
1

CS 543 - Computer Graphics:
Ray Tracing Detail, Part 2

by
Robert W. Lindeman

gogo@wpi.edu
(with help from Emmanuel Agu ;-)

R.W. Lindeman - WPI Dept. of Computer Science 2

Define the objects and light sources in the scene
Set up the camera
for(int r = 0; r < nRows; r+= blockSize){

for(int c = 0; c < nCols; c+= blockSize){
1. Build the rc-th ray
2. Find all object intersections with rc-th ray
3. Identify closest object intersection
4. Compute the “hit point” where the ray hits the

 object, and normal vector at that point
5. Find color (clr) of light to eye along ray
glColor3f(clr.red, clr.green, clr.blue);
glRecti(c, r, c + blockSize, r + blockSize);

}
}

Where are we?

2

R.W. Lindeman - WPI Dept. of Computer Science 3

Find Object Intersections
with rc-th Ray
 Much of work in ray tracing lies in finding intersections with

generic objects
 Break into two parts

 Deal with untransformed, generic (dimension 1) shape
 Then embellish to deal with transformed shape

 Ray generic object intersection best found by using implicit form
of each shape. Like we talked about last time, generic sphere is

 Approach: ray r(t) hits a surface when its implicit eqn = 0
 So for ray with starting point S and direction c

1),,(222
!++= zyxzyxF

0)(

)(

=+

+=

hit
tSF

tStr

c

c

R.W. Lindeman - WPI Dept. of Computer Science 4

Ray Intersection with
Generic Plane
 Generic Plane?

 Yes! Floors, walls, in a room, etc.
 Generic plane is xy-plane, or z = 0

 For ray

 There exists a thit such that

 Solving,

z

z

hit

c

S
t !=

0=+
hzz
tS c

tStr c+=)(

3

R.W. Lindeman - WPI Dept. of Computer Science 5

Ray Intersection with
Generic Plane
 Hit point Phit is given by

 Numerical example?

 Where does the ray

r(t) = (4, 1, 3) + (-3, -5, -3)t
hit the generic plane?

 Solution:

 And hit point is given by
!

t
hit

= "
S
z

c
z

=
3

3
=1

)0,4,1(!=+ cS

)/(
zzhit
cSSP c!=

R.W. Lindeman - WPI Dept. of Computer Science 6

Dealing with transformed Objects
 For example if we have the following SDL

commands in our file
translate 2 4 9
scale 1 4 4
sphere

 The transform matrices are
 see example 12.4.3, pg 621

!
!
!
!
!

"

#

$
$
$
$
$

%

&

=

1000

9400

4040

2001

M

!
!
!
!
!

"

#

$
$
$
$
$

%

&

'

'

'

=
'

1000

00

400

2001

4

9

4

1

4

1

1
M

4

R.W. Lindeman - WPI Dept. of Computer Science 7

Organizing a Ray Tracer
 Need data structures to store ray, scene, camera,

etc.
 There are many ways to organize ray tracer

 Previously in C, declare struct
 These days, object-oriented religion?

 SDL generates scene file
 Use camera class (slide, roll, etc.)

 Now just add a raytrace method to camera class

void Camera::raytrace(Scene& scn, int blockSize);

R.W. Lindeman - WPI Dept. of Computer Science 8

Organizing a Ray Tracer
 Call camera raytrace method from display (redisplay) function

void display(void){
 glClear(GL_COLOR_BUFFER_BIT); // clear the screen
 cam.raytrace(scn, blockSize);
}

 Thus, ray tracer fires up and starts scanning pixel by pixel (or
block by block) till entire screen is ray traced

 Can insert previous drawOpenGL function before raytrace to
give scene preview

 Subtlety: drawOpenGL uses OpenGL 3D pipeline, raytrace
uses 2D pipeline, so do pipeline set up inside each method

5

R.W. Lindeman - WPI Dept. of Computer Science 9

Organizing a Ray Tracer
 Need Ray class with start, direction variables, and methods to

set them

class Ray {
 public:
 Point3 start;
 Vector3 dir;
 void setStart(point3& p){start.x = p.x; etc…}
 void setDir(Vector3& v){dir.x = v.x; etc…}
 // other fields and methods
};

