
1

CS 543 Computer Graphics
Texture Mapping Effects

 by Cliff Lindsay

“Top Ten List” Courtesy of David Letterman’s Late Show and CBS

Talk Format

List of Texture Mapping Effects from
Good to Spectacular (my biased opinion):

Highlights:
 Define Each Effect

 Describe Each Effect Briefly: Theory and Practice.

 Talk about how each effect extends the idea of general
Texture Mapping (previous talk) including Pros and Cons.

 Demos of selected Texture Mapping Effects

2

Texture Mapping Effect #10

Light Mapping
Main idea: Static diffuse lighting contribution

for a surface can be captured in a texture
and blended with another texture
representing surface detail.

Highlights:
 Eliminate lighting calculation overhead
 Light maps are low resolution
 Light maps can be applied to multiple textures

* =

[Images courtesy of flipcode.com]

Light Mapping

Below is a night scene of a castle. No lighting
calculation is being performed at all in the scene.

[Images courtesy of www.gamasutra.com]

Left: No Light Map applied Right: Light Map applied

3

Texture Mapping Effect #9

Non-Photorealistic Rendering
Main idea: Recreating an environment that is
focused on depicting a style or communicating
a motif as effectively as possible. This is in
contrast to Photorealistic which tries to create
as real a scene as possible.

High lights of NPR:
 Toon Shading
 Artistic styles (ink, water

color, etc.)
 Perceptual rendering [Robo Model with and without Toon Shading,

Image courtesy of Michael Arias]

Non-Photorealistic Rendering

Non-Photorealistic Rendering

Simple Example: Black Outline*

 Store a black stripe in a cube map at the 90 degree
angle

 By using the vertex normal in view space to index the
Cube map, you get a black outline

*Many other methods exist that
 don’t use texture hardware

4

Non-Photorealistic Rendering

Non-Photorealistic Rendering

Visual Example:

[Image courtesy of www.highend3d.com]

Texture Mapping Effect #8

Procedural Texturing
Main Idea: “Procedurally or analytically varying the
surface properties from point to point in order to give
the appearance of surface detail that is not actually
present in the geometry of the surface.”
[adapted from ptm:apa, pg. 7]

[Blue Marble Procedural Texture, tam:apa]

Highlights:
 Noise (fire, smoke)
 Fractals (terrain)
 Analytical (marble, wood)
 Grammars (trees, leaves)

5

Highlights:
 Psuedo-random number generation
 with repeatability in
 Smooth
 Band-limited (low-pass filter), i.e.

rolling hills vs. sharp peaks.

Procedural Texture Mapping

Noise Functions: Perlin noise (most popular function)
produces noise with the desirable property that the
transition from one point to another within the function
is a smooth one.

[Vase with Perlin noise, Image
courtesy of graphics.lcs.mit.edu]

!

R
3

Procedural Texture Mapping

Fractals (statistical self-similarity): “A complex object,
the complexity of which arises from the repetition of a
given shape at a variety of scales.”
[tam:apa, pg. 571]

[image courtesy of Paul Bourke @ astronomy.swin.edu.au]

Fractal Terrain Generation (Basic idea):
 Start with a course model (square)
 Subdivision of surfaces (2x2)
 Vertically perturb each of the 5 new vertices

by a random amount
 Repeat until done

6

Procedural Texture Mapping

Fractal Examples:

[Right: Ridged multi-fractal, Left: A Fractal Generated Terrain, Texturing and
Modeling: A Procedural Approach]

Procedural Texture Mapping

Analytical Examples:
Marble

Wood - Vertical cylinders

[Procedural wood, both courtesy
of http://renderman.ru]

[Procedural marble]

*i continually increases the noise amplitude animates the
 formation of the veins

*s,t,r are solid texture coordinates, these are used to do a
 color map look up for the texture.

