the head moves along with the rest of the

walking motion. In the real world, the head bounces slightly up and down as

the positions of both legs change and the weight of the body shifts.

Simple walking can be achieved with only two key-frames as shown in Figures

9-28 and 9-29. One frame has the object standing still while the other frame has

the legs of object spread widely apart. Also notice the use of a modified and

heavily exaggerated form of the scissors primitive and the addition of secondary

action subtleties such as arm and head movement. This enhances the effective-

ness of the walk despite the small number of frames used to depict it.

Complex walking needs many more key-frames to produce a convincing animation

sequence, however. Figure 9-30 provides an example of the complex walking

sequence. As you can see, a realistic walking sequences requires as many as 11

frames to complete the illusion of movement.

Chapter 9 / Arcade Game Animation 335

FIGURE 9-28: Basic Walking Example #1 FIGURE 9-29: Basic Walking Example #2



Here’s a breakdown of how a complex walking animation is constructed:

� Frame 1: This frame shows the character leading with the right leg. The

right leg is actually in the process of moving backward but this won’t become

evident until later on in the animation sequence. This leg moves forward with

the heel of the foot touching the ground and the toe and sole of the foot off the

ground. The right arm is hanging straight down and the left arm is positioned

forward while bent slightly at the elbow. As the animation progresses, the left

arm will eventually move backward while the right arm moves forward.

� Frame 2: In this frame, the right leg extends forward. Meanwhile, the left leg

begins to move backward in order to maintain support and provide the body

with a stable platform. The right arm begins to move slowly backward to help

counterbalance the general motion of the body while the left arm moves for-

ward. The position of the character’s head drops slightly as the weight of the

body shifts and the back bends due to the change in the positioning of the legs.

� Frame 3: This frame has the right leg slightly bent at the knee. The foot is

now largely flat with both the heel and toes nearly level. This is the point

where the legs first begin to grip the ground. The rear leg now bends at the

knee and its heel is lifted off the ground with the toes flattened. The right arm

continues to move backward as the left arm moves slowly forward. The head

now returns to its original position due to the new shift of body weight.

� Frame 4: In this frame, the right leg is now fully bent with the toes and heel

now completely flat against the ground. The rear leg is still bent and moves off

the ground, touching only at the toes. Both arms continue their movements as

per frame 3. The position of the head is largely unchanged.

� Frame 5: This frame is a slight variation of frame 4 except that the right leg

now begins to reverse its movement and starts to move backward. At the

same time, the left leg is completely off the ground but moves forward. The

right arm now moves forward in a counterbalancing action. The left arm draws

back. The position of the head is unchanged, however.

� Frame 6: In this frame, the right leg is largely straight but continues to move

backward. The left leg, still bent at the knee, moves forward to the point

where it almost lines up with and begins to pass the right leg. The right arm

336 Chapter 9 / Arcade Game Animation

1 12

FIGURE 9-30: Complex Walking Example



moves forward slightly while the left arm moves back slightly. The position of

the head drops once again due to the shift in body weight.

� Frame 7: This frame demonstrates what is known as the passing position of

the walk sequence. This is when one leg passes the position of the other leg.

In this frame, the right leg is almost completely straight. Because of this, the

character’s back straightens and the head returns to its normal positioning. At

the same time, the left leg passes in front of the right leg, although it’s still

bent and slightly off the ground. The right arm continues forward while the

left arm continues backward.

� Frame 8: This frame shows the right leg starting to move backward slightly

while the left leg continues to move forward. The right arm is now fully in

front of the character’s torso while the left arm is moving backward in small

increments. The position of the head is unchanged from the previous frame.

� Frame 9: In this frame, the right leg is moving backward with the heel off the

ground and is only stabilized at the foot by the toes. The left leg is nearing the

completion of its forward movement. The right arm is nearing completion of

its forward motion while the left arm continues its slow backward movement.

The head is slightly dropped from the previous frame.

� Frame 10: This frame demonstrates the heel to toe part of the walk stride. In

this frame, both legs are at their maximum distance from each other. In addi-

tion, only the toe of the foot stabilizes the right leg. The left leg has completed

its forward movement. The right arm has completed its forward motion while

the left arm has completed its movement backward. The head’s position

remains stable and largely unchanged.

� Frame 11: This frame shows the right foot positioned back. The left leg has

locked out and the left foot lies flat against the ground. The right arm begins

to reverse its movement and move backward. The left arm starts to reverse

its motion and move forward. The head’s position dips slightly due to the

shifting in weight across the body.

� Frame 12: This is the final segment of the animation sequence. The right

foot now begins its sweep forward while the left leg begins its sweep back-

ward. The right arm continues to move backward while the left arm moves

forward. The head returns to its normal position. You can create a very fluid

walking sequence by cycling back to the first frame of the animation and then

looping it.