 We can now develop a basic raytrace() skeleton function

R.W. Lindeman - WPI Dept. of Computer Science 10

Camera raytrace() skeleton
void Camera::raytrace(Scene& scn, int blockSize) {
 Ray theRay;
 Color3 clr;
 theRay.setStart(eye);
 // set up OpenGL for simple 2D drawing
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluOrtho2D(0, nCols, 0, nRows); // whole screen is window
 glDisable(GL_LIGHTING);

 //begin ray tracing

6

R.W. Lindeman - WPI Dept. of Computer Science 11

Camera raytrace() skeleton
 for(int row = 0; row < nRows; rows += blockSize) {
 for(int col = 0; col < nCols; cols += blockSize) {
 compute ray direction;
 theRay.setDir(<direction>); //set the ray’s direction

 clr.set(scn.shade(theRay)); // find the color
 glColor3f(clr.red, clr.green, clr.blue);
 glRecti(col, row, col + blockSize, row + blockSize);
 }
 }
}

 shade() function does most of ray tracing work

R.W. Lindeman - WPI Dept. of Computer Science 12

Color3 Scene::shade(Ray& ray) { // return color of this ray
 Color3 color; // total color to be returned
 Intersection best; // data for best hit so far
 getFirstHit(ray, best); // fill “best” record
 if(best.numHits == 0) { // did ray miss all objects?
 return background;
 }
 color.set(the emissive color of object);
 color.add(ambient, diffuse and specular); // add contrib.
 color.add(reflected and refracted components);
 return color;
}
 getFirstHit function returns first object hit by ray
 Intersection class used to store each object’s hit information

shade() skeleton

7

R.W. Lindeman - WPI Dept. of Computer Science 13

 Intersection class used to store each object’s hit information

class Intersection {
 public:

 int numHits; // # of hits at positive hit times
 HitInfo hit[8]; //list of hits – may need more than 8 later
 … various hit methods
}

 hitInfo stores actual hit information for each hit
 For simple convex objects (e.g., sphere) at most 2 hits
 For torus up to 4 hits
 For boolean objects, all shapes possible so no limit to number of hits

shade() skeleton

R.W. Lindeman - WPI Dept. of Computer Science 14

class HitInfo {
 public:
 double hitTime; // the hit time
 GeomObj* hitObject; // the object hit

 bool isEntering; // is the ray entering or exiting
 int surface; // which surface is hit?
 Point3 hitPoint; // hit point
 Vector3 hitNormal; // normal at hit point
 … various hit methods
}

 Surface applies if it is convenient to think of object as multiple
surfaces, e.g., cylinder cap, base and side are 3 different surfaces

HitInfo() class

8

R.W. Lindeman - WPI Dept. of Computer Science 15

void Scene::getFirstHit(Ray& ray, Intersection& best) {
 Intersection inter; // make intersection record
 best.numHits = 0; // no hits yet

 for(GeomObj* pObj = obj; pObj != NULL; pObj = pObj->next) {
 // test each object in the scene
 if(!pObj->hit(ray, inter)) { // does the ray hit pObj?
 continue; // miss: test the next object
 }
 if((best.numHits == 0) || // best has no hits yet
 (inter.hit[0].hitTime < best.hit[0].hitTime)) {
 best.set(inter); //copy inter into best
 }
 }
}

 Sphere, cube, plane … are all derived from base GeomObj class

getFirstHit() method

R.W. Lindeman - WPI Dept. of Computer Science 16

 Polymorphism:
 Hit called in getFirstHit() is a virtual function

 Hit is implemented differently for each object
based on its implicit equations

 So, sphere, cylinder, cube … all have their hit()
functions

 Much of raytracing work lies in writing these
hit() functions

 Next, hit() function for sphere

getFirstHit() method

9

R.W. Lindeman - WPI Dept. of Computer Science 17

References
Hill, chapter 12

