
CS 543 - Computer Graphics:
Ray Tracing Detail, Part 1

by
Robert W. Lindeman

gogo@wpi.edu
(with help from Emmanuel Agu ;-)

R.W. Lindeman - WPI Dept. of Computer Science 2

Ray Tracing
 Global illumination-based rendering method
 Simulates rays of light, natural lighting effects
 Because light path is traced, handles some effects that

are tough for OpenGL:
 Shadows
 Multiple inter-reflections
 Transparency
 Refraction
 Texture mapping

 Newer variations… e.g. photon mapping (caustics,
participating media, smoke)

 Note: Ray Tracing can be whole semester graduate
course!

R.W. Lindeman - WPI Dept. of Computer Science 3

How Ray Tracing Works
 OpenGL is object space rendering

 start from world objects, rasterize them

 Ray tracing is image space method
 Start from pixel, what do you see through this pixel?

 Looks through each pixel (e.g., 640 x 480)
 Determines what eye sees through pixel
 Basic idea:

 Trace light rays: eye -> pixel (image plane) -> scene
 If a ray intersect any scene object in this direction

 Yes? render pixel using object color
 No? it uses the background color

 Automatically solves hidden surface removal problem

R.W. Lindeman - WPI Dept. of Computer Science 4

Case A: Ray misses all objects

R.W. Lindeman - WPI Dept. of Computer Science 5

Case B: Ray hits an object

R.W. Lindeman - WPI Dept. of Computer Science 6

Ray hits object: Check if hit point is in shadow, build
secondary ray (shadow ray) towards light sources.

Case B: Ray hits an object

R.W. Lindeman - WPI Dept. of Computer Science 7

If shadow ray hits another object before light source: first intersection
point is in shadow of the second object. Otherwise, collect light contributions

Case B: Ray hits an object

R.W. Lindeman - WPI Dept. of Computer Science 8

First Intersection point in the shadow of the second object is the
shadow area.

Case B: Ray hits an object

R.W. Lindeman - WPI Dept. of Computer Science 9

When a ray hits an object, a reflected ray is generated which is
tested against all of the objects in the scene.

Reflected Ray

R.W. Lindeman - WPI Dept. of Computer Science 10

Reflection:
Contribution from the reflected ray

R.W. Lindeman - WPI Dept. of Computer Science 11

If intersected object is transparent, transmitted ray is generated and
tested against all the objects in the scene.

Transparency

R.W. Lindeman - WPI Dept. of Computer Science 12

Transparency:
Contribution from transmitted ray

R.W. Lindeman - WPI Dept. of Computer Science 13

Reflected Ray: Recursion
Case A: Scene with no reflection rays

R.W. Lindeman - WPI Dept. of Computer Science 14

Reflected Ray: Recursion
Case B: Scene with one level of reflection

R.W. Lindeman - WPI Dept. of Computer Science 15

Reflected Ray: Recursion
Case C: Scene with two levels of reflection

R.W. Lindeman - WPI Dept. of Computer Science 16

Ray Tree
 Reflective and/or transmitted rays are continually

generated until the ray leaves the scene without hitting
any object, or a preset recursion level has been reached.

R.W. Lindeman - WPI Dept. of Computer Science 17

 So, express ray as equation (origin is eye, pixel
determines direction)

 Define a ray as:
 R0 = [x0, y0, z0] - origin of ray
 Rd = [xd, yd, zd] - direction of ray

 then define parametric equation of ray:
 R(t) = R0 + Rd * t with t > 0.0

 Express all objects (sphere, cube, etc.) mathematically
 Ray tracing idea:

 Put ray mathematical equation into object equation
 Determine if real solution exists.
 Object with smallest hit time is object seen

Ray-Object Intersections

R.W. Lindeman - WPI Dept. of Computer Science 18

Dependent on parametric equations of object
Ray-Sphere Intersections
Ray-Plane Intersections
Ray-Polygon Intersections
Ray-Box Intersections
Ray-Quadric Intersections
 (cylinders, cones, ellipsoids, paraboloids)

Ray-Object Intersections

R.W. Lindeman - WPI Dept. of Computer Science 19

Writing a RayTracer
 The first step is to create the model of the objects
 One should NOT hardcode objects into the program,

but instead use an input file.
 This is called retained mode graphics
 We will use SDL
 Ray trace SDL files
 The output image/file will consist of three intensity

values (Red, Green, and Blue) for each pixel.

R.W. Lindeman - WPI Dept. of Computer Science 20

Accelerating Ray Tracing
 Ray Tracing is very time-consuming because of intersection

calculations
 Each intersection requires from a few (5-7) to many (15-20) floating

point operations (fpos)
 Example: for a scene with 100 objects and computed with a spatial

resolution of 512 x 512, assuming 10 fpos per object test there are
about 250,000 X 100 X 10 = 250,000,000 fpos.