Of all of the actions described in this section of the chapter, it’s the legs that are

the most difficult to visualize and animate. Therefore, use Figures 9-31 and 9-32

as “cheats” to help you break down this complex movement.

Chapter 9 / Arcade Game Animation 337



NOTE: There is a direct relationship between the number of frames present in

a walking animation sequence and the speed at which it moves. Slowly

moving objects will require more frames than faster moving objects due to

the way our eyes discern movement.

TABLE 9-29: Walking Primitive Animation Property Summary

Animation Property Comments

Motion lines Always have motion lines that are slightly wavy. Motion lines that are too
wavy, particularly for complex animations, are probably too exaggerated
and won’t look convincing.

Motion angles Have largely straight motion angles.

Key-frames and
in-betweens

Requires at least two key-frames in simple walking sequences. As always,
more frames will result in smoother walking sequences. In the complex
walking sequence in Figure 9-30, the key-frames are frames 1, 3, 5, 7, 9,
and 11.

Weight and gravity Both of these can influence the speed at which the animation is displayed.
For example, larger objects or denser gravity will require heavier steps
and result in slower overall walking movements and shorter
exaggerations between frames.

Flexibility Flexibility should be emphasized around the arms and legs. Depending
on the size and the complexity of the object being animated, you might
want to emphasize flexibility in the feet as well.

Secondary actions Secondary actions occur extremely frequently during walking animations.
Pay especially close attention to the head of the character, as it will
bounce up and down as the position of the legs and feet change. In
addition, hair and clothing will often exhibit secondary actions. For
example, hair might flow or bounce (depending on length and style) and
clothing might trail behind the character as it picks up speed. Incidentally,
adding secondary actions to your walking sequences is an excellent way
of tricking the observer into thinking the character is moving in a more
realistic fashion than it really is.

338 Chapter 9 / Arcade Game Animation

1 2 3 4 5 6

FIGURE 9-31: Walking Leg Movements (Part 1)

7 8 9 10 11
12

FIGURE 9-32: Walking Leg Movements (Part 2)



Animation Property Comments

Cycles and loops Cycles are used extensively in all walking animation sequences,
particularly for complex ones. All walking animations also make use of
loops in order to provide the illusion of continuous and realistic
movement.

Tempo Used extensively to adjust the speed at which the walking movement
occurs. Walking is usually done at a relatively slow pace. Therefore, keep
the tempo moderate and constant.

The Running Primitive (Humans)

Running actions are commonly found in platform-style arcade games. They serve

two purposes: first, they can heighten the sense of realism by simulating the act of

acceleration. As the player applies more force on their controls, the on-screen

character increases speed. Second, running actions allow the on-screen character

to traverse more ground within the game area than when merely walking.

From an animator’s standpoint, most of what applies to creating walking

sequences applies to running as well. The main difference between the two move-

ments is that the element of exaggeration between frames and the positioning of

body parts to represent the various secondary actions is increased for running

objects.

There are other differences between walking and running that should be men-

tioned. This section highlights the most important ones.

� The arms—Running actions emphasize the arms and their movement much

more than walking. Arm movements in walking tend to be gradual, while arm

movements in running tend to be highly exaggerated as the arm acts as a

lever to help the overall motion of the object. This means that you should

draw the arms of any running object with greater separation from the body. As

such, take advantage of the element of flexibility as much as possible.

� The body—Running actions cause an object to have highly visible motion

angles. This is because the body bends forward as it picks up momentum and

speed while it moves. You will need to reflect this change in your running ani-

mations and tilt the body when creating such sequences.

� The legs—Running actions cause the object to cover more area than it would

when walking. This means that the strides the legs take during a run should

be extended to accurately depict this effect.

� The head—Running actions cause more violent up and down motions due to

the increase in speed and the more extensive and rapid shift in body weight.

Therefore, the up and down motion of the head should be more frequent and

exaggerated. This means that running actions use more pronounced second-

ary actions than walking sequences.

Chapter 9 / Arcade Game Animation 339



Figure 9-33 provides an example of a complex running sequence. As you can see,

a realistic running sequence requires as many as 12 frames to complete the illu-

sion of movement.

Here’s a frame-by-frame synopsis of a typical, complex running action:

� Frame 1: The animation sequence starts with both legs off the ground with

the right leg back and the left leg forward. Both legs are bent at the knees

with the right leg partially bent and left leg fully bent. The right arm is for-

ward with a 45-degree upward bend. The left arm has a 45-degree downward

bend. The character’s back is slightly arched forward and head is bent slightly

forward.

� Frame 2: This frame shows both legs off the ground, although much closer to

the ground than in frame 1. Both legs are still bent at the knees. This time,

however, the right leg is bent back at a 90-degree angle. The right arm is now

bent at an 85-degree angle as it travels downward and back. Meanwhile, the

left arm lunges slowly forward. The character’s back is still arched and the

head has dropped down a bit more.