!

f (s,t,r) = r + 2
" i
noise(2

i
s,2

i
t,2

i
r)

i= 0

N

#

!

f (s,t,r) = s
2

+ t
2

+ noise(4s,4t,r)

7

Texture Mapping Effect #8

Pros:
 Memory requirement is minimal, procedural or analytical

representation is very compact
 No fixed resolution, infinite zoom-in and zoom-out
 Occupy infinite space or area

Cons:
 Difficult to build and debug
 Slower than texture fetching
 Antialiasing can be more difficult than a regular texture
 Procedures tend to be problem specific (fractal terrain, etc.), not

generalized

Texture Mapping Effect #7

High Dynamic Range Texture Mapping
Main idea: “Visualizing HDR image-based
scenes in graphics hardware without
compressing the dynamic range.” [HDRTM]

Highlights:
 Using texture hardware for

HDR rendering
 HDR Texure comprised of

multiple regular textures
 Multi-texturing support to

combine textures [Fresnel reflection on the monolith in
cathedral, image from HDRTM]

8

HDR Texture Mapping

High Dynamic Range Texture Mapping

What is dynamic range?:
 Measure of luminance ranges
 Sun on the order 1 Million Lumens
 TV on the order of a 100-200 Lumens

[16 images of a cathedral at various exposures, form Recovering HDR Radiance Maps from Photographs]

HDR Texture Mapping

High Dynamic Range Texture Mapping

How to encode HDR in 8 bit textures:

 The low order bits are
stored in texture v0 and the
high order are stored in
texture v1

 Exposure parameter is e
 Surface appearance is I

!

I(v) = clamp(clamp(e*v0) + clamp(256*e*v1))

[Flow of texture data, image from HDRTM]

9

HDR Texture Mapping

Visual Differences Between LDR and HDR

High Dynamic Range

Low Dynamic Range

[Images from HDRTM]

Texture Mapping Effect #6

Texture Bombing
Main idea: Divide the UV texture space into
grids or cells then randomly place an image
within selected cells giving the texture a collage
look.

Highlights:
 Compositing can be with

images or done
procedurally

 Multiple images per cell
(overlapping images)

 Many ways to pick cells [Texture bombed elephant in
Rendermonkey, courtesy of ATI]

10

Texture Bombing

Texture Bombing

Technique:

 Find a cell to place image
(usually a random process)

 Copy or draw the image in the
Cell procedurally

 Consider adjacent cells
(overlap?)

*Placement is usually important depending on effect

[Texture bombing Images, courtesy of
www.webnation.com]

Texture Mapping Effect #5
Texture Shading
Main Idea: Texture Shading precomputes
complex surface and lighting models, such as
BRDFs, into a lookup texture for real-time
applications with fixed pipelines.

High lights:
 Complex BRDFs are usually

precomputed in this fashion
 Multi-pass rendering or

multi-fetch texture lookups
 Factorization

[Factored BRDFs: LaFortune model, Images
from Siggraph Paper (see references)]

11

Texture Shading

Precomputing

A) Ashikhmin-Shirley B) Poulin-Fournier

C) Vinyl (measured) D) Alum. Foil (measured)

Most BRDFs can be factored or
broken up with the parts being
factorable.

Factor over 2 variables:

!

",#

Texture Shading

Texture reference (precompute & run time)

!

"!

"

Run Time:
 Calculate the incoming and out going

vector to get
 Index into texture per

!

",#

Precompute:
 Increment through storing the

evaluated/measured values in the
appropriate texture coordinate

!

",#

[Precomputed reflectance textures,
Frequency Environment Mapping]

12

Texture Shading
More Examples

A) Ashikhmin-Shirley B) Poulin-Fournier

C) Vinyl (measured) D) Alum. Foil (measured)

Texture Mapping Effect #4

Volume Rendering
Main idea: “Volume rendering methods
generate images of a 3D volumetric data set
without explicitly extracting geometric surfaces
from the data” [gpugems]

Highlights:
 Stacks of 2D texture slices
 Voxel (analogus to pixel,

texel)
 Reconstruction (interpolation

between voxels)

[Screen shot from Texture Visualizer Software]

13

Volume Rendering

Volume Rendering Simple Example

X

Y Z

Condensed Steps For Rendering:
1. Set up texture data, fragment

program, Modelview and Projection
matrices.

