
1

CS 543 - Computer Graphics:
Raster Graphics, Part 1

by
Robert W. Lindeman

gogo@wpi.edu
(with help from Emmanuel Agu ;-)

R.W. Lindeman - WPI Dept. of Computer Science 2

2D Graphics Pipeline
 Simplified

 Object in
World Coordinates

Object
subset

window to
viewport
mapping

 Object in
Screen coordinatesRasterizationDisplay

Apply
world window

Clipping

Simple 2D Drawing Pipeline

2

R.W. Lindeman - WPI Dept. of Computer Science 3

Rasterization (Scan Conversion)
 Convert high-level geometry description to pixel colors

in the frame buffer
 Example: given vertex x, y coordinates, determine pixel

colors to draw line
 Two ways to create an image

 Scan existing photograph
 Procedurally compute values (rendering)

Viewport
Transformation Rasterization

R.W. Lindeman - WPI Dept. of Computer Science 4

Rasterization
A fundamental computer graphics

function
Determine the pixels' colors,

illuminations, textures, etc.
Implemented by graphics hardware
Rasterization algorithms

 Lines
 Circles
 Triangles
 Polygons

3

R.W. Lindeman - WPI Dept. of Computer Science 5

Rasterization Operations
Drawing lines on the screen
Manipulating pixel maps (pixmaps):

copying, scaling, rotating, etc.
Compositing images, defining and

modifying regions
Drawing and filling polygons

 Previously glBegin(GL_POLYGON), etc

Aliasing and antialiasing methods

R.W. Lindeman - WPI Dept. of Computer Science 6

Compositing Example

4

R.W. Lindeman - WPI Dept. of Computer Science 7

Line Drawing Algorithm
 Programmer specifies (x, y) values of end pixels
 Need algorithm to figure out which intermediate

pixels are on line path
 Pixel (x, y) values constrained to integer values
 Actual computed intermediate line values may be

floats
 Rounding may be required, e.g., computed point

(10.48, 20.51) rounded to (10, 21)
 Rounded pixel value is off actual line path (jaggy!!)
 Sloped lines end up having jaggies, but vertical,

horizontal lines don't

R.W. Lindeman - WPI Dept. of Computer Science 8

Line Drawing Algorithm (cont.)

0 1 2 3 4 5 6 7 8 9 10 11 12

8
7
6
5
4
3
2
1
0

?
Line: (3,2) -> (9,6)

Which intermediate
pixels should we light?

5

R.W. Lindeman - WPI Dept. of Computer Science 9

Line Drawing Algorithm (cont.)
Slope-intercept line equation

 y = mx + b
 Given two end points (x0, y0), (x1, y1), how

do we compute m and b?

(x0, y0)

(x1, y1)

dx

dy

!

m =
dy

dx
=
y
1
" y

0

x
1
" x

0

!

b = y
0
"m * x

0

R.W. Lindeman - WPI Dept. of Computer Science 10

Line Drawing Algorithm (cont.)
Numerical example of finding slope m:
(Ax, Ay) = (23, 41), (Bx, By) = (125, 96)

!

m =
By " Ay

Bx " Ax

=
96 " 41

125 " 23
=
55

102
= 0.5392

6

R.W. Lindeman - WPI Dept. of Computer Science 11

Line Drawing Algorithm:
Digital Differential Analyzer (DDA)
 Walk through the line, starting at (x0,y0)
 Constrain x, y increments to values in [0,1] range
 Case a: x is incrementing faster (m < 1)

 Step in x=1 increments, compute and round y

 Case b: y is incrementing faster (m > 1)
 Step in y=1 increments, compute and round x

m<1

m>1

m=1

(x0, y0)

(x1, y1)

dx

dy

R.W. Lindeman - WPI Dept. of Computer Science 12

DDA Line Drawing Algorithm
(Case a: m < 1)

(x0, y0)

x = x0 + 1 y = y0 + m

Illuminate pixel (x, round(y))

x = x + 1 y = y + m

Illuminate pixel (x, round(y))

…

Until x == x1

(x1, y1)
x = x0 y = y0

Illuminate pixel (x, round(y))

myy kk +=+1

7

R.W. Lindeman - WPI Dept. of Computer Science 13

DDA Line Drawing Algorithm
(Case b: m > 1)

y = y0 + 1 x = x0 + 1/m

Illuminate pixel (round(x), y)

y = y + 1 x = x + 1/m

Illuminate pixel (round(x), y)

…

Until y == y1

x = x0 y = y0

Illuminate pixel (round(x), y)

(x1, y1)

(x0, y0)

m
xx
kk

1

1
+=+

R.W. Lindeman - WPI Dept. of Computer Science 14

DDA Line Drawing Algorithm
Pseudocode
compute m;
if m < 1
 float y = y0; // initial value
 for(int x = x0; x <= x1; x++, y += m)
 setPixel(x, round(y));
else // m > 1
 float x = x0; // initial value
 for(int y = y0; y <= y1; y++, x += 1/m)
 setPixel(round(x), y);

 Note: setPixel(x, y) writes current color into pixel in
column x and row y in frame buffer

8

R.W. Lindeman - WPI Dept. of Computer Science 15

Line Drawing Algorithm
Drawbacks
 DDA is the simplest line drawing algorithm

 Not very efficient
 Round operation is expensive

 Optimized algorithms typically used
 Integer DDA

 e.g., Bresenham's algorithm (Hill, 9.4.1)