� Frame 3: In this frame, the right leg, now fully extended back begins the pro-

cess of moving forward. The left leg is now very close to the ground. The

right arm moves downward and the left arm moves forward. The character’s

head and back are hunched over as the character picks up speed.

� Frame 4: This frame demonstrates the contact position of the running move-

ment, or the first point at which the runner’s feet touch the ground. In this

frame, the left foot touches the ground while the right leg, although still bent,

is rapidly moving forward. The right arm is bent and quickly moving backward

while the left arm is bent and moving forward. The position of the head and

back are largely unchanged from the previous frame.

� Frame 5: This part of the animation sequence demonstrates the push-off posi-

tion of the running movement or the point at which the runner’s feet leave the

ground in order to gain momentum in the stride. In this frame, the left leg pre-

pares to leave the ground once again as it starts to push off the ground with

the left foot. Meanwhile, the right leg enters the passing position with the left

leg and lunges forward. The right arm is now at an almost complete

180-degree bend, as it swings backward. The left arm pushes forward and has

a 45-degree bend. Both the head and back begin to straighten.

340 Chapter 9 / Arcade Game Animation

1 12

FIGURE 9-33: Running Primitive Example (Humans)



� Frame 6: This frame shows the character near full stride and once again leav-

ing the ground. The right leg is extended almost completely forward. The

right leg is almost fully bent and completely off the ground. The left leg is

almost straight as it extends backward toward the ground. Both arms appear

to pump furiously. The right arm is completely back and bent at a perfect

90-degree angle. The left arm is bent upward at a near perfect 45-degree

angle. The head and back are almost completely straight.

� Frame 7: This frame is very similar to frame 6 as both legs remain com-

pletely off the ground. The right leg is now fully extended forward while the

left leg continues to stretch backward. The right arm is still bent at a

90-degree angle and begins to move forward. The left arm is still at a

45-degree angle and starts to move back and downward. The head and back

continue to straighten up.

� Frame 8: In this frame, the right leg is still off the ground but rapidly moving

backward and down. The left leg is almost fully bent upward and is quickly

moving forward and down. The right arm is moving forward and the left arm

continues to move backward. In this frame, the head and neck are slowly mov-

ing forward again as the running motion again produces momentum.

� Frame 9: This frame has the right leg slightly bent and now touching the

ground. The left leg is fully extended back. It won’t move any farther back at

this point, only forward. The right arm continues to move forward while the

left arm moves back. It’s interesting to note that both arms are almost even

with each other. This is the only time during the entire sequence that such an

event will occur. The character’s head and back are once again starting to

straighten.

� Frame 10: This frame is almost the direct opposite of frame 4. Here, the

right leg is still on the ground but is about to spring off the ground. The left

leg is also in the process of swinging forward. The right arm is now almost at a

90-degree angle as it moves forward. The left arm continues to move back-

ward. Both the head and neck continue to straighten.

� Frame 11: This frame shows the beginning of the springing action of the run-

ning movement. The right leg extends as it moves backward. The left leg

moves forward in a wide, exaggerated stride. Both arms are now at a

45-degree angle with the right arm moving up and forward and the left moving

backward and upward. The head and back are now straight.

� Frame 12: This is the final frame of the animation sequence and it shows the

character in a full running stride. The actions here are very similar to those in

frame 1. You can create a very fluid running sequence by cycling back to the

first frame of the animation and then looping it.

Use Figures 9-34 through 9-37 as “cheats” to help you break down this complex

movement. Unlike walking, it’s important that you capture all of the motion asso-

ciated with this primitive, including the exaggeration of the arms and legs.

Chapter 9 / Arcade Game Animation 341



NOTE: Running actions are enhanced when you incorporate the element of

anticipation. Anticipation helps to make runs look more realistic since it’s

not very convincing for full-speed running to occur from a walking or stan-

dard start. You can create the impression of anticipation by adding some

additional transitional frames at the start of the running sequence. If this is

too difficult or time-consuming, a simple alternative is to slow the tempo of

the action during the first cycle of the animation.

TABLE 9-30: Running Primitive Animation Property Summary

Animation Property Comments

Motion lines Running actions always have very wavy motion lines. Motion lines that are
too straight will appear too stiff and rigid and won’t look natural when
animated.

Motion angles Running sequences have very acute motion angles.

Key-frames and
in-betweens

Requires at least two key-frames for simple running sequences. In
complex running sequences, frames 2, 4, 6, 8, 10, and 12 are
key-frames.

Weight and gravity Both of these can influence the speed at which the animation is displayed.
For example, larger objects or denser gravity will require heavier steps
and result in slower overall walking movements and shorter
exaggerations between frames.