2. Enable Alpha blending.
glEnable(GL_BLEND);

glBlendFunc(GL_ONE ,
GL_ONE_MINUS_SRC_ALPHA);

3. Disable lights and depth test.
glDisable(GL_LIGHTING);

glDisable(GL_DEPTH_TEST);

4. Bind texture data and fragment
program.

5. Draw textured quads.
[steps provided in GPU Gems, ch. 39.3.1, pg 673]

Volume Rendering

Cg Fragment Program For Simple Volume Rendering

void main (
uniform float3 emissivecolor,
uniform sampler3d dataTex,
float3 texCoord : TEXCOORD0,
float4 color : COLOR)

{
 //read volume data
float a = tex3d(texCoord, dataTex);

 //multiply color and opacaity
color = a * emissiveColor;

}
[Cg code sample from GPU Gems, ch 39, pg. 673]

14

Volume Rendering
Visual Examples

2D textures(axis-aligned slices)

3D textures(view-aligned Slices), images courtesy of Siggraph/Eurographics

texturing
(bilinear

interpolation)
compositing

(blending)

texturing
(trilinear

interpolation)
compositing

(blending)

Texture Mapping Effect #3

Texture Atlas
Main Idea: Store multiple smaller textures
into a larger single texture.

[Image courtesy of Cat Mother]

Highlights:
 Preserve surface details
 Combine multiple textures
 Can even compute lighting!?

15

Texture Atlas

Texture Atlas
Used Extensively in Games:
 High resolution meshes generate more detail when shaded, we can

preserve that detail and apply to lower resolutions meshes. This is
great for game characters!

 An internal nVidia survey of four DirectX9 titles reveals that the
following render-state changes occur most frequently [nsdk]:

[Images courtesy of Garage Games]

 SetTexture() // bad news!!!
 SetVertexShaderConstantF()
 SetPixelShader()
 SetStreamSource()
 SetVertexDeclaration()
 SetIndices()

Texture Atlas

Texture Atlas
Pros:
 Conserve memory - texture memory is scarce even

with today's graphics cards
 Reduce computation at run time
 Complexity reduction, model has one texture

Cons:
 Seams and texture pollution
 How do we layout the mesh (non-trivial)?

 Need tools

16

Texture Mapping Effect #2

Environment Mapping
Main idea: “Environment Maps are textures
that describe for all directions the incoming or
out going light at a point in space.” [rt_shade,
pg. 49]”

No Map applied Map Applied
[Images courtesy of Microsoft, msdn.microsoft..com]

Three main types:
 Cube Mapping
 Sphere mapping
 Paraboloid Mapping

Environment Mapping

Cubic Mapping
 Camera takes orthographic pictures in six axis (-

X,X, Y, -Y, Z, -Z)
 Look up is defined calculating a reflection vector

[image courtesy of nVidia.com]

* Index into the Negative Z region (dark blue)

I.E.: R = (3.14, .21, -8.7)
 X, Y, Z

Z is largest
& negative

17

Environment Mapping

Sphere Mapping
 Generated from photographing a reflective sphere
 Captures whole environment

[Diagram and Sphere Map image of a Cafe in Palo Alto, CA, Heidrich]

Environment Mapping

Sphere Mapping

 Obtain the reflection vector:

[image courtesy of nVidia.com]

!

r
R =

r
I " 2.0 #

r
N # (

r
N •

r
I)

!

s =
Rx

m
+

1

2
, t =

Ry

m
+

1

2

m = 2 Rx

2 + Ry

2 + Rz +1()
2()

Index into the Sphere map:

18

Environment Mapping

Parabaloid Mapping

!

f (x,y) =
1

2
"
1

2
x
2 + y

2()

!

x
2

+ y
2
"1, where

[Shaded areas of Paraboloid Map, image
adapted from [phd]]

High Lights:
Two textures, one for
each hemisphere
No artifacts at poles
Requires 2 passes or
two texture fetches to
render

Environment Mapping

Cons :
 Sphere maps have a singularity of the

parameterization of this method, we must fix
viewing direction, view-dependent (meaning if you
want to change the viewers direction you have to
regenerate the Sphere map).