 Bresenham's algorithm
 Incremental algorithm: current value uses previous

value
 Integers only: avoid floating point arithmetic
 Several versions of algorithm: we'll describe midpoint

version of algorithm

R.W. Lindeman - WPI Dept. of Computer Science 16

Bresenham's Line-Drawing
Algorithm
Problem

 Given endpoints (Ax, Ay) and (Bx, By) of a
line, want to determine best sequence of
intervening pixels

First make two simplifying assumptions
(remove later):
 (Ax < Bx) and
 (0 < m < 1)

Define
 Width W = Bx – Ax
 Height H = By - Ay

(Bx, By)

(Ax, Ay)

9

R.W. Lindeman - WPI Dept. of Computer Science 17

Bresenham's Line-Drawing
Algorithm (cont.)
Based on assumptions

 W, H are positive
 H < W

As x steps in +1 increments, y incr/decr
by <= +/–1

y value sometimes stays same,
sometimes increases by 1
 Midpoint algorithm determines which

happens

R.W. Lindeman - WPI Dept. of Computer Science 18

Bresenham's Line-Drawing
Algorithm (cont.)

(x0, y0)

M = (x0 + 1, Y0 + ½)

Build equation of line through and compare
to midpoint

…

(x1, y1)
What Pixels do we need to turn on?

Consider pixel midpoint M(Mx, My)

If midpoint is above line, y stays same
If midpoint is below line, y increases + 1

10

R.W. Lindeman - WPI Dept. of Computer Science 19

Bresenham's Line-Drawing
Algorithm (cont.)
 To get a good line equation, use similar triangles

 H(x – Ax) = W(y – Ay)
 -W(y – Ay) + H(x – Ax) = 0

 Above is ideal equation of line through (Ax, Ay) and (Bx, By)
 Thus, any point (x, y) that lies on ideal line makes eqn = 0
 Double expression (to avoid floats later), and give it a name,

 F(x, y) = -2W(y – Ay) + 2H(x – Ax)

W

H

Axx

Ayy
=

!

!
(Bx, By)

(Ax, Ay)

(x, y)

R.W. Lindeman - WPI Dept. of Computer Science 20

Bresenham's Line-Drawing
Algorithm (cont.)
So, F(x, y) = -2W(y – Ay) + 2H(x – Ax)
Algorithm

 If:
 F(x, y) < 0, (x, y) above line
 F(x, y) > 0, (x, y) below line

Hint: F(x, y) = 0 is on line
Increase y keeping x constant, F(x, y)

becomes more negative

11

R.W. Lindeman - WPI Dept. of Computer Science 21

Bresenham's Line-Drawing
Algorithm (cont.)
 Example

 To find line segment between (3, 7) and (9, 11)

F(x,y) = -2W(y – Ay) + 2H(x – Ax)
 = (-12)(y – 7) + (8)(x – 3)

 For points on line, e.g., (7, 29/3), F(x, y) = 0

 A = (4, 4) lies below line since F = 44 (> 0)
 B = (5, 9) lies above line since F = -8 (< 0)

R.W. Lindeman - WPI Dept. of Computer Science 22

Bresenham's Line-Drawing
Algorithm (cont.)

(x0, y0)

M = (x0 + 1, Y0 + ½)

If F(Mx, My) < 0, M lies above line,
 shade lower pixel (same y as before)

…

(x1, y1)
What Pixels do we need to turn on?

Consider pixel midpoint M(Mx, My)

If F(Mx, My) > 0, M lies below line,
 shade upper pixel (y = y + 1)

12

R.W. Lindeman - WPI Dept. of Computer Science 23

Bresenham's Line-Drawing
Algorithm (cont.)
We can compute F(x, y)

incrementally
 Initially, midpoint M = (Ax + 1, Ay + ½)

F(Mx, My) = -2W(y – Ay) + 2H(x – Ax)
 = 2H – W

 Can compute F(x, y) for next midpoint
incrementally

 If we increment x + 1, y stays same
 F(Mx, My) += 2H
 If we increment x +1, y + 1

F(Mx, My) += 2(W – H)

R.W. Lindeman - WPI Dept. of Computer Science 24

Bresenham's Line-Drawing
Algorithm (cont.)
Bresenham(IntPoint a, InPoint b) {
 // restriction: a.x < b.x and 0 < H/W < 1
 int y = a.y, W = b.x – a.x, H = b.y – a.y;
 int F = 2 * H – W; // current error term
 for(int x = a.x; x <= b.x; x++) {
 setPixel at (x, y); // to desired color value
 if F < 0
 F += 2H;
 else {
 y++;
 F += 2(H – W)
 }
 }
}

 Recall: F is the equation of a line

13

R.W. Lindeman - WPI Dept. of Computer Science 25

Bresenham's Line-Drawing
Algorithm (cont.)
 Final words: we developed algorithm with

restrictions
0 < m < 1 and Ax < Bx

 Can add code to remove restrictions
 To get the same line when Ax > Bx (swap and draw)
 Lines having m > 1 (interchange x with y)
 Lines with m < 0 (step x++, decrement y not incr)
 Horizontal and vertical lines (pretest a.x = b.x and

skip other tests)

 Important: Read Hill 9.4.1

R.W. Lindeman - WPI Dept. of Computer Science 26

References
Hill, Chapter 9