342 Chapter 9 / Arcade Game Animation

1 2 3 4 5 6

FIGURE 9-34: Running Movement—Arms (Part 1)

7
8 9 10 11

12

FIGURE 9-35: Running Movement—Arms (Part 2)

1 2 3 4 5 6

FIGURE 9-36: Running Movement—Legs (Part 1)

7 8 9 10 11 12

FIGURE 9-37: Running Movement—Legs (Part 2)



Animation Property Comments

Flexibility Flexibility should be emphasized around the arms and legs, particularly at
the joints such as the knees and elbows. Depending on the size and the
complexity of the object being animated, you might want to emphasize
flexibility in the feet as well.

Secondary actions Secondary actions occur very frequently in running animations. Pay close
attention to the head of the character, as it will bounce up and down as
the position of the legs and feet change. In addition, hair and clothing
will often exhibit secondary actions. For example, hair might flow or
bounce (depending on length and style) and clothing might trail behind
the character as it picks up speed. For example, imagine a flowing cape
or scarf. Incidentally, adding secondary actions to your running sequences
is an excellent way of tricking the observer into thinking the character is
moving in a more realistic fashion than it really is.

Cycles and loops Cycles are used extensively in all running animation sequences,
particularly for complex ones. All running animations also make use of
loops in order to provide the illusion of continuous and realistic
movement.

Tempo Used extensively to adjust the speed at which the running movement
occurs. Runs occur faster than walking or jumping sequences. Make sure
that they have a faster tempo than the other primitives described in this
chapter.

NOTE: You can add personality to your walking and running sequences by

embellishing and exaggerating the various frames that make up the

sequence. For example, you can simulate heavier characters (i.e., the effect

of gravity) or double up frames to mimic the effect of a limp.

The Running Primitive (Animals)

Much of what has been discussed also applies to four-legged animals as well. Once

you master the general theory behind creating walking and running sequences for

humans, you should be able to handle most types of four-legged animals without

too much trouble.

However, understand this: creating convincing movement for most four-legged

animal characters is quite a bit more complex than doing so for human characters.

Instead of having two legs to deal with, you now have four to manipulate. Thus,

the best way to approach creating such animations is to create individual anima-

tion sequences for each set of legs. Although this works well for relatively simple

four-legged actions, it will fail to produce convincing movement as the animation

sequences get more complex. Therefore, I strongly recommend getting a copy of

Eadweard Muybridge’s excellent Animals in Motion as studying this book will

give you important insights into how different four-legged animals move.

Chapter 9 / Arcade Game Animation 343



In any event, Figure 9-38 shows the basic action of a four-legged animal running. I

decided to focus on the running action over walking because it is less complex and

generic enough to represent a variety of four-legged animals including tigers,

wolves, and even horses, albeit with somewhat less accuracy and realism.

Here’s a breakdown of this action:

� Frame 1: The first frame has the animal’s back largely straight. The right for-

ward leg is arched back while its right rear leg is positioned forward and the

left rear leg is moving backward.

� Frame 2: This shows the animal’s body beginning to stretch outward. Both

front legs are bent and extending outward while the rear legs are stretching

out and back. The rear legs are positioned near the ground while the front legs

are moving away from it. The head and back are angled as a result of this

position.

� Frame 3: This frame shows the animal’s body completely level and out-

stretched. At this point, all four legs are off the ground. This is the full-stride

position of the movement.

� Frame 4: This frame is very close in appearance to frame 1, the main excep-

tion being that the right rear leg is closer to the ground and the left rear leg is

extended farther back than its position in the first frame.

� Frame 5: Frame 5 is almost identical to frame 2. The primary difference

between the two frames is the order of the front legs. Here, the right front leg

is extended farther out and the left front leg is positioned slightly farther back.

The positioning of the rear legs is so close that you probably don’t need to

make any changes to their position.

� Frame 6: This is the final frame of the animation sequence. It shows the body

of the animal outstretched with all four legs off the ground. Although also sim-

ilar to the contents of frame 3, there is a major difference in the position of the

head and back. In this frame, the head of the animal is pointing down while its

back is arched sharply. All four legs are also positioned at more extreme posi-

tions than what is shown in frame 3.

344 Chapter 9 / Arcade Game Animation

1 2 3 4 5 6

FIGURE 9-38: Running Primitive Example (Animals)



TABLE 9-31: Running Primitive Animation Property Summary

Animation Property Comments

Motion lines Running actions always have very wavy motion lines. Motion lines that are
too straight will appear too stiff and rigid and won’t look natural when
animated.

Motion angles Running sequences have very acute motion angles.

Key-frames and
in-betweens

Requires at least two key-frames for simple running sequences. In
complex running sequences, frames 1, 3, and 5 are key-frames.

Weight and gravity Both of these can influence the speed at which the animation is displayed.
For example, larger objects or denser gravity will require heavier steps
and result in slower overall walking movements and shorter
exaggerations between frames.

Flexibility Flexibility should be emphasized around the joints. Depending on the size
and the complexity of the object being animated, you might want to
emphasize flexibility in the feet as well.