 Paraboloid maps requires 2 passes

Pros:
 Better sampling of the texture environment for

Paraboloid mapping, view-independent,
 Cube maps can be fast if implemented in hardware

(real-time generation), view independent,

19

Texture Mapping Effect #1

Bump Mapping
Main idea: “Combines per-fragment lighting
with surface normal perturbations supplied by a
texture, in order to simulate light interactions
on a bumpy surface.” [Cg Tutorial, pg 199]”

Where Can I get these maps?:
 Normal Maps from Height

Fields (most common)
 Vector Offset Maps

[texture atlas and normal map of an M16
rifle, images courtesy of cat mother]

Bump Mapping

Bump Map

 P = original Surface location/height
 N = Surface Normal
 F = Displacement Function
 P’ = New Surface location/height

!

" P (u,v) = P(u,v) +
r
N (u,v)F(u,v) *

* Assumes is normalized.

!

r
N

!

P(u,v)

!

P(u,v) +
r
N (u,v)F(u,v)

Image Adapted from [pbrt]

20

Bump Mapping

Bump Map
 The new Normal N’ for P’ can be calculated from

the cross product of it’s partial derivatives[Blinn].

!

"
r
N =

" P

#u
$
" P

#v
%

r
N +

#F

#u

r
N $

#P

#u

&

'
(

)

*
+ +

#F

#v

r
N $

#P

#v

&

'
(

)

*
+

Differential Math!!!

Bump Mapping

Bump Maps

Pros:
 Produces the appearance of high detail w/ out the cost
 Can be done in hardware

Cons:
 No self shadowing (natively)
 Artifacts on the silhouettes

21

Bump Mapping

Cg Bump Mapping
float4 main(

float2 detailCoords : TEXCOORD0,
float2 bumpCoords: TEXCOORD1,
float3 lightVector : COLOR0,
uniform float3 ambientColor,
uniform sampler2D detailTexture : TEXUNIT0,
uniform sampler2D bumpTexture : TEXUNIT1): COLOR

{
float3 detailColor = tex2D(detailTexture, detailCoords).rgb;
// Uncompress vectors ([0, 1] -> [-1, 1])
float3 lightVectorFinal = 2.0 * (lightVector.rgb - 0.5);

float3 bumpNormalVectorFinal
= 2.0 * (tex2D(bumpTexture, bumpCoords).rgb - 0.5);

// Compute diffuse factor
float diffuse = dot(bumpNormalVectorFinal, lightVectorFinal);
return float4(diffuse * detailColor + ambientColor, 1.0); }

Honorable Mention

Some Other Texture Related Algorithms:
 Texture Mapping Hardware
 Anti-Aliasing
 3D Texture Mapping
 Animated Textures
 Alpha Mapping
 Projective Textures
 Texture Animation

22

Summary

 As you can see from the slides, texture mapping
goes beyond the general definition of texture
mapping.

 All of these exciting advancements in texture
mapping have come about from the hardware’s
companies desire to make texture mapping fast.

 The effects shown here are probably the most
responsible for making real-time graphics look and
feel more realistic.

References

#1 Bump Mapping:
 A Practical and Robust Bump-mapping Technique for Today’s

GPUs, Mark J. Kilgard, NVIDIA Corporation, GDC 2000:
Advanced OpneGL Game Development.