 Solutions:
 Use faster machines
 Use specialized hardware, especially parallel processors.
 Note: ray tracing did not use 3D graphics cards (until now!)
 Speed up computations by using more efficient algorithms
 Reduce the number of ray - object computations

R.W. Lindeman - WPI Dept. of Computer Science 21

 Adaptive Depth Control:
 Stop generating reflected/transmitted rays when computed

intensity becomes less than certain threshold.

 Bounding Volumes:
 Enclose groups of objects in sets of hierarchical bounding

volumes
 First test for intersection with the bounding volume
 Then only if there is an intersection, against the objects

enclosed by the volume.

 First Hit Speed-Up:
 Use modified Z-buffer algorithm to determine the first hit.

Reducing Ray-Object
Intersections

R.W. Lindeman - WPI Dept. of Computer Science 22

Writing a Ray Tracer
Our approach:

 Give arrangement of minimal ray tracer
 Use that as template to explain process

Minimal?
 Yes! Basic framework
 Just two object intersections
 Minimal/no shading

Paul Heckbert (CMU):
 Ran ray tracing contest for years
 Wrote ray tracer that fit on back of his

business card

R.W. Lindeman - WPI Dept. of Computer Science 23

Pseudocode for Ray Tracer
Basic idea

color Raytracer {
 for(each pixel direction) {
 determine first object in this pixel direction
 calculate color shade
 return shade color
 }
}

R.W. Lindeman - WPI Dept. of Computer Science 24

Define the objects and light sources in the scene
Set up the camera
for(int r = 0; r < nRows; r++){

for(int c = 0; c < nCols; c++){
1. Build the rc-th ray
2. Find all object intersections with rc-th ray
3. Identify closest object intersection
4. Compute the “hit point” where the ray hits the

 object, and normal vector at that point
5. Find color of light to eye along ray
6. Set rc-th pixel to this color

}
}

More Detailed Ray Tracer
Pseudocode (fig 12.4)

R.W. Lindeman - WPI Dept. of Computer Science 25

Define Objects and
Light Sources in Scene

 Already know SDL, use it for input format
 Previously, in our program
Scene scn;
…

scn.read(“your scene file.dat”); // reads scene file
scn.makeLightsOpenGL(); // builds lighting data struct.
scn.drawSceneOpenGL(); // draws scene using OpenGL

 Previously, OpenGL did most of the work,
rendering

 Now, we replace drawSceneOpenGL with ray
tracing code

 Minimally use OpenGL for setting pixel color

R.W. Lindeman - WPI Dept. of Computer Science 26

Set OpenGL up for 2D
 Ray tracing will do all the work

 figure our pixel color

 Set OpenGL up for 2D drawing
 Just like project 2 (dino.dat)
// set up OpenGL for simple 2D drawing
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, nCols, 0, nRows);
glDisable(GL_LIGHTING); //we will handle lighting
…
do ray tracing

R.W. Lindeman - WPI Dept. of Computer Science 27

Define the objects and light sources in the scene
Set up the camera
for(int r = 0; r < nRows; r++){

for(int c = 0; c < nCols; c++){
1. Build the rc-th ray
2. Find all object intersections with rc-th ray
3. Identify closest object intersection
4. Compute the “hit point” where the ray hits the

 object, and normal vector at that point
5. Find color of light to eye along ray
6. Set rc-th pixel to this color

}
}

Ray Tracer Pseudocode

R.W. Lindeman - WPI Dept. of Computer Science 28

Setting RC-th pixel to
Calculated Color
 Can do as before. i.e. first set drawing color, then

send vertex

glColor3f(red, green, blue); // set drawing color
glPointSize(1.0); // set point size to 1

//…. .then send vertices
glBegin(GL_POINTS)

glVertex2i(100, 130);
glEnd();

 But ray tracing can take time.. minutes, days,
weeks!! ?

 Use notion of blocksize to speedup ray tracing

R.W. Lindeman - WPI Dept. of Computer Science 29

Setting RC-th pixel to
Calculated Color
 Break screen into blocks (fat pixels)
 Ray trace only top-left pixel of block
 1 calculation, set entire block to calculated color
 E.g. blockSize = 3, ray trace, top-left pixel, set entire block

to green

 Affects resolution of picture
 Initially use large block size to verify code, then set to 1

R.W. Lindeman - WPI Dept. of Computer Science 30

Define the objects and light sources in the scene
Set up the camera
For(int r = 0; r < nRows; r+= blockSize){

for(int c = 0; c < nCols; c+= blockSize){
1. Build the rc-th ray
2. Find all object intersections with rc-th ray
3. Identify closest object intersection
4. Compute the “hit point” where the ray hits the

 object, and normal vector at that point
5. Find color (clr) of light to eye along ray
 glColor3f(clr.red, clr.green, clr.blue);
 glRecti(c, r, c + blockSize, r + blockSize);

}
}

Modified Ray Tracer
Pseudocode Using blockSize

R.W. Lindeman - WPI Dept. of Computer Science 31

Define the objects and light sources in the scene
Set up the camera
For(int r = 0; r < nRows; r+= blockSize){

for(int c = 0; c < nCols; c+= blockSize){
1. Build the rc-th ray
2. Find all object intersections with rc-th ray
3. Identify closest object intersection
4. Compute the “hit point” where the ray hits the

 object, and normal vector at that point
5. Find color (clr) of light to eye along ray
 glColor3f(clr.red, clr.green, clr.blue);
 glRecti(c, r, c + blockSize, r + blockSize);

}
}

Modified Ray Tracer
Pseudocode Using blockSize

R.W. Lindeman - WPI Dept. of Computer Science 32

Build the RC-th Ray
 Parametric expression ray starting at eye and

passing through pixel at row r, and column c

 But what exactly is this dirrc(t) ?