Secondary actions Secondary actions occur very frequently in animal running animations.
Pay especially close attention to the head and tail of the animal.
Animating these can greatly enhance and improve the realism of the
sequence.

Cycles and loops Cycles are used extensively in all running animation sequences,
particularly for complex ones. All animal running animations also make
use of loops in order to provide the illusion of continuous and realistic
movement.

Tempo Animals move at very fast speeds when running. Therefore, make sure
you use an appropriately paced tempo to accurately represent this action.

The Jumping Primitive

Jumps are used in platform-style arcade games to help the on-screen character

cover large sections of the game area in a single bound. They are also used to

jump over obstacles and dodge other objects such as missiles and bullets.

There are many types of jumps but the most popular one is known as the standing

jump. In this type of jump, the character jumps from a standing position. The

jumping process has four parts: the stand, the bend, the leap, and the landing.

The stand is where the character begins the jumping sequence. The bend is

where the character gains the strength and the position to make the jump. The

leap is the actual jump itself. Finally, the landing is where the jump ends.

NOTE: Generally speaking, standing jumps have a shorter and more constant

length than running jumps.

Chapter 9 / Arcade Game Animation 345



Figure 9-39 shows a simple running jump sequence.

Here, there are only two frames needed: a standing

frame (frame 1) and jumping frame (frame 2). Simple

jumps work quite well for most purposes, particularly

for unrealistic or cartoon-style characters. This is

due to the exaggeration of movement that occurs

between the two frames of the action.

Figure 9-40 shows a complete, complex running jump sequence.

Here’s a breakdown of each frame for this movement:

� Frame 1: In this first frame of the sequence, the character is standing. Both

knees are bent and both arms are raised in anticipation of the jump.

� Frame 2: This frame shows the character starting to lean forward. Both legs

are still bent and have moved since the last frame. The back and head are now

bent forward and both arms are now straight down at the character’s side.

� Frame 3: This frame shows the character at the start of the bend phase of the

jump. Here, both legs are completely bent to support the back and head as

they bend forward. Both arms make an exaggerated swing up and back to pro-

vide the jumper with additional pushing leverage.

� Frame 4: Frame 4 represents the start of the leap. Both legs are leaving the

ground in a spring-like action while the arms rapidly swing forward in support.

The head and body are bent completely forward at an 80-degree angle.

� Frame 5: This frame shows the character nearing the peak of the jump. The

entire body of the character is at a 45-degree angle as it leaves the ground.

� Frame 6: This is the peak of the jump. Here, both legs push the character’s

body up and forward as they swing up and back. Both arms are straight and

positioned above the character’s head in support of this movement.

� Frame 7: Here we see the start of the landing. Although still off the ground,

the character’s legs swing forward. At the same time, the character’s body,

head, and arms lean sharply forward in anticipation of the landing.

� Frame 8: The character is nearing the point of landing. The entire body of the

character curls in unison to absorb the impact of the landing. The arms, head,

and back are bent forward while the legs start to bend backward.

346 Chapter 9 / Arcade Game Animation

1 2

FIGURE 9-39: Simple
Jumping Primitive Example

1 10

FIGURE 9-40: Complex Jumping Primitive Example



� Frame 9: The character lands. The feet of both legs are now firmly on the

ground while bent forward. The rest of the body is arched forward in order to

minimize the effect of the impact.

� Frame 10: The jump sequence is completed. The character’s body begins to

rise and straighten as the force of the jump is absorbed and dissipated. Here,

both knees remain bent, the back remains arched, and both arms continue

their lunge forward. Unlike walking or running sequences, jumping animations

are rarely cycled due to the nature of the action.

TABLE 9-32: Jumping Primitive Animation Property Summary

Animation Property Comments

Motion lines Jumping animations always have very wavy motion lines. Motion lines
that are too straight will appear too stiff and rigid and won’t look natural
when animated.

Motion angles Jumping animations have very acute motion angles.

Key-frames and
in-betweens

Requires at least two key-frames in simple jumping sequences. As always,
more frames will result in smoother sequences. In complex jumping
sequences, the key-frames are frames 1, 3, 5, 7, 9, and 11.

Weight and gravity Can influence the speed at which the animation is displayed. For
example, larger objects or denser gravity will require heavier steps and
result in slower overall jumping movements and shorter exaggerations
between frames.

Flexibility Flexibility should be emphasized around the arms and legs, particularly at
the joints such as the knees and elbows. Depending on the size and the
complexity of the object being animated, you might want to emphasize
flexibility in the feet as well.

Chapter 9 / Arcade Game Animation 347

1 2 3
4

5 6

FIGURE 9-41: Complex Jump Sequence (Part 1)

7 8
9

10 11

FIGURE 9-42: Complex Jump Sequence (Part 2)



Animation Property Comments

Secondary actions Secondary actions occur very frequently in jumping animations. Pay close
attention to the head of the character, as it will bounce up and down as
the position of the legs and feet change. In addition, hair and clothing will
often exhibit secondary actions. For example, hair might flow or bounce
(depending on length and style) and clothing might trail behind the
character as it picks up speed. For example, imagine a flowing cape or
scarf. Incidentally, adding secondary actions to your jumping sequences is
an excellent way of tricking the observer into thinking the character is
moving in a more realistic fashion than it really is.