 Simulation of Wrinkled Surfaces, Blinn, Jim, International
Conference on Computer Graphics and Interactive
Techniques, 1978

 The Cg Tutorial, Fernando, Randima, Kilgard, Mark, Addison-
Wesley, 2003

 Cg Bump Mapping, Surdulescu, Razvan,
http://www.gamedev.net/reference/articles/article1903.asp,
4/15/2003, Gamedev.net

 Course Slide from “Interactive Shading Course”, Brad
Grantham, Siggraph 1999,
http://www.opengl.org/resources/tutorials/sig99/shading99/c
ourse_slides/Shading1/sld002.htm

 Physically Based Rendering, Pharr, Matt, Humphreys, Greg,
Elsevier Inc./Morgan-Kaufman, 2004

23

References

#2 Environment Mapping
 Real-time Shading, Olano, Marc, Hart, C., John, Heidrich,

Wolfgang, McCool, Michael,A.K. Peters, 2002.
 cube diagram from:

http://msdn.microsoft.com/library/default.asp?url=/library/en
-
us/directx9_c/directx/graphics/TutorialsAndSamples/Tutorials/
HLSLWorkshop/EnvironmentMap2.asp

 Perfect Reflections and Specular Lighting Effects With Cube
Environment Mapping, nVidia Technical Brief,
www.nvidia.com, Geforce 256 GPU.

 Notes from opengl site
http://www.opengl.org/resources/tutorials/sig99/advanced99/
notes/node183.html

 High-quality Shading and Lighting for Hardware-accelerated
Rendering, heidrich, Wolfgang, PhD thesis, University of
Erlangen-Niirnberg, April 1999

References

#3 Texture Atlas
Improve Batching Using Texture Atlases - Nvidia SDK whitepaper.
Garage Games, Torque Game Engine.
Real-time Shading, Olano, Marc, Hart, C., John, Heidrich, Wolfgang,
McCool, Michael,A.K. Peters, 2002.

#4 Volume Rendering
Klaus Engel, Martin Kraus, Thomas Ertl, Siggraph/Eurographics
Workshop on Graphics Hardware, 2001, Power Point Slides
GPU Gems, Chapter 39 Volume Rendering Techniques, Fernando,
Randima, Addison-wesley and nVidia, 2004.
Texture Visualizer Software, Wei Li, Stony Brook University,
http://www.cs.sunysb.edu/.../ TextureVisualizer.htm

24

References

#5 Texture Shading
Efficient BRDF Importance Sampling Using a Factored
Representation, Jason Lawrence, Szymon Rusinkiewicz, Ravi
Ramamoorthi, Siggraph, 2004
Frequency Space Environment Map Rendering, Ravi Ramamoorthi,
Pat Hanrahan, Siggraph 2002
Real-time Shading, Olano, Marc, Hart, C., John, Heidrich, Wolfgang,
McCool, Michael,A.K. Peters, 2002

#6 Texture Bombing
Texture bombing, Chapter 20 of GPU Gems, Fernando, Randima,
Addison-wesley and nVidia, 2004, pg. 323

#7 High Dynamic Range Texture Mapping
Real-time HDR Texture Mapping, Jonathan Cohen, Chris Tchou,
Tim Hawkins, and Paul Debevec, Eurographics wrkshop on
rendering, 2001
Recovering High Dynamic Range Radiance Maps from
Photographs, Paul E. Debevec Jitendra Malik, Siggraph 1997

References#8 Procedural Texturing
Texturing and Modeling: A procedural Approach, third addition,
Ebert, David, Musgrave, F, Peachey, Darwyn, Perlin, Ken, Worley,
Steven, Morgan Kaufman, 2003
Real-time Shading, Olano, Marc, Hart, C., John, Heidrich, Wolfgang,
McCool, Michael,A.K. Peters, 2002.

#9 Non-Photorealistic Rendering
The Cg Tutorial, Fernando, Randima, Kilgard, Mark, Addison-
Wesley, 2003
Non-Photorealistic Computer Graphics, Thomas Strothotte, Stefan
Schlechtweg, Morgan Kaufman 2002
GPU Toon Shading, D. Sim Dietrich Jr., nVidia Inc., GDC Talk
2002

#10 Light Mapping
Notes from opengl.org
tutorials/advanced/advanced98/notes/node103.html
Real-time Rendering 2nd Edition, tomas Akenine-Moller, Eric haines,
A.K. Peters, 2002
Various Articles, http://www.gamasutra.com