 Need to express ray direction in terms of
variables r and c

 Now need to set up camera, and then express
dirrc in terms of camera r and c

tdireyetr

tdirectionoriginray

rc+=

+=

)(

)(

R.W. Lindeman - WPI Dept. of Computer Science 33

Define the objects and light sources in the scene
Set up the camera
for(int r = 0; r < nRows; r+= blockSize){

for(int c = 0; c < nCols; c+= blockSize){
1. Build the rc-th ray
2. Find all object intersections with rc-th ray
3. Identify closest object intersection
4. Compute the “hit point” where the ray hits the

 object, and normal vector at that point
5. Find color (clr) of light to eye along ray
glColor3f(clr.red, clr.green, clr.blue);
glRecti(c, r, c + blockSize, r + blockSize);

}
}

Modified Ray Tracer
Pseudocode Using blockSize

R.W. Lindeman - WPI Dept. of Computer Science 34

Set up Camera Geometry
 As before, camera has axes (u, v, n) and position eye

with coordinates (eye.x, eye.y, eye.z)
 Camera extends from –W to +W in u-direction
 Camera extends from –H to +H in v-direction

+W

(uc , vr)

Column c

u

+H

-H

-W

Row r

v

R.W. Lindeman - WPI Dept. of Computer Science 35

Set up Camera Geometry
 Viewport transformation?

 Simplest transform: viewport is pasted onto
window at near plane
 Viewport (screen) width: 1 to nCols (or 0 to nCols –1)
 Window width: -W to +W

 Can show that a given c maps to

for c = 0, 1,……nCols - 1

nCols

c
WWu

c

2
+!=

R.W. Lindeman - WPI Dept. of Computer Science 36

Set up Camera Geometry
 Similarly

 viewport (screen) height:
 1 to nRows ….(or 0 to nRows –1)

 Window width: -H to +H

 Can show that a given r maps to

for r = 0, 1,……nRows - 1

nRows

r
HHv

r

2
+!=

R.W. Lindeman - WPI Dept. of Computer Science 37

Set up Camera Geometry
Near plane lies distance N along n axis
Camera has aspect ratio aspect and view

angle θ

Such that

 Thus pixel (r, c) location

expressed in terms of

u, v and n
vun rc vuNeye ++!

Near plane

Eye

N

+H

v

n

-H

θ

)2/tan(!NH =

aspectHW !=

R.W. Lindeman - WPI Dept. of Computer Science 38

Set up Camera Geometry
 So, pixel location ..Near plane lies distance N along n axis

 Parametric form of ray starting at eye and going through
pixel is then. Note: eye is at t =0, hits pixel at t = 1

 Manipulating expressions, if

vun rc vuNeye ++!=

tvuNeyeteyetr rc)()1()(vun ++!+!=

teyetr
rc

dir+=)(

vundir)1
2

()1
2

(!+!+!=
nRows

r

nCols

c
WN

rc

R.W. Lindeman - WPI Dept. of Computer Science 39

Set up Camera Geometry
 So, ray starts at t =0, hits pixel at t = 1
 Ray hits scene objects at time thit > 1
 If thit < 0, object is behind the eye
 For a given ray, if two objects have hit times t1 and t2, smaller

hit time is closer to eye
 In fact, for all hit times along ray, smallest hit time is closest
 If we know hit time of an object, thit, we can solve for object’s

position (x, y, z) in space as

 Do this separately for x, y and z
 Thus automatically, ray tracing solves Hidden surface removal

problem

hitrchit teyeP dir+=

R.W. Lindeman - WPI Dept. of Computer Science 40

Define the objects and light sources in the scene
Set up the camera
for(int r = 0; r < nRows; r+= blockSize){

for(int c = 0; c < nCols; c+= blockSize){
1. Build the rc-th ray
2. Find all object intersections with rc-th ray
3. Identify closest object intersection
4. Compute the “hit point” where the ray hits the

 object, and normal vector at that point
5. Find color (clr) of light to eye along ray
glColor3f(clr.red, clr.green, clr.blue);
glRecti(c, r, c + blockSize, r + blockSize);

}
}

Where are we?

R.W. Lindeman - WPI Dept. of Computer Science 41

References
Hill, chapter 12
http://www.siggraph.org/education/mate

rials/HyperGraph/raytrace/rtrace0.htm