Cycles and loops Since jumps are largely “one-off” actions, cycles and loops have little or
no application for these actions.

Tempo Used extensively to adjust the speed at which the jumping movement
occurs. Jumps happen more slowly than most other character actions.
Adjust the tempo of the animation accordingly.

The Crawling Primitive

Crawling is an action used by many platform-style games to help the on-screen

characters fit into tight spaces and to avoid dangerous obstacles and objects while

moving.

The basic act of crawling involves three steps: bending, crouching, and moving.

Bend is where the character begins the crawling sequence. Crouch is where the

character assumes the proper position to begin crawling. Moving is the crawling

process itself.

All crawling actions involve the opposite action of the limbs. In other words, the

arms and legs move in opposite directions from each other. For example as the left

arm moves backward, the left leg moves forward and as the right arm moves for-

ward, the right leg moves backward. This action uses pushing and pulling to

propel the body forward. During a crawling action, it is the legs that push and the

arms that pull.

Figures 9-43 and 9-44 represent a typical complex crawling sequence.

348 Chapter 9 / Arcade Game Animation

1 2 3 4 5 6

FIGURE 9-43: Crawling Primitive Example (Part 1)



As you can see, a complex crawling sequence can require as many as 11 frames of

animation. Here’s a frame-by-frame breakdown of the action:

� Frame 1: The first frame shows the character fully bent on all fours. The

right leg is positioned forward; the right arm is positioned back. The left leg is

shifted back and the left arm leads forward. The head is nearly level and facing

the ground.

� Frame 2: This frame has the right arm moving forward and right leg moving

backward. The left arm moves backward and the left leg moves forward. It’s

interesting to note that both legs are touching the ground at the knees with

the calves suspended in the air. This is done in order to propel the body for-

ward and gain momentum.

� Frame 3: This shows the progression of the right arm moving forward and

up. It moves up in order to gain leverage for the forward motion of the crawl.

The right leg is now at the midpoint of its motion and is closely aligned with

the position of the left leg. The left leg continues to move forward while the

left arm moves backward.

� Frame 4: In frame 4, the right arm stretches outward and forward as it

attempts to pull the body of the character forward. The right leg shifts back-

ward to aid in stabilizing the body. The left arm pushes back and the left leg

moves forward.

� Frame 5: Here the right arm is fully extended forward while the right leg

continues its backward motion. The left arm reaches back while the left leg

aggressively shifts forward.

� Frame 6: Frame 6 is similar to frame 5, as all of the limbs continue their

direction and force of movement.

� Frame 7: In this frame, the right arm is now beginning to move backward and

the right leg is beginning to move forward. The left arm and leg start to move

forward and backward, respectively.

� Frame 8: This frame shows the right arm continuing its backward motion and

the right leg its forward movement. The left arm and leg continue their sup-

porting motion as well.

� Frame 9: Here the left arm is now outstretched and duplicating the action

that the right arm made in frame 4. The right arm and both legs help stabilize

the body while this occurs.

Chapter 9 / Arcade Game Animation 349

7 8 9 10 11

FIGURE 9-44: Crawling Primitive Example (Part 2)



� Frame 10: This frame has the right arm slowly moving back while the right

leg thrusts forward. The left arm is now nearly fully extended, as it

approaches the ground. The left leg continues to shift backward.

� Frame 11: This frame shows the right arm moving back and coming close to

the right leg as it moves forward. The left arm is now completely extended

and touching the ground. The left leg continues to shift backward. At this

point, the animation would cycle back to frame 1 to complete the sequence

and the continuous flow of motion.

NOTE: In most situations, you can also create simple, two-framed crawling

actions. However, such animations require heavily exaggerated movements

between frames and ample delineation between different parts of the figure

in order to convince the observer that movement is actually occurring.

TABLE 9-33: Crawling Primitive Animation Property Summary

Animation Property Comments

Motion lines Crawling animations have an almost constant motion line. This is due in
large part to the fact that the head and back rarely change position
during the course of the crawling motion.

Motion angles Crawling actions have relatively mild motion angles.

Key-frames and
in-betweens

Requires at least two key-frames in simple crawling sequences as shown
in Figure 9-21. As always, the presence of more frames will result in
smoother crawling sequences. In complex crawling sequences, the
key-frames are frames 1, 3, 5, 7, 9, and 11.

Weight and gravity Can influence the speed at which the animation is displayed. For
example, larger objects or denser gravity will require heavier steps and
result in a slower overall crawling motion and a shorter exaggeration
between frames.

Flexibility Flexibility should be emphasized around the arms and legs, particularly at
the joints such as the knees and elbows. Flexibility should be added to the
hands and feet as they tend to bend slightly as they grip the ground in
support of the crawling movement.

Secondary actions Secondary actions can occur during crawling actions but they tend to be
very subtle in nature and more often than not can be ignored.

Cycles and loops Crawling actions make extensive use of cycles and loops to complete the
illusion of movement.

Tempo Used extensively to adjust the speed at which the crawling action occurs.
Crawling occurs very slowly in comparison to most other forms of
character movement. Adjust the tempo of the animation accordingly.

350 Chapter 9 / Arcade Game Animation



NOTE: Undoubtedly, you can probably identify a number of other animation

primitives that are found in arcade games and are not described here.

However, most are probably variations of the ones identified in this chapter.

Master these primitives and the rest will come easily to you.

Creating Your Animation Sequences

As you can see, creating animations, even simple ones, involves a lot of time,

planning, and attention to detail. However, the process can be simplified some-

what if you follow these nine steps:

1. Conceptualize—Before you start designing, always have a clear idea of what

you want to animate and how it will look. This will save you time and effort

since you can only really start the animation process once you have a clear

idea of what needs to be done.

2. Decide on object behavior—After determining the object’s look, you need

to determine whether or not the object will be animated continuously (using

cycles) or is a “one-off” and only animated once (no looping). Objects can have

elements of both, however, so you need to decide on this before you start cre-

ating animation. Changing this behavior can complicate matters later on in the

project.

3. Choose a grid size—The next step in the process is to choose a predefined

grid size to contain and constrain the object that you are designing. Be sure to

copy a number of grid squares to give yourself plenty of room to test and

experiment with the animation sequences you create.

4. Design the key-frames—When you’re finally ready to start designing, begin

by drawing the motion extremes or key-frames needed for the object

sequence. To save time and effort, just use simple shapes to represent the

main actions of the object. For example, use stick figures if creating character

animation or basic geometric shapes (i.e., circles, squares, triangles, etc.) if

it’s something else.

5. Estimate the in-betweens—Make an estimate of the number of

in-betweens you think you will need to complete the sequence. Before you do

this, remember that slower moving animations require more frames than

faster moving animations. Be conservative when doing this. It’s actually easier

to add additional transition frames to a sequence than it is to remove them.

6. Create object motion lines—When done, trace the motion line and motion

angles for the sequence. Use your painting program’s Line tool to do this. It

can always be erased later on. Before continuing, make sure that the proper-

ties of the motion line and motion angles are consistent with the type of object

being animated. If not, make the appropriate adjustments to the sequence and

Chapter 9 / Arcade Game Animation 351



position the individual frames until the object starts to conform to these

norms.

7. Apply secondary actions and animation enhancements—Add any sec-

ondary actions that might be needed, and if applicable check to see if the

object exhibits sufficient flexibility. This is also a good time to add any addi-

tional “character” to your object(s). In other words, feel free to embellish the

movement so it looks both convincing and enticing at the same time.

8. Test each movement—Don’t forget to test every animation you create. The

easiest way to do this is to use your painting program’s Copy tool and copy

one grid square to another and then apply an undoable undo. This temporarily

combines two frames and then flips between them to produce a quick ani-

mated effect. For longer, more complex animations, see if your painting

program offers an animation tool so that you can see the entire animation in

context and at different tempos. A few of the ones mentioned in Chapter 6

actually do. In any case, be on the lookout for flaws in how the object moves

and how the object appears. Often, you will catch minor mistakes such as dis-

colored pixels or missing pixels, or even major mistakes such as improper

movement (i.e., not enough exaggeration, too fast, etc.) at this stage of the

process. Make corrections to the sequence as needed and do them before

handing off your work to the programmer. It’s recommended that you do at

least two such tests for complex animations, while one test can suffice for less

sophisticated objects.

9. Repeat—Repeat the previous eight steps to create all of the animations

required by your game.

It’s important to point out that different people have different opinions on how to

go about this process. Some, like myself, prefer to create highly detailed figures

and then animate them, while others prefer to work from rough items first.

How you choose to proceed really boils down to a matter of time, efficiency, and

personal taste. When in doubt, particularly when you’re first starting out, I recom-

mend that you work from rough shapes. Later, when you’re more experienced and

comfortable with creating animation, you can work from more detailed object

images.

General Animation Tips

� Remember the relationship between frames and animation smooth-

ness—This relationship is one of the most important aspects of animation. In

order to achieve the illusion of smooth motion, you need to use many frames.

If design time or file size limits ever become an issue, you can always com-

pensate by using fewer animation frames. Doing this produces a higher FPS,

which can have the effect of making objects appear to move smoother than

they actually are.

352 Chapter 9 / Arcade Game Animation



� Always account for color—Color can affect animations the same way it does

other types of graphics. Always make sure that you choose suitable colors

when creating your animations. Primary actions and secondary actions should

be rendered in colors that make them easy to see. Otherwise, the effective-

ness of the animation can be compromised. For more information on proper

arcade game color usage and selection, refer to Chapters 7 and 8.

� Use tempo wisely—Tempo, if used properly, is your friend. If used incor-

rectly, it is your enemy. Use tempo to pace your animations. Your animations

should never appear to move too fast or too slowly, as this will be perceived as

unrealistic and distracting. Try to mimic nature. Study the speed at which dif-

ferent types of objects move in different situations. After a while, applying the

correct tempo to your animated sequences will become second nature.

� Try to individualize your objects—Adding unique and individualized

touches to your objects has the effect of making them seem real to the

observer. Therefore, every distinct object you create and animate should have

some sort of unique “personality” that distinguishes it from the other objects

on the screen. One of the easiest ways to do this is to apply different degrees

of exaggeration and embellishment (i.e., secondary actions) to each object.

� Keep it simple—Adding unnecessary complexity can ruin an animation

sequence as it opens up the possibility of introducing flaws and other types of

errors into it. To avoid doing this, keep your animations simple as much as

possible. Therefore, stick with using established animation primitives and

minimal frames unless the object requires more subtle effects. In other words,

don’t do any more work than you have to!

� Use exaggerated elements—As an animation device, exaggeration adds

realism and depth to animations. Therefore, use it as much as possible. Exag-

geration is especially important when working with short animation

sequences as they have fewer frames available to them in order to create

effective and convincing motion.

� Constantly observe—Successful animation requires the careful study of the

objects around you. Study how different things move. Study books on anima-

tion such as those by Eadweard Muybridge in addition to studying how the

animation featured in your favorite arcade games was created. Studying these

sources will give you useful insights into animation techniques and will enable

you to create better and more accurate animations.

In any case, don’t get discouraged if the animation process doesn’t go smoothly for

you the first few times you try. Like most things, creating effective animations

takes time and experience. Start off by working on simple animation sequences

first. After you’re comfortable with the basic animation process and are satisfied

with the results, move on to animating more sophisticated subjects.

Chapter 9 / Arcade Game Animation 353



Remember, when it comes to creating arcade game animation, take baby steps.

Never bite off more than you can handle. Take it slow. As the adage says, “Rome

wasn’t built in a day,” and neither will your animations. Be patient and keep prac-

ticing. The more you do, the better you will eventually get at creating arcade

game animation.

Animation Usage in Arcade Games

Although virtually every animation primitive described in this chapter has an

application in every arcade game genre, some primitives are more commonly

found in some genres than in others. For example, some games, such as shooters,

have more complex graphic requirements and therefore can support a wider array

of animation primitives. However, other genres such as Pong games tend to be

less sophisticated and therefore cannot support the majority of animation

primitives.

Table 9-34 summarizes the usage of the common animation primitives in the

major arcade game genres.

TABLE 9-34: Summary of Animation Primitive Usage in Arcade Game Genres

Animation Primitive Maze/Chase Pong Puzzler Shooter Platformer

Cylindrical � � � � �
Rotational � � � � �
Disintegration � � � � �

Color flash � � � � �

Scissors � � � � �
Growing � � � � �

Shrinking � � � � �

Piston � � � � �
Squeeze � � � � �
Swing � � � � �

Slide � � � � �

Open/close � � � � �

Bounce � � � � �
Stomp � � � � �
Slinking � � � � �

Flying � � � � �

Walking � � � � �

354 Chapter 9 / Arcade Game Animation



Animation Primitive Maze/Chase Pong Puzzler Shooter Platformer

Running � � � � �

Jumping � � � � �

Crawling � � � � �

Due to limitations imposed by different design styles, not all animation primitives

can or should be used. For example, the more complex animation primitives really

are not suitable for use in a retro-style arcade game. It simply doesn’t look right.

Conversely, games with realistic design styles should not overuse simple anima-

tion primitives as they undermine the element of realism present in these games.

Table 9-35 summarizes the suitability of animation primitives in the most common

design styles.

TABLE 9-35: Summary of Animation Primitive Usage in Arcade Game

Design Styles

Animation Primitive Cartoon Retro Realistic

Cylindrical � � �

Rotational � � �

Disintegration � � �

Color flash � � �

Scissors � � �
Growing � � �

Shrinking � � �

Piston � � �
Squeeze � � �
Swing � � �
Slide � � �

Open/close � � �

Bounce � � �
Stomp � � �
Slinking � � �

Flying � � �

Walking � � �

Running � � �

Jumping � � �

Crawling � � �

Chapter 9 / Arcade Game Animation 355



NOTE: The information presented in Tables 9-34 and 9-35 are general sug-

gestions only. Every arcade game project is unique and can define its own

rules for the use of animation primitives.

356 Chapter 9 / Arcade Game Animation


